
Multi-label Subspace Ensemble

Tianyi Zhou Dacheng Tao
Centre for Quantum Computation & Intelligent Systems

University of Technology Sydney, Australia
tianyi.zhou@student.uts.edu.au

Centre for Quantum Computation & Intelligent Systems
University of Technology Sydney, Australia

dacheng.tao@uts.edu.au

Abstract

A challenging problem of multi-label learning
is that both the label space and the model com-
plexity will grow rapidly with the increase in the
number of labels, and thus makes the available
training samples insufficient for training a proper
model. In this paper, we eliminate this problem
by learning a mapping of each label in the fea-
ture space as a robust subspace, and formulating
the prediction as finding the group sparse repre-
sentation of a given instance on the subspace en-
semble. We term this approach as “multi-label
subspace ensemble (MSE)”. In the training stage,
the data matrix is decomposed as the sum of sev-
eral low-rank matrices and a sparse residual via
a randomized optimization, where each low-rank
part defines a subspace mapped by a label. In
the prediction stage, the group sparse represen-
tation on the subspace ensemble is estimated by
grouplasso. Experiments on several benchmark
datasets demonstrate the appealing performance
of MSE.

1 Introduction

Multi-label learning [15][9][5] (ML) predicts multiple la-
bels that characterize an instance from a set of possible
labels. Conventional multi-label learning algorithms aim
to find a mapping from the feature spaceX ⊆ Rp to the
label spaceY ⊆ {0, 1}k, whereink is the number of la-
bels andyi = 1, y ∈ Y means the sample belongs to la-
bel i. Binary relevance (BR) [11] and label powerset (LP)
[11] are two natural approaches. BR relaxes ML tok inde-
pendent binary classifications on thek labels respectively,
while LP frames ML as a multi-class classification prob-
lem, where each class denotes a uniquek-dimensional la-
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bel vector. Both BR and LP do not duly explore the charac-
teristics of ML, because BR ignores the label correlations,
and LP makes the training samples of each class far less
than the prerequisite.

A central problem limiting ML is that the label spaceY
will exponentially grow with the increase in the number of
labels, i.e.,k labels lead to a search in a label spaceY of
size2k in the prediction. BR independently predicts each
dimension of thek-dimensional label vectory in isolation
and thus does not encounter this problem with the price of
ignoring the label correlations. LP attempts to distinguish
each element inY from the other2k−1 ones. Thus the size
of the training set, which is large enough for binary classifi-
cation, will be insufficient for multi-label prediction. This
problem also leads to a rapid growth of the model com-
plexity, which increases the training costs. By viewing the
problem from the perspective of probabilistic approaches,
the exponential growth ofY drastically enlarges the param-
eter space for modelingP (y|x), x ∈ X , which makes ML
intractable in computation. Another important problem is
that, for a given training set{X,Y }, the instances inY of-
ten scatters sparsely in the ambient spaceY. It is therefore
difficult to study the structure ofY and reduce its dimen-
sionality.

Most recent multi-label learning approaches [20][19] in-
vestigate the label correlations (or dependencies) to build
a structured classification model. They partially solve the
first problem by reducing the size of the search spaceY.
For example, the random k-labelsets (RAkEL) method [14]
randomly selects an ensemble of subsets from the original
labelsets (the set of labels one instance belongs to), and
then LP is applied to each subset. The final prediction is
obtained by ranking and thresholding of the results on the
subsets. Hierarchical binary relevance (HBR) [1] builds a
general-to-specific tree structure of labels, where a sample
with a label must be associated with its parent labels. A bi-
nary classifier is trained on each non-root label. Hierarchy
of multi-label classifiers (HOMER) [12] recursively parti-
tions the labels into several subsets and builds a tree-shaped
hierarchy. A binary classifier is trained on each non-root la-
bel subset. The classifier chain (CC) [10] adopts a greedy
method to predict unknown label from features and pre-
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dicted labels by using a binary classifier.

However, the size of the search space in these approaches
is much larger thanO(k), and their model complexities are
too high to be applied in practice. Also, the instances in
Y are always insufficient to generate a reliable estimation
of the label space structure, and thus weaken the effective-
ness of the structured classification models used in these
approaches.

Some existing learning methods except binary classifica-
tion are reformulated and then can be extended to multi-
label prediction problem. For example, the C&W proce-
dure [2] separates multi-label prediction into two stages,
i.e., BR and correction of the BR results by using the la-
bel dependence. Regularized multi-task learning [3] and
shared-subspace learning [6] formulate the problem as
regularized regression or classification problem. Multi-
label dimensionality reduction via dependence maximiza-
tion (MDDM) [21] maximizes the dependence between
feature space and label space, and provides a data prepro-
cessing for other multi-label learning methods. A linear di-
mensionality reduction method for multi-label data is pro-
posed in [7]. In [5], multi-label prediction is formulated as
a sparse signal recovery problem.

