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Abstract

A challenging problem of multi-label learning

is that both the label space and the model com-
plexity will grow rapidly with the increase in the
number of labels, and thus makes the available
training samples insufficient for training a proper
model. In this paper, we eliminate this problem
by learning a mapping of each label in the fea-
ture space as a robust subspace, and formulating
the prediction as finding the group sparse repre-
sentation of a given instance on the subspace en-
semble. We term this approach as “multi-label
subspace ensemble (MSE)”. In the training stage,
the data matrix is decomposed as the sum of sev-
eral low-rank matrices and a sparse residual via
a randomized optimization, where each low-rank
part defines a subspace mapped by a label. In
the prediction stage, the group sparse represen-
tation on the subspace ensemble is estimated by
grouplassa Experiments on several benchmark
datasets demonstrate the appealing performance
of MSE.

I ntroduction

Multi-label learning [15][9][5] (ML) predicts multiple la

bels that characterize an instance from a set of possibl
labels. Conventional multi-label learning algorithms aim

to find a mapping from the feature spageC RP to the
label space) C {0, 1}*, whereink is the number of la-

bels andy; = 1,y € Y means the sample belongs to la-
beli. Binary relevance (BR) [11] and label powerset (LP)

[11] are two natural approaches. BR relaxes Mk tode-

pendent binary classifications on thdabels respectively,
while LP frames ML as a multi-class classification prob-

lem, where each class denotes a unigtdimensional la-
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bel vector. Both BR and LP do not duly explore the charac-
teristics of ML, because BR ignores the label correlations,
and LP makes the training samples of each class far less
than the prerequisite.

A central problem limiting ML is that the label spage

will exponentially grow with the increase in the number of
labels, i.e.k labels lead to a search in a label spatef
size2* in the prediction. BR independently predicts each
dimension of the:-dimensional label vectay in isolation
and thus does not encounter this problem with the price of
ignoring the label correlations. LP attempts to distinbuis
each elementipy from the otheR* — 1 ones. Thus the size
of the training set, which is large enough for binary classifi
cation, will be insufficient for multi-label prediction. T
problem also leads to a rapid growth of the model com-
plexity, which increases the training costs. By viewing the
problem from the perspective of probabilistic approaches,
the exponential growth Q¥ drastically enlarges the param-
eter space for modeling(y|x), z € X, which makes ML
intractable in computation. Another important problem is
that, for a given training s€tX, Y}, the instances i of-

ten scatters sparsely in the ambient sgiicét is therefore
difficult to study the structure o and reduce its dimen-
sionality.

Most recent multi-label learning approaches [20][19] in-
vestigate the label correlations (or dependencies) ta buil
a structured classification model. They partially solve the
first problem by reducing the size of the search sprce
For example, the random k-labelsets (RAKEL) method [14]
randomly selects an ensemble of subsets from the original
labelsets (the set of labels one instance belongs to), and
then LP is applied to each subset. The final prediction is
obtained by ranking and thresholding of the results on the
subsets. Hierarchical binary relevance (HBR) [1] builds a
general-to-specific tree structure of labels, where a sampl
with a label must be associated with its parent labels. A bi-
nary classifier is trained on each non-root label. Hierarchy
of multi-label classifiers (HOMER) [12] recursively parti-
tions the labels into several subsets and builds a treeeghap
hierarchy. A binary classifier is trained on each non-rootla

method to predict unknown label from features and pre-
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dicted labels by using a binary classifier. application of the bilateral random projection (BRP) based
. . low-rank approximation [22]. Its convergence to local op-
However, the size of the search space in these approachgl%um is proved. In the prediction stage of MSE, group

is much larger thad®(k), and their model complexities are - : -
. A - - . lassoestimates the group sparse representation of a given
too high to be applied in practice. Also, the instances in. . .
. . . .. instance in the subspace ensemble, and the nonzero entries
Y are always insufficient to generate a reliable estimation

of the label space structure, and thus weaken the effectiv Indicates the predicted labels. The experiments on several

ness of the structured classification models used in thegt%enchmark datqgets for ML imply the competitive effec-
iveness and efficiency of MSE.
approaches.