However, these methods cannot provide an explicit model-
ing of the label correlations (or dependence) and thus their
performance improvements due to exploring label structure
are limited. Moreover, they bring extra time costs to the
training process, so the efficiency is weakened.

In this paper, we consider the ML problem in a novel man-
ner: we study the mapping of each label as a feature sub-
space. In other words, we assume each instancex exists
in the ensemble of subspaces defined by the labels thatx
belongs to. However, it is not always guaranteed that each
instance can be completely explained by the labels we con-
sider, so a method should be developed to separate the parts
that can be explained by the considered labels and the part
that cannot. The label correlations are naturally preserved
in the subspace ensemble. Given a new instance, its la-
bels are predicted by estimating its group sparse represen-
tation in the subspace ensemble, where the nonzero entries
are associated with the predicted labels. There are onlyk
subspaces that are demanded, so the model complexity is
small. The prediction is accomplished by searching in the
subspace ensemble, and thus avoids the estimation of the
label space structure.

We therefore develop “multi-label subspace ensemble
(MSE)” to solve the above problem. In the training stage,
we develop a randomized decomposition of the training
dataX , whereX is factorized to the sum ofk low-rank
parts and a sparse residual. Each of the low-rank part de-
fines the subspace mapped by a particular label, while the
sparse residual stores the part that cannot be explained by
the considered labels. The decomposition is fast due to an

application of the bilateral random projection (BRP) based
low-rank approximation [22]. Its convergence to local op-
timum is proved. In the prediction stage of MSE, group
lassoestimates the group sparse representation of a given
instance in the subspace ensemble, and the nonzero entries
indicates the predicted labels. The experiments on several
benchmark datasets for ML imply the competitive effec-
tiveness and efficiency of MSE.

The rest of the paper is organized as follows. Section 2
introduces the MSE model, which explains the mapping of
the label in the feature space and includes the assumption of
MSE to the multi-label data. Section 3 presents the training
algorithm of MSE via randomized matrix decomposition,
which produces the ensemble of the subspaces. Section
4 presents the prediction algorithm in MSE by exploring
the group sparse representation of a multi-label sample on
the subspace ensemble. Section 5 shows the experimental
results of MSE on 13 benchmark datasets. Section 6 gives
a discussion and concludes the paper.

2 MSE model

Given a samplex ∈ Rp and its label vectory ∈ {0, 1}k,
we assume thatx can be decomposed as the sum of several
componentsli and a sparse residuals

x =
∑

i:yi=1

li + s. (1)

The componentli is caused by the labeli thatx belongs to.
Thusli can be explained as the mapping from the labeli in
x to the feature space. The residuals is the component that
all the labels iny cannot explain. The model in (1) reveals
the general relationship between the feature space and the
label space.

For all the samples with labeli, we assume their compo-
nents explained by labeli lie in a linear subspaceCi ∈
Rri×p, i.e., li = βGiC

i, whereinβGi is the representation
coefficients corresponding toCi. Thus the model (1) can
be equivalently written as

x =
k∑

i=1

βGiC
i + s,

∀i ∈ {i : yi = 0}, βGi = 0.
(2)

If we build the subspace ensembleC = [C1; . . . ;Ck] char-
acterized by thek labels as a dictionary forx, the cor-
responding representation coefficient vector forx is β =
[βG1 , . . . , βGk

]. The coefficientsβGi corresponding to the
labels thatx does not belong to are zeros, soβ is group
sparse, wherein the groups areGi, i = 1, . . . , k.

In the training stage of MSE, we learn the subspace en-
sembleCi, i = 1, . . . , k from the training dataX via a ran-
domized decomposition ofX , in which the components ex-
plained by labeli from all the samples consists a low-rank
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matrixLi
Ωi

, whereinΩi is the index set of training samples
with labeli. Thus the row space ofLi

Ωi
is the subspaceCi.

In the prediction stage of MSE, given a new instancex, we
use grouplassoto find the group sparse representationβ on
the subspace ensembleC, and then a simple thresholding
is used to test which groups thatβ concentrates on. The la-
bels that these groups correspond to are the predicted labels
for the instancex.

In the training stage of MSE, the label correlations is natu-
rally preserved in the subspace ensembleC, because all the
subspaces are jointly learned. Specifically, if two labelsi
andj simultaneously appear for many times in the training
samples, thenΩi andΩj will have many shared elements.
Thus the row spaces ofLi

Ωi
andLi

Ωj
, i.e.,Ci andCj , will

be close to each other. In the prediction stage, both discrim-
inative and structured information encoded in the subspace
ensemble are considered via grouplasso. Since onlyk sub-
spaces are learned in the training stage, MSE explores label
correlations without increasing the model complexity.

3 MSE training: randomized decomposition

In this section, we introduce the training stage of MSE,
which approximately decomposes the training data matrix
X ∈ Rn×p into X =

∑k
i=1 L

i + S. For the matrixLi, the
rows corresponding to the samples with labeli are nonzero,
while the other rows are all-zero vectors. The nonzero rows
denote the components explained by labeli in the feature
space. We useΩi to denote the index set of samples with la-
bel i in the matrixX andLi, and then the matrix composed
of the nonzero rows inLi is represented byLi

Ωi
. In the de-

composition, the rank ofLi
Ωi

is upper bounded, which in-
dicates that all the components explained by labeli nearly
lies in a linear subspace. The matrixS is the residual of the
samples that cannot be explained by the given labels. In
the decomposition, the cardinality ofS is upper bounded,
which makesS sparse.

If the label matrix ofX is Y ∈ {0, 1}n×k, the rank ofLi
Ωi

is upper bounded byri and the cardinality ofS is upper
bounded byK, the decomposition can be written as solving
the following constrained minimization problem:

min
Li,S

∥∥∥X −
∑k

i=1 L
i − S

∥∥∥
2

F

s.t. rank
(
Li
Ωi

)
≤ ri, Li

Ωi
= 0, ∀i = 1, . . . , k

card (S) ≤ K.

(3)

Therefore, each training sample inX is decomposed as the
sum of several components, which respectively correspond
to multiple labels that the sample belongs to. MSE sepa-
rates these components from the original sample by build-
ing the mapping from the labels to the feature space. For
label i, we obtain its mapping in the feature space as the
row space ofLi

Ωi
.

3.1 Alternating minimization

Although the rank constraint toLi
Ωi

and cardinality con-
straint toS are not convex, the optimization in (3) can be
solved by alternating minimization that decomposes it as
the following k + 1 subproblems, each of which has the
global solution:




Li
Ωi

= arg min
rank

(
Li

Ωi

)
≤ri

∥∥∥∥∥X −
k∑

j=1,j 6=i

Lj − S − Li

∥∥∥∥∥

2

F

,

∀i = 1, . . . , k.

S = arg min
card(S)≤K

∥∥∥∥∥X −
k∑

j=1

Lj − S

∥∥∥∥∥

2

F

.

(4)

The solutions ofLi
Ωi

and S in the above subproblems
can be obtained via hard thresholding of singular values
and the matrix entries, respectively. Note that both SVD
and matrix entry-wise hard thresholding have global solu-
tions. In particular,Li

Ωi
is built from the firstri largest

singular values and the corresponding singular vectors of(
X −∑k

j=1,j 6=i L
j − S

)
Ωi

, while S is built from theK

entries with the largest absolute value inX −∑k
j=1 L

j,
i.e.,




Li
Ωi

=
ri∑
q=1

λqUqV
T
q , i = 1, . . . , k,

svd

[(
X −∑k

j=1,j 6=i L
j − S

)
Ωi

]
= UΛV T ;

S = PΦ

(
X −

k∑
j=1

Lj

)
,Φ :

∣∣∣∣∣∣

(
X −

k∑
j=1

Lj

)

r,s∈Φ

∣∣∣∣∣∣
6= 0

and ≥

∣∣∣∣∣∣

(
X −

k∑
j=1

Lj

)

r,s∈Φ

∣∣∣∣∣∣
, |Φ| ≤ K.

(5)
The projectionS = PΦ(R) represents that the matrixS
has the same entries asR on the index setΦ, while the
other entries are all zeros.

The decomposition is then obtained by iteratively solving
thesek + 1 subproblems in (4) according to (5). In this
paper, we initializeLi

Ωi
andS as





Li
Ωi

:= ZΩi , i = 1, . . . , k,
Z = D−1X,D = diag (Y 1) ;
S := 0.

(6)

In each subproblem, only one variable is optimized with
the other variables fixed. The convergence of this alternat-
ing minimization can be proved in Theorem 1 by demon-
strating that the approximation error keeps monotonically
decreasing throughout the algorithm.

Theorem 1. The alternating minimization of subproblems
(4) produces a sequence of‖X−∑k

i=1 L
i−S‖2F that con-

verges to a local minimum.
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Proof. Let the objective value (decomposition error)‖X−∑k
i=1 L

i −S‖2F after solving thek+1 subproblems in (4)
beE1

(t), . . . , E
k+1
(t) respectively for thetth iteration round.