Some existing learning methods except binary classifica.--rhe rest of the paper is organized as follows. Section 2

tion are reformulated and then can be extended to muIti'ntrOduceS the MSE model, which explains the mapping of

label prediction problem. For examole. the C&W roce-Ehe labelin the feature space and includes the assumption of

P P S pte, 1 P MSE to the multi-label data. Section 3 presents the training
dure [2] separates multi-label prediction into two stages, . . - . o
e BR and correction of the BR results by usind the Ia_algorlthm of MSE via randomized matrix decomposition,
Y . . y using hich produces the ensemble of the subspaces. Section
bel dependence. Regularized multi-task learning [3] an . . . .
shared-subspace learning [6] formulate the problem a4 presents the prediction algorithm in MSE by exploring

. : e he group sparse representation of a multi-label sample on

regularized regression or classification problem. Multi-

. . - ) . .. _the subspace ensemble. Section 5 shows the experimental
label dimensionality reduction via dependence maximiza-

tion (MDDM) [21] maximizes the dependence betweenres.uns of.MSE on 13 benchmark datasets. Section 6 gives
. a discussion and concludes the paper.

feature space and label space, and provides a data prepro-

cessing for other multi-label learning methods. A linear di

mensionality reduction method for multi-label data is pro-2 M SE model

posed in [7]. In [5], multi-label prediction is formulated a

a sparse signal recovery problem. Given a sampler € R? and its label vectoy € {0, 1}*,

H th thod ¢ i licit mod IWe assume that can be decomposed as the sum of several

However, these methods cannot provide an explicit mo e,éomponent# and a sparse residual

ing of the label correlations (or dependence) and thus their

performance improvements due to exploring label structure T = Z I +s. (1)

are limited. Moreover, they bring extra time costs to the

training process, so the efficiency is weakened.

iy =1

. . . The component is caused by the labéthatx belongs to.
In this paper, we con5|de_r the ML problem in a novel man-1y s/ can be explained as the mapping from the label
ner: we study the mapping of each label as a feature sub; v the feature space. The residuas the component that
space. In other words, we assume each instanegists | the labels iny cannot explain. The model in (1) reveals

in the ensemble of subspaces defined by the labelsithat (e general relationship between the feature space and the
belongs to. However, it is not always guaranteed that eacfypq| space.

instance can be completely explained by the labels we con-

sider, so a method should be developed to separate the paftar all the samples with labé| we assume their compo-
that can be explained by the considered labels and the paients explained by labéllie in a linear subspace” <
that cannot. The label correlations are naturally preserveR"™ *?, i.e.,l' = B¢, C", whereinfg, is the representation
in the subspace ensemble. Given a new instance, its l&oefficients corresponding 6°. Thus the model (1) can
bels are predicted by estimating its group sparse represehe equivalently written as

tation in the subspace ensemble, where the nonzero entries X

are associated with the predicted labels. There are fonly r =3 Bg,C'+s,
subspaces that are demanded, so the model complexity is =1

small. The prediction is accomplished by searching in the Vi€ {i:yi =0} 8¢, =0
subspace ensemble, and thus avoids the estimation of trllee build the subspace ensemidle= [C; .. .; Ck] char-
label space structure. acterized by thé: labels as a dictionary fot, the cor-

We therefore develop “multi-label subspace ensemblgesponding representation coefficient vectorfads 3 =
(MSE)” to solve the above problem. In the training stage,[3c.: - - -, Bc,]. The coefficientgli, corresponding to the
we develop a randomized decomposition of the trainingabels thatr does not belong to are zeros, Sds group
dataX, whereX is factorized to the sum of low-rank  sparse, wherein the groups @gi =1,..., k.

parts and a sparse residual. Each of the low-rank part dg;, o training stage of MSE, we learn the subspace en-
fines the SL_Jbspace mapped by a particular label, Whlle th embleCi,i — 1, ... k from the training dat& via a ran-
sparse re_35|dual stores the part that ca_n_not_be explained by, .- 4 decomposition of , in which the components ex-
the considered labels. The decomposition is fast due to aBIained by labet from all the samples consists a low-rank

@)
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matringL , whereinQ); is the index set of training samples 3.1 Alternating minimization
with labeli. Thus the row space dff, is the subspac€". _ ) o
In the prediction stage of MSE, giveh a new instancee AIthpugh the rank constraint thg, _an_d c_ard|_nal|ty con-
use groupassoto find the group sparse representatioon straint to.S are not convex, the optimization in (3) can be
the subspace ensemifle and then a simple thresholding solved by alternating minimization that decomposes it as
is used to test which groups thaiconcentrates on. The la- the following & + 1 subproblems, each of which has the
bels that these groups correspond to are the predictedlabdllobal solution:

for the instance. 2

k
X- Y Li—-S-L

I

In the training stage of MSE, the label correlations is natu-| Lo, =arg ~ min

rally preserved in the subspace ensendbleecause all the , rank(Lp, ) <r* =LA F
subspaces are jointly learned. Specifically, if two lakiels Vi=1,....k )

andj simultaneously appear for many times in the training . k ;

samples, thef; and$2; will have many shared elements. S =arg card(8)<K X = ];1 L7 -8

Thus the row spaces df;, andLi, ,i.e.,C* andC?, will F 4)

be close to each other. In the prediction stage, both discrim ) ) )
inative and structured information encoded in the subspacéhe solutions ofLg, and S in the above subproblems

ensemble are considered via grdagsa Since onlyk sub- ~ €an be obtained via hard thresholding of singular values
spaces are learned in the training stage, MSE explores laband the matrix entries, respectively. Note that both SVD

correlations without increasing the model complexity. ~ and matrix entry-wise hard thresholding have global solu-
tions. In particular,Lg_ is built from the firstr® largest
singular values and the corresponding singular vectors of

3 MSE training: randomized decomposition (X Y D S>Q “while S is built from the &

In this section, we introduce the training stage of MSE,entries with the largest absolute valueih— Zle L7,

which approximately decomposes the training data matrix.e.,

X e R"™Pinto X = Zle Li + S. For the matrixZt, the i

rows corresponding to the samples with labale nonzero, 5 => AquVqTJ =1,...,k,

while the other rows are all-zero vectors. The nonzero rows| a=1

denote the components explained by labil the feature svd [(X — Z?:l . L — S)

space. We usg; to denote the index set of samples with la- ’

beli in the matrixX andL?, and then the matrix composed ( k ) <
S=Pe | X-S L7, ®:([X

J=

} =UAVT,;
Q;

of the nonzero rows it/ is represented b, . In the de-

composition, the rank ongi is upper bounded, which in-

dicates that all the components explained by labedarly 4> <
and >

Jj=1

Bu)
j r,sed

lies in a linear subspace. The matfs the residual of the
samples that cannot be explained by the given labels. In
the decomposition, the cardinality 8fis upper bounded,
which makesS sparse.

k
X—ZLJ') ,|®] < K.
i=1 r,s€EPD

®)
The projectionS = Pg(R) represents that the matrix
has the same entries @& on the index setb, while the
If the label matrix ofX is Y € {0,1}"**, the rank ofL{,  other entries are all zeros.
is upper bounded by’ and the cardinality of5 is upper
bounded by, the decomposition can be written as solving
the following constrained minimization problem:

The decomposition is then obtained by iteratively solving
thesek + 1 subproblems in (4) according to (5). In this
paper, we initializeLgi andS as

, 2 i s
min HX_ZfZILz_SH L91 = ZQ”’L—L...J@
LS ; Do F _ ©) Z =D71X,D = diag (Y1); (6)
s.t. rank(LQi)Sr,LﬁiZO,Vz:17...7k S = 0.
card (S) < K.

In each subproblem, only one variable is optimized with

Therefore, each training samplehis decomposed as the the other variables fixed. The convergence of this alternat-
sum of several components, which respectively correspont!d minimization can be proved in Theorem 1 by demon-
to multiple labels that the sample belongs to. MSE sepastrating that the approximation error keeps monotonically
rates these components from the original sample by builddecreasing throughout the algorithm.

ing the mapping from the labels to the feature space. Fofheorem 1. The alternating minimization of subproblems
label i, we obtain its mapping in the feature space as thg4) produces a sequencel|pk — Zle L — S||% that con-
row space of., . verges to a local minimum.
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Proof. Let the objective value (decomposition errp® —
Z"' — S| after solving thek + 1 subproblems in (4)