We use subscript(t) to signify the variable that is updated
in thetth iteration round. ThenE1

(t), . . . , E
k+1
(t) are

E1
(t) =

∥∥∥∥∥X − S(t−1) − L1
(t) −

k∑

i=3

Li
(t−1) − L2

(t−1)

∥∥∥∥∥

2

F

,

(7)

E2
(t) =

∥∥∥∥∥X − S(t−1) − L1
(t) −

k∑

i=3

Li
(t−1) − L2

(t)

∥∥∥∥∥

2

F

, (8)

...

Ek
(t) =

∥∥∥∥∥X −
k∑

i=1

Li
(t) − S(t−1)

∥∥∥∥∥

2

F

, (9)

Ek+1
(t) =

∥∥∥∥∥X −
k∑

i=1

Li
(t) − S(t)

∥∥∥∥∥

2

F

, (10)

The global optimality ofLi
(t) yieldsE1

(t) ≥ E2
(t) ≥ · · · ≥

Ek
(t). The global optimality ofS(t) yieldsEk

(t) ≥ Ek+1
(t) . In

addition, we have

Ek+1
(t) =

∥∥∥∥∥X −
k∑

i=2

Li
(t) − S(t) − L1

(t)

∥∥∥∥∥

2

F

, (11)

E1
(t+1) =

∥∥∥∥∥X −
k∑

i=2

Li
(t) − S(t) − L1

(t+1)

∥∥∥∥∥

2

F

. (12)

The global optimality ofL1
(t+1) yields Ek+1

(t) ≥ E1
(t+1).

Therefore, the objective value (or the decomposition error)
‖X −∑k

i=1 L
i − S‖2F keeps decreasing throughout the it-

eration rounds of (5), i.e.,

E1
(1) ≥ Ek+1

(1) ≥ · · · ≥ E1
(t) ≥ Ek+1

(t) ≥ · · · (13)

Since the objective value of (3) is monotonically decreasing
and the constraints are satisfied all the time, iteratively solv-
ing (4) produces a sequence of objective values that con-
verge to a local minimum. This completes the proof.

After obtaining the decomposition by solving (3), each
training sample is represented by the sum of several com-
ponents inLi characterized by the labels it belongs to and
the residual inS. Therefore, the mapping of labeli in fea-
ture subspace is defined as the row spaceCi ∈ Rri×p of
the matrixLi

Ωi
, which can be obtained via the QR decom-

position of
(
Li
Ωi

)T
.

3.2 Fast MSE training via bilateral random
projections

The main computation in (5) is thek times of SVD
in obtaining Li

Ωi
(i = 1, . . . , k). SVD requires

min
(
mn2,m2n

)
flops for anm × n matrix, and thus it

is impractical whenX is of large size. Random projec-
tion is effective in accelerating the matrix multiplication
and decomposition [4]. In this paper, we introduce “bilat-
eral random projections (BRP)”, which is a direct exten-
sion of random projection, to accelerate the optimization
of Li

Ωi
(i = 1, . . . , k).

For clear representation, we use letters independent to the
ones we use in other parts of this paper to illustrate BRP.
In particular, givenr bilateral random projections (BRP) of
anm×n dense matrixX (w.l.o.g,m ≥ n), i.e.,Y1 = XA1

andY2 = XTA2, whereinA1 ∈ Rn×r andA2 ∈ Rm×r

are random matrices,

L = Y1

(
AT

2 Y1

)−1
Y T
2 (14)

is a fast rank-r approximation ofX . The computation of
L includes an inverse of anr × r matrix and three matrix
multiplications. Thus, for a denseX , 2mnr floating-point
operations (flops) are required to obtain BRP,r2(2n+ r)+
mnr flops are required to obtainL. The computational cost
is much less than that of the SVD based approximation,
while its approximation error approaches to that of SVD
based method.

We build the random matricesA1 andA2 in an adaptive
way. Initially, bothA1 andA2 are set to standard Gaussian
matrices whose entries are independent variables follow-
ing the standard normal distribution. We firstly compute
Y1 = XA1, updateA2 := Y1 and calculate the left ran-
dom projection asY2 = XTA2 by using the newA2, and
then we updateA1 := Y2 and calculate the right random
projectionY1 = XA1 by using the newA1. This adap-
tive updating of random matrices requires additional flops
of mnr.

We analyze the error bounds of the BRP based low-rank
approximation (14).