7 1
beE(lt), . E(’“;)fl respectively for the'” iteration round.
We use subscript) to signify the variable that is updated

in thett" iteration round. ThetE(,), . Eééf-)H are

k
1 ! 2
Ely = X = S—1) = Ly = > Liy—1y = L{—yy
i=3 F
)
k 2
E(2t) =X =St~ L:(lt) - ZL@A) - L%t) . (8)
i=3 P
k 2
Efy =X = > Liy = Su-v)| ©)
i=1 F
k 2
Byt = HX = Ly —Sw| (10)
i=1 F
The global optimality ofLit) yieIdsE(1t> > E(t> > .
EJ;,- The global optimality of5, yields Ef,, > Eéf)fl In
addition, we have
k 2
k+1
E(tJ)r HX ZL(t) Swy — Ly (11)
=2 r
k 2
By = HX =D Liy = 5w — Ly (12)
=2 r

The global optimality oL, , ,, yields E"”rl > E(1
Therefore, the objective value (or the decomposmon error

IX — Zizl L? — S||% keeps decreasing throughout the it-
eration rounds of (5), i.e.,
1 k+1 1 k+1
Bz EN 22 Ey 2 By > (13)

Since the objective value of (3) is monotonically decregsin
and the constraints are satisfied all the time, iterativelly-s

ing (4) produces a sequence of objective values that con-

verge to a local minimum. This completes the proof..d

After obtaining the decomposition by solving (3), each

3.2 Fast MSE training viabilateral random
projections

The main computation in (5) is thé times of SVD

in obtaining L{, (i 1,...,k). SVD requires
min (an,an) flops for anm x n matrix, and thus it

is impractical whenX is of large size. Random projec-
tion is effective in accelerating the matrix multiplicatio
and decomposition [4]. In this paper, we introduce “bilat-
eral random projections (BRP)”, which is a direct exten-
sion of random projection, to accelerate the optimization
of L (i =1,...,k).

For clear representation, we use letters independent to the
ones we use in other parts of this paper to illustrate BRP.
In particular, givenr bilateral random projections (BRP) of
anm x n dense matriXX’ (w.l.o.g,m > n),i.e.,Y; = X A;
andY, = XT Ay, whereind; € R™*" and A, € R™*"

are random matrices,

P

L=V (V)" vy (14)

is a fast rank= approximation ofX. The computation of

L includes an inverse of anx r matrix and three matrix
multiplications. Thus, for a densg, 2mnr floating-point
operations (flops) are required to obtain BRF2n + r) +
mnyr flops are required to obtai. The computational cost

is much less than that of the SVD based approximation,
while its approximation error approaches to that of SVD

based method.

We build the random matriced; and A, in an adaptive
way. Initially, bothA; and A, are set to standard Gaussian
matrices whose entries are independent variables follow-
ing the standard normal distribution. We firstly compute
Y7 = X A4, updateA,; := Y; and calculate the left ran-
dom projection ag> = X7 A, by using the newA,, and
then we updated; := Y5 and calculate the right random
projectionY; = X A; by using the newd;. This adap-
tive updating of random matrices requires additional flops
of mnr.

We analyze the error bounds of the BRP based low-rank
approximation (14).

The SVD of anm x n (w.l.o.g,m > n) matrix X takes the
form
X =UAVT = UM VT + U AoV, (15)

whereA; is anr x r diagonal matrix which diagonal ele-
ments are the first largestsingular valuesl/; andV; are
the corresponding singular vectors;, U, and 1V, forms
the rest part of SVD. Assume thats the target rankA4;

training sample is represented by the sum of several comand 4, haver + p columns for oversampling. We consider

ponents inL’ characterized by the labels it belongs to and
the residual inS. Therefore, the mapping of labgin fea-
ture subspace is defined as the row sp@te= R" *? of
the matringzi, which can be obtained via the QR decom-

position of (L, )" .

1447
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The unitary invariance of the spectral norm leads to Theorem 4. (Deviation bound) Frame the hypotheses of

4 Theorem 2. Assume that> 4. Forall u,t > 1, we have
IX - L = HUT 1= XA (AT x A1) AT XH

- 12r (< : ]
_ HA [1 — VT4, (ATxA) AZTUA} H . IX—r)<|1+ t1/7’ <Z Aﬂ) i e\p/_r:lp,
17) =1
_ eyr+p . _
In low-rank approximation, the left random projection ma- tuA, ) Mo+ b1 “tA, ( Z /\2>
trix Az is build from the left random projectiory = X A4, i=r+1

and then the right random projection mately is build
from the left random projectiort; = XTA2 Thus
Ay = = XA = UAVTA1 andA1 = =XT Ay =
XTXA = VA2VTA,. Hence the apprOX|mat|on error
given in (17) has the following form

except with probability—**/2 4 4¢P 4 ¢~ (P+1).

See supplemental material for the proof of the above theo-
rems.

) Algorithm 1 summarizes the training stage of MSE with
HA [I —N°VT A (ATVA'VT Ay AlTVAﬂ H . (18) BRP based acceleration.

The following theorem gives the bound for the spectra/A/90rithm 1- MSE Training
norm of the deterministic errdrX — Lj|. Input: X, Q;, 7", i=1,...,k K, ¢
Theorem 2. (Deterministic error bound) Given anm x ~ QUtput: C’:,z =Lk _
n (m > n) real matrix X with singular value decomposi- 'Mitialize L* andS accordmg to (6)t :=0;
tion X = UAVT = U; AV + U,AVE, and chosen a  while HX -y i SH > edo
target rankr < n —1andann x (r+p) (p > 2) standard P F
Gaussian matrix4;, the BRP based low-rank approxima- fdr i1 ,tok do
tion (14) approximate& with the error ) ’ A .
, Ni= (X=X, 1 =S)
T2 2 (/T T 4 \tpA—1 2 ' :
1% = LII" < HA2 (VQ Al) (V" A1)TAy ” + 12" Generate standard Gaussian mattixec RP*";
Yl = NAI, Ag =Y,
Yo .= NTY;,Y; := NYs;
Ly, =Y (ATv) Y L =0,

If the singular values o decay fast, the first term in the

deterministic error bound will be very small. The last term
is the rankr SVD approximation error. Therefore, the BRP
based low-rank approximation (14) is nearly optimal. end

The average error bound of BRP based low-rank approxi- N = ‘X - Z?:l L
mation is obtained by analyzing the statistical propeuies S :=Pg (N), ® is the index set of the firsk” largest
the random matrices that appear in the deterministic error| entries of| N|;

bound in Theorem 2. end

Theorem 3. (Averageerror bound) Frame the hypotheses QR decomposmor@Lz ) =Q'Rifori=1,...,k,
of Theorem 2, we have T

o= (@)

1 A2
E|X — L] < pT1 Agl + 1| Arga]
i=1 4 MSE prediction: group sparsity

In this section, we introduce the prediction stage of MSE
by estimating the group sparse representation of a given
sample on the obtained subspace enser@bleéNote that
The average error bound will approach to the SVD ap-n the training stage, we decompose the training data into
proximation error|\, ;1| if |A\rs1| < |Aiiz1...| and  the sum of low-rank components, characterized by the
IAr| > | Niizra1, - labels and a sparse residual The mapping of label in

the feature space is defined as the row spatef L, ,

and the components of the training samples characterized
r\oy labeli lies in the linear subspac#’.

The deviation bound for the spectral norm of the approx-
imation error can be obtained by analyzing the deviatio
bound of||A3 (ViF Ay) (ViT Ap)TAL Y| in the deterministic

error bound and by applying the concentration inequalityln the prediction stage of MSE, we use groagso[17]
for Lipschitz functions of a Gaussian matrix. to estimate the group sparse representafioe R-"
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of a test samplex € RP on the subspace ensem- 5.1 Evaluation metrics

ble C = [C%;...;C¥], wherein thek groups are de-
fined as index sets of the coefficients corresponding tqn the experiments of multi-label prediction, four metrics
C",...,C". Since groupassoselects nonzero coefficients \yhich are precision, recall, F1 score and accuracy, are used

group-wisely, nonzero coefficients in the group sparse reptp measure the prediction performance.
resentation will concentrate on the groups correspondingt ) )
the labels that the sample belongs to. Given two label matrice¥’1,Y2 € {0,1}"**, wherein