The SVD of anm×n (w.l.o.g,m ≥ n) matrixX takes the
form

X = UΛV T = U1Λ1V
T
1 + U2Λ2V

T
2 , (15)

whereΛ1 is anr × r diagonal matrix which diagonal ele-
ments are the first largestr singular values,U1 andV1 are
the corresponding singular vectors,Λ2, U2 andV2 forms
the rest part of SVD. Assume thatr is the target rank,A1

andA2 haver+ p columns for oversampling. We consider
the spectral norm of the approximation errorE for (14)

‖X − L‖ =
∥∥∥X − Y1

(
AT

2 Y1

)−1
Y T
2

∥∥∥

=
∥∥∥
[
I −XA1

(
AT

2 XA1

)−1
AT

2

]
X
∥∥∥ . (16)
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The unitary invariance of the spectral norm leads to

‖X − L‖ =
∥∥∥UT

[
I −XA1

(
AT

2 XA1

)−1
AT

2

]
X
∥∥∥

=
∥∥∥Λ
[
I − V TA1

(
AT

2 XA1

)−1
AT

2 UΛ
]∥∥∥ .

(17)

In low-rank approximation, the left random projection ma-
trix A2 is build from the left random projectionY1 = XA1,
and then the right random projection matrixA1 is build
from the left random projectionY2 = XTA2. Thus
A2 = Y1 = XA1 = UΛV TA1 andA1 = Y2 = XTA2 =
XTXA1 = V Λ2V TA1. Hence the approximation error
given in (17) has the following form
∥∥∥Λ
[
I − Λ2V TA1

(
AT

1 V Λ4V TA1

)−1
AT

1 V Λ2
]∥∥∥ . (18)

The following theorem gives the bound for the spectral
norm of the deterministic error‖X − L‖.
Theorem 2. (Deterministic error bound) Given anm×
n (m ≥ n) real matrixX with singular value decomposi-
tion X = UΛV T = U1Λ1V

T
1 + U2Λ2V

T
2 , and chosen a

target rankr ≤ n− 1 and ann× (r+ p) (p ≥ 2) standard
Gaussian matrixA1, the BRP based low-rank approxima-
tion (14) approximatesX with the error

‖X − L‖2 ≤
∥∥Λ2

2

(
V T
2 A1

)
(V T

1 A1)
†Λ−1

1

∥∥2 + ‖Λ2‖2 .

If the singular values ofX decay fast, the first term in the
deterministic error bound will be very small. The last term
is the rank-r SVD approximation error. Therefore, the BRP
based low-rank approximation (14) is nearly optimal.

The average error bound of BRP based low-rank approxi-
mation is obtained by analyzing the statistical propertiesof
the random matrices that appear in the deterministic error
bound in Theorem 2.

Theorem 3. (Average error bound) Frame the hypotheses
of Theorem 2, we have

E‖X − L‖ ≤



√√√√ 1

p− 1

r∑

i=1

λ2
r+1

λ2
i

+ 1


 |λr+1|

+
e
√
r + p

p

√√√√
n∑

i=r+1

λ2
i

λ2
r

.

The average error bound will approach to the SVD ap-
proximation error|λr+1| if |λr+1| ≪ |λi:i=1,··· ,r| and
|λr| ≫ |λi:i=r+1,··· ,n|.
The deviation bound for the spectral norm of the approx-
imation error can be obtained by analyzing the deviation
bound of

∥∥Λ2
2

(
V T
2 A1

)
(V T

1 A1)
†Λ−1

1

∥∥ in the deterministic
error bound and by applying the concentration inequality
for Lipschitz functions of a Gaussian matrix.

Theorem 4. (Deviation bound) Frame the hypotheses of
Theorem 2. Assume thatp ≥ 4. For all u, t ≥ 1, we have

‖X − L‖ ≤


1 + t

√
12r

p

(
r∑

i=1

λ−1
i

) 1
2

+
e
√
r + p

p+ 1
·

tuλ−1
r

)
λ2
r+1 +

e
√
r + p

p+ 1
· tλ−1

r

(
n∑

i=r+1

λ2
i

) 1
2

.

except with probabilitye−u2/2 + 4t−p + t−(p+1).

See supplemental material for the proof of the above theo-
rems.

Algorithm 1 summarizes the training stage of MSE with
BRP based acceleration.

Algorithm 1: MSE Training

Input: X , Ωi, ri, i = 1, . . . , k, K, ǫ
Output: Ci, i = 1, . . . , k
InitializeLi andS according to (6),t := 0;

while
∥∥∥X −

∑k
j=1 L

j − S
∥∥∥
2

F
> ǫ do

t := t+ 1;
for i← 1 to k do

N :=
(
X −∑k

j=1,j 6=i L
j − S

)
Ωi

;

Generate standard Gaussian matrixA1 ∈ Rp×ri ;
Y1 := NA1, A2 := Y1;
Y2 := NTY1, Y1 := NY2;

Li
Ωi

:= Y1

(
AT

2 Y1

)−1
Y T
2 , Li

Ωi
:= 0;

end

N :=
∣∣∣X −

∑k
j=1 L

j
∣∣∣;

S := PΦ (N), Φ is the index set of the firstK largest
entries of|N |;

end

QR decomposition
(
Li
Ωi

)T
= QiRi for i = 1, . . . , k,

Ci :=
(
Qi
)T

;

4 MSE prediction: group sparsity

In this section, we introduce the prediction stage of MSE
by estimating the group sparse representation of a given
sample on the obtained subspace ensembleC. Note that
in the training stage, we decompose the training data into
the sum of low-rank componentsLi

Ωi
characterized by the

labels and a sparse residualS. The mapping of labeli in
the feature space is defined as the row spaceCi of Li

Ωi
,

and the components of the training samples characterized
by labeli lies in the linear subspaceCi.