) ) ~ Ylisthe real one antf2 is the prediction one, precision,
ACCOFdIng to the above analyS|S, we SOIVe the f0||0WIng reca”, F1 score and accuracy and are deflned as:
grouplassoproblem in the prediction stage of MSE

n

k 1 card (Y1, NY2;)
. 1 5 _ = 7 )
mins |z = BCIE + A Y IBals,  (29) Pree=2 Z;—Card V2 (21)
i=1 =
1 & card(Y1;NY2;)
where the index set7; includes all the integers between Rec= — Z T eard (Y1) =, (22)
1+ 3"} rd andy>)_, v (including these two). -
‘ Il < 2card(Y1;NY2;

To obtain the final prediction of the label vecipe {0, 1}* Fl=— > po— (Yl-() T eard (122,)7 (23)
for a test sampler, we use a simple thresholding of the i=1 ! !
magnitude sum of coefficients in each group to test which Mo — 1 <& card (Y1;NY2,) o4
groups that the sparse coefficientsiiconcentrate on =7 Z card (Y1, UY2;)’ (24)

i=1

. . . These four metrics have been broadly applied on general
Al.thOUth can alsp .be obtameq via se.lectlng the grour)Sbinary data. However, their importances are different to
with nonzero coefficients wheh in (19) is ch_osen PrOP-  aach otherin evaluating the performance of multi-label pre
erly, we set the threshold as a small positive value to diction, because there are much magethan0s in the la-
guarantee the robustnessito bel matrix. Precision and recall should be considered to-
Algorithm 2 summarizes the prediction stage of MSE. gether, because high precision always accompanies low re-
call when most positive samples are falsely predicted as
positive. Fl-score and accuracy are less sensitive to the
- imbalance of label matrix. Therefore, a fair evaluation of
Input: z, C*,i=1,...,k A, prediction performance should include integrative consid
Output: y eration of all the four metrics, whose importances can be
Solve grougassoin (19) by using an existing groupsso  roughly given byF1, Acc > {Prec, Rec}.
algorithm [8];
Predicty via thresholding in (20);

Algorithm 2: MSE Prediction

5.2 Datasets

] We evaluate the prediction performance and time cost of

5 Experiments MSE on 13 datasets from different domains and of differ-
ent scales, including Corel5k (image), Scene (image), Me-

In this section, we evaluate MSE on several benchmarkliamill (video), Enron (text), Genbase (genomics), Melblica
datasets of text classification, image annotation, scese cl (text), Emotions (music), Slashdot (text) ahdub datasets
sification, music categorization, genomics and web pag§e|eCted in Yahoo dataset (web data). These datasets were
classification. We compare MSE with BR [11], ML-KNN obtained from Mulan’s websité and MEKA's website?.
[18] and MDDM [21] on four evaluation metrics for evalu- They were collected from different practical problems. Ta-
ating the effectiveness, as well as the CPU seconds for evaple 1 shows the number of sampleéiraining samples-+test
uating the efficiency. All the experiment are run in Mat- samples), number of featurgsnumber of label#, and the
Lab on a server with dual quad-core 3.33 GHz Intel Xeonaverage cardinality of all label vectotard of different
processors and 32 GB RAM. In the experiments of multi-datasets.
label prediction, four metrics, which are precision, récal
F1 score and accuracy, are used to measure the prediction
performance. The detailed definitions of these metrics are *http://mulan.sourceforge.net/datasets.html
given in Section 7.1.1 of [13]. 2hitp://meka.sourceforge.net/
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Table 1: Information of datasets that are used in experip
ments of MSE. In the tabley (training samples+test sam-
ples) is the number of samplesis the number of features,
k is the number of labels, “Card” is the average cardinality

of all label vectors.

Datasets n P k Card
Corel5k 4500 + 500 499 374 3.522
Mediamill 30993 + 12914 120 101 4.376
Enron 1123 + 579 1001 53 3.378
Genbase 463 + 199 1186 27 1.252
Medical 333 + 645 1449 45 1.245
Emotions 391 + 202 72 6 1.869
Scene 1211 + 1196 294 6 1.074
Slashdot 2338 + 1444 1079 22 1.181
Arts 2000 + 3000 462 26 1.636
Business 2000 + 3000 438 30 1.587
Education 2000 + 3000 550 33 1.461
Recreation 2000 + 3000 606 22 1.423
Science 2000 + 3000 743 40  1.451

5.3 Performance comparison

Table 2: Prediction performances (%) and CPU seconds of
BR[11], ML-KNN [18], MDDM [21] and MSE on Yahoo.
Prec-precision, Rec-recall, F1-F1 score, Acc-accuracy

Methods| Prec Rec F1 Acc CPU seg¢.
BR 76 25 26 24 46.8
2| ML-knn | 62 7 25 6 77.6
< | MDDM | 68 6 21 5 374
MSE 35 40 31 28 11.7
S | BR 69 27 28 26 50.1
S| ML-knn | 58 6 31 5 99.8
2| MDDM | 59 5 26 5 45.2
W MSE 41 35 32 29 12.6
S |BR 84 23 23 22 53.2
8| ML-knn | 70 9 23 8 112
S|MDDM | 66 7 18 6 41.9
@ | MSE 41 49 36 30 19.1
g [ BR 79 19 19 19 84.9
S | ML-knn | 59 4 20 4 139
3| MDDM | 66 4 19 4 53.0
MSE 31 39 29 26 20.1
21 BR 87 T4 76 71 28.9
SIMLknn | 68 9 70 8 93.2
4| MDDM | 66 769 7 42.7
@ MSE 8 8 78 78 13.5

seconds of BR, ML-KNN, MDDM and MSE in Table 3 and
Table 2. In BR, we use the MatLab interface of LIBSVM

1450

.3.02 to train the classic linear SVM classifiers for each la-
el. The parametet € {10-2,1072,0.1,1, 10,102,103}

with the best performance on the training set was used.
In ML-KNN, the number of neighbors wai) for all the

datasets.

Table 3: Prediction performances (%) and CPU seconds
of BR [11], ML-KNN [18], MDDM [21] and MSE on
8 datasets. Prec-precision, Rec-recall, F1-F1 score, Acc-

accuracy
Methods| Prec Rec F1 Acc CPU sec.
Z | BR 60 35 43 33 120141
S|MLknn | 41 6 54 5 5713
S| MDDM | 36 5 53 4 48237
= | MSE 58 78 53 37 1155
- | BR 51 23 35 24 771
S | ML-knn | 51 7 46 5 527
5| MDDM | 50 8 49 7 29
MSE 44 50 40 28 271
= | BR 2 26 5 2 4.88
S| MLknn | 75 7 48 6 22.8
S| MDDM | 74 3 30 2 32.3
MSE 36 90 45 26 7.5
S |BR 11 22 14 10 140
S| Mlknn | 71 10 31 8 708
S| MDDM | 39 1 4 1 114
D | MSE 38 61 37 27 175
o | BR 55 67 66 63 4.19
S| MLknn | 78 62 69 54 14.3
S|l MDDM | 75 64 69 53 7.59
MSE 61 8 70 68 3.62
21 BR 55 53 51 42 0.68
% ML-knn | 68 28 41 22 0.66
€| MDDM | 54 28 41 22 0.66
Wl MSe 40 100 52 37 0.01
§ BR 5 39 9 5 1.99
S | MLknn | 100 50 92 50 9.38
©|MDDM | 98 51 92 51 6.09
© | mMsE 8 96 86 T0  8.62
x| BR 2 20 4 2 2240
< | ML-knn | 62 1 3 09 2106
g MDDM | 62 1 7 1 458
MSE 9 11 8 5 1054

In MDDM, the regularization parameter for uncorrelated
subspace dimensionality reduction was selectédi2sand

the dimension of the subspace was sef@® of the di-
mension of the original data. In MSE, we seleciédas

an integer in1,6], K € [1075,1073], X € [0.2,0.45] and

6 € [107*,1072]. We roughly selected groups of param-

We show the prediction performance and time cost in CPLeters in the ranges for each dataset and chose the one with

Shttp://www.csie.ntu.edu.tw/

¢jlin/libsvm/
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the best performance on the training data. Griagsoin resentation. This can be seem as a non-trivial extension
MSE is solved by SLEP [8] in our experiments. for multi-label learning of sparse representation [16] for