In the prediction stage of MSE, we use grouplasso [17]
to estimate the group sparse representationβ ∈ R

∑
ri
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of a test samplex ∈ Rp on the subspace ensem-
ble C = [C1; . . . ;Ck], wherein thek groups are de-
fined as index sets of the coefficients corresponding to
C1, . . . , Ck. Since grouplassoselects nonzero coefficients
group-wisely, nonzero coefficients in the group sparse rep-
resentation will concentrate on the groups corresponding to
the labels that the sample belongs to.

According to the above analysis, we solve the following
grouplassoproblem in the prediction stage of MSE

min
β

1

2
‖x− βC‖2F + λ

k∑

i=1

‖βGi‖2 , (19)

where the index setGi includes all the integers between
1 +

∑i−1
j=1 r

j and
∑i

j=1 r
j (including these two).

To obtain the final prediction of the label vectory ∈ {0, 1}k
for a test samplex, we use a simple thresholding of the
magnitude sum of coefficients in each group to test which
groups that the sparse coefficients inβ concentrate on

yΨ = 1, yΨ = 0,Ψ = {i : ‖βGi‖1 ≥ δ} . (20)

Although y can also be obtained via selecting the groups
with nonzero coefficients whenλ in (19) is chosen prop-
erly, we set the thresholdδ as a small positive value to
guarantee the robustness toλ.

Algorithm 2 summarizes the prediction stage of MSE.

Algorithm 2: MSE Prediction

Input: x, Ci, i = 1, . . . , k, λ, δ
Output: y
Solve grouplassoin (19) by using an existing grouplasso
algorithm [8];
Predicty via thresholding in (20);

5 Experiments

In this section, we evaluate MSE on several benchmark
datasets of text classification, image annotation, scene clas-
sification, music categorization, genomics and web page
classification. We compare MSE with BR [11], ML-KNN
[18] and MDDM [21] on four evaluation metrics for evalu-
ating the effectiveness, as well as the CPU seconds for eval-
uating the efficiency. All the experiment are run in Mat-
Lab on a server with dual quad-core 3.33 GHz Intel Xeon
processors and 32 GB RAM. In the experiments of multi-
label prediction, four metrics, which are precision, recall,
F1 score and accuracy, are used to measure the prediction
performance. The detailed definitions of these metrics are
given in Section 7.1.1 of [13].

5.1 Evaluation metrics

In the experiments of multi-label prediction, four metrics,
which are precision, recall, F1 score and accuracy, are used
to measure the prediction performance.

Given two label matricesY 1, Y 2 ∈ {0, 1}n×k, wherein
Y 1 is the real one andY 2 is the prediction one, precision,
recall, F1 score and accuracy and are defined as:

Prec =
1

n

n∑

i=1

card (Y 1i ∩ Y 2i)

card (Y 2i)
, (21)

Rec =
1

n

n∑

i=1

card (Y 1i ∩ Y 2i)

card (Y 1i)
, (22)

F1 =
1

n

n∑

i=1

2card (Y 1i ∩ Y 2i)

card (Y 1i) + card (Y 2i)
, (23)

Acc =
1

n

n∑

i=1

card (Y 1i ∩ Y 2i)

card (Y 1i ∪ Y 2i)
. (24)

These four metrics have been broadly applied on general
binary data. However, their importances are different to
each other in evaluating the performance of multi-label pre-
diction, because there are much more1s than0s in the la-
bel matrix. Precision and recall should be considered to-
gether, because high precision always accompanies low re-
call when most positive samples are falsely predicted as
positive. F1-score and accuracy are less sensitive to the
imbalance of label matrix. Therefore, a fair evaluation of
prediction performance should include integrative consid-
eration of all the four metrics, whose importances can be
roughly given byF1, Acc > {Prec,Rec}.

5.2 Datasets

We evaluate the prediction performance and time cost of
MSE on 13 datasets from different domains and of differ-
ent scales, including Corel5k (image), Scene (image), Me-
diamill (video), Enron (text), Genbase (genomics), Medical
(text), Emotions (music), Slashdot (text) and5 sub datasets
selected in Yahoo dataset (web data). These datasets were
obtained from Mulan’s website1 and MEKA’s website2.
They were collected from different practical problems. Ta-
ble 1 shows the number of samplesn (training samples+test
samples), number of featuresp, number of labelsk, and the
average cardinality of all label vectorsCard of different
datasets.

1http://mulan.sourceforge.net/datasets.html
2http://meka.sourceforge.net/
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Table 1: Information of datasets that are used in experi-
ments of MSE. In the table,n (training samples+test sam-
ples) is the number of samples,p is the number of features,
k is the number of labels, “Card” is the average cardinality
of all label vectors.

Datasets n p k Card

Corel5k 4500 + 500 499 374 3.522
Mediamill 30993 + 12914 120 101 4.376
Enron 1123 + 579 1001 53 3.378
Genbase 463 + 199 1186 27 1.252
Medical 333 + 645 1449 45 1.245
Emotions 391 + 202 72 6 1.869
Scene 1211 + 1196 294 6 1.074
Slashdot 2338 + 1444 1079 22 1.181
Arts 2000 + 3000 462 26 1.636
Business 2000 + 3000 438 30 1.587
Education 2000 + 3000 550 33 1.461
Recreation 2000 + 3000 606 22 1.423
Science 2000 + 3000 743 40 1.451

5.3 Performance comparison

Table 2: Prediction performances (%) and CPU seconds of
BR [11], ML-KNN [18], MDDM [21] and MSE on Yahoo.
Prec-precision, Rec-recall, F1-F1 score, Acc-accuracy

Methods Prec Rec F1 Acc CPU sec.

A
rt

s

BR 76 25 26 24 46.8
ML-knn 62 7 25 6 77.6
MDDM 68 6 21 5 37.4
MSE 35 40 31 28 11.7

E
d

u
ca

tio
n BR 69 27 28 26 50.1

ML-knn 58 6 31 5 99.8
MDDM 59 5 26 5 45.2
MSE 41 35 32 29 12.6

R
ec

re
at

io
n

BR 84 23 23 22 53.2
ML-knn 70 9 23 8 112
MDDM 66 7 18 6 41.9
MSE 41 49 36 30 19.1

S
ci

en
ce BR 79 19 19 19 84.9

ML-knn 59 4 20 4 139
MDDM 66 4 19 4 53.0
MSE 31 39 29 26 20.1

B
u

si
n

es
s BR 87 74 76 71 28.9

ML-knn 68 9 70 8 93.2
MDDM 66 7 69 7 42.7
MSE 84 82 78 78 13.5

We show the prediction performance and time cost in CPU
seconds of BR, ML-KNN, MDDM and MSE in Table 3 and
Table 2. In BR, we use the MatLab interface of LIBSVM

3.0 3 to train the classic linear SVM classifiers for each la-
bel. The parameterC ∈

{
10−3, 10−2, 0.1, 1, 10, 102, 103

}

with the best performance on the training set was used.
In ML-KNN, the number of neighbors was30 for all the
datasets.

Table 3: Prediction performances (%) and CPU seconds
of BR [11], ML-KNN [18], MDDM [21] and MSE on
8 datasets. Prec-precision, Rec-recall, F1-F1 score, Acc-
accuracy

Methods Prec Rec F1 Acc CPU sec.

M
ed

ia
m

ill BR 69 35 43 33 120141
ML-knn 41 6 54 5 5713
MDDM 36 5 53 4 48237
MSE 58 78 53 37 1155

E
n

ro
n BR 51 28 35 24 77.1

ML-knn 51 7 46 5 527
MDDM 50 8 49 7 29
MSE 44 50 40 28 271

M
ed

ic
al BR 2 26 5 2 4.88

ML-knn 75 7 48 6 22.8
MDDM 74 3 30 2 32.3
MSE 36 90 45 26 7.5

S
la

sh
d

o
t BR 11 22 14 10 140

ML-knn 71 10 31 8 708
MDDM 39 1 4 1 114
MSE 38 61 37 27 175

S
ce

n
e BR 55 67 66 63 4.19

ML-knn 78 62 69 54 14.3
MDDM 75 64 69 53 7.59
MSE 61 85 70 68 3.62

E
m

o
tio

n
s BR 55 53 51 42 0.68

ML-knn 68 28 41 22 0.66
MDDM 54 28 41 22 0.66
MSE 40 100 52 37 0.01

G
en

b
as

e BR 5 39 9 5 1.99
ML-knn 100 50 92 50 9.38
MDDM 98 51 92 51 6.09
MSE 83 96 86 70 8.62

C
o

re
l5

k BR 2 20 4 2 2240
ML-knn 62 1 3 0.9 2106
MDDM 62 1 7 1 458
MSE 9 11 8 5 1054

In MDDM, the regularization parameter for uncorrelated
subspace dimensionality reduction was selected as0.12 and
the dimension of the subspace was set as20% of the di-
mension of the original data. In MSE, we selectedri as
an integer in[1, 6], K ∈

[
10−6, 10−3

]
, λ ∈ [0.2, 0.45] and

δ ∈
[
10−4, 10−2

]
. We roughly selected4 groups of param-

eters in the ranges for each dataset and chose the one with

3http://www.csie.ntu.edu.tw/ c̃jlin/libsvm/

1450



Tianyi Zhou, Dacheng Tao

the best performance on the training data. Grouplassoin
MSE is solved by SLEP [8] in our experiments.

The experimental results show that MSE is competitive
on both speed and prediction performance, because it ex-
plores label correlations and structure without increasing
the problem size. In addition, the bilateral random pro-
jections further accelerate the computation. In particular,
its training time increases much more slowly than other
methods, so it is more efficient when applied to large scale
datasets such as Mediamill, Arts and Education. MDDM is
faster than MSE on a few datasets because MDDM invokes
ML-knn on the data after dimension reduction, while MSE
is directly applicable to the original high dimensional data.

In the comparison of performance via the four metrics, the
F1 score and accuracy of MSE outperform those of other
methods on most datasets. Moreover, MSE has smaller
gaps between precision and recall on different tasks than
other methods, and this implies it is robust to the imbal-
ance between positive and negative samples. Note in multi-
label prediction, only large values of all four metrics are
sufficient to indicate the success of the prediction, while
the combination of some large valued metrics and some
small valued ones are always caused by the imbalance of
the samples. Therefore, MSE provides better prediction
performance than other methods on most datasets.

6 Conclusion

6.1 Discussion

In the training stage of MSE, the data matrix is decomposed
as the sum of several low-rank parts and a sparse residual
via a randomized alternating minimization algorithm. This
can be viewed as an extension of GoDec algorithm [22],
which aims at decomposing a data matrix as the sum of a
low-rank part and a sparse part in the noisy case. A similar
alternating minimization algorithm accelerated by random
projection is invoked in GoDec. The essential difference
between the training stage and GoDec lies on the prob-
lem formulation and decomposition model. In particular,
the training algorithm of MSE is specifically designed for
solving multi-label learning problem, while GoDec is de-
veloped for low-rank and sparse matrix decomposition in
visual analysis and matrix completion. MSE seeks fork
low-rank parts, each of which corresponds to a label, while
GoDec seeks for one low-rank part. Moreover, the theoret-
ical analysis of MSE includes the error bounds of the bi-
lateral random projection based approximation, while the
analysis in GoDec concentrates on the linear convergence
of the low-rank part and the sparse part.

In the prediction stage of MSE, the group sparse represen-
tation of a multi-label instance on the subspace ensemble
is obtained, and then the prediction can be derived from
the nonzero groups of coefficients in the group sparse rep-

resentation. This can be seem as a non-trivial extension
for multi-label learning of sparse representation [16] for
multi-class classification , where the sparse representation
of an instance on the training samples indicates the class
that the instance belongs to. They both verifies the success
of sparse representation in discriminative learning. How-
ever, the prediction of MSE is different from the method of
sparse representation because 1) MSE explores the group
sparse representation and 2) the bases for the group sparse
representation is composed of subspace ensemble rather
than the training samples. These differences guarantee that
MSE can be applied to multi-label learning problems, and
its prediction time cost will not substantially increase with
the increasing of the training samples.

6.2 Conclusion

In this paper, we develop a novel multi-label learning
method “multi-label subspace ensemble (MSE)” by con-
sidering the mapping of each label in the feature space as a
subspace and formulating the prediction as the estimation
of sparse representation on the obtained subspace ensem-
ble. Its training stage decomposes the training data as the
sum ofk low-rank componentsLi

Ωi
explained by thek la-

bels and a sparse residualS that cannot be explained by
the given labels. This structured decomposition is accom-
plished by the bilateral random projections based alternat-
ing minimization with low time cost, and it converges to a
local minimum. The row spaceCi of Li

Ωi
defines the map-

ping of labeli in the feature space. The prediction stage
estimates the group sparse representation of a new sample
on the subspace ensemble composed ofCi(i = 1, · · · , k)
via grouplasso. MSE predicts the labels by selecting the
groups that the nonzero representation coefficients concen-
trate on.

The main significance of MSE is that it eliminates the rapid
growth of model complexity caused by the increase in the
number of labels, which is a common problem of exist-
ing multi-label approaches. Meanwhile the label correla-
tions are well preserved in the subspace ensemble via struc-
tured decomposition and fully explored in the prediction by
group sparsity. Another compelling advantage of MSE is
that the search of correct labels in prediction is conducted
in the subspace ensemble rather in the ambient label space.
Hence MSE needs not to estimate the structure of the la-
bel space. Furthermore, the subspaces obtained by MSE
provide explicit interpretations of the labels in the feature
space.
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