The experimental results show that MSE is Cornloetitivemultl-class classification , where the sparse representati

on both speed and orediction performance. because it eo_f an instance on the training samples indicates the class
P P P e - “Xhat the instance belongs to. They both verifies the success
plores label cqrrelatlons qr!d structur.e without incregsin of sparse representation in discriminative learning. How-
.the.problem size. In addition, the bllatgral “”‘”dO”T Ioro'ever, the prediction of MSE is different from the method of
jections further accelerate the computation. In particula sparse representation because 1) MSE explores the group
its training time increases much more slowly than other

methods, so it is more efficient when applied to large scaleParse representation and 2) the bases for the group sparse

datasets such as Mediamill, Arts and Education. MDDM isrepresentatlon is composed of subspace ensemble rather

faster than MSE on a few datasets because MDDM invoketﬁr/l]grétzzr:rgéngg T}Z‘g‘?;e;'uﬁgsbee?:g::ﬁacesr%l:)?éinste:r:ga
ML-knn on the data after dimension reduction, while MSE pp gp ’

is directly applicable to the original high dimensionalalat Its p_redmtm_n time cost V.V'I.l not substantially increasatwi
the increasing of the training samples.

In the comparison of performance via the four metrics, the

F1 score and accuracy of MSE outperform those of otheg.2 Conclusion

methods on most datasets. Moreover, MSE has smaller

gaps between precision and recall on different tasks thatn this paper, we develop a novel multi-label learning
other methods, and this implies it is robust to the imbal-method “multi-label subspace ensemble (MSE)” by con-
ance between positive and negative samples. Note in multsidering the mapping of each label in the feature space as a
label prediction, only large values of all four metrics are subspace and formulating the prediction as the estimation
sufficient to indicate the success of the prediction, whileof sparse representation on the obtained subspace ensem-
the combination of some large valued metrics and soméle. Its training stage decomposes the training data as the
small valued ones are always caused by the imbalance slum ofk low-rank componentﬂgi explained by thé: la-

the samples. Therefore, MSE provides better predictioels and a sparse residuglthat cannot be explained by
performance than other methods on most datasets. the given labels. This structured decomposition is accom-
plished by the bilateral random projections based alternat
ing minimization with low time cost, and it converges to a
local minimum. The row spac€” of L, defines the map-
ping of labeli in the feature space. The prediction stage
estimates the group sparse representation of a new sample

In the training stage of MSE, the data matrix is decomposeg" the subspace ensemble composeG'§ = 1,--- , k)

as the sum of several low-rank parts and a sparse residud? grouplassa MSE predicts the Ia_bels by §glectlng the
via a randomized alternating minimization algorithm. This groups that the nonzero representation coefficients cencen

can be viewed as an extension of GoDec algorithm [22],trate on.

which aims at decomposing a data matrix as the sum of &he main significance of MSE is that it eliminates the rapid
low-rank part and a sparse part in the noisy case. A similagrowth of model complexity caused by the increase in the
alternating minimization algorithm accelerated by randomnumber of labels, which is a common problem of exist-
projection is invoked in GoDec. The essential differenceing multi-label approaches. Meanwhile the label correla-
between the training stage and GoDec lies on the probtions are well preserved in the subspace ensemble via struc-
lem formulation and decomposition model. In particular, tured decomposition and fully explored in the prediction by
the training algorithm of MSE is specifically designed for group sparsity. Another compelling advantage of MSE is
solving multi-label learning problem, while GoDec is de- that the search of correct labels in prediction is conducted
veloped for low-rank and sparse matrix decomposition inin the subspace ensemble rather in the ambient label space.
visual analysis and matrix completion. MSE seeksior Hence MSE needs not to estimate the structure of the la-
low-rank parts, each of which corresponds to a label, whilebel space. Furthermore, the subspaces obtained by MSE
GoDec seeks for one low-rank part. Moreover, the theoretprovide explicit interpretations of the labels in the featu

ical analysis of MSE includes the error bounds of the bi-space.

lateral random projection based approximation, while the

analysis in GoDec concentrates on the linear convergenc'&Cknowledgements

of the low-rank part and the sparse part.

6 Conclusion

6.1 Discussion

In the prediction stage of MSE, the group sparse represer¥he authors would like to thank the anonymous reviewers
tation of a multi-label instance on the subspace ensembl&ho have provided constructive comments on improving
is obtained, and then the prediction can be derived fronthis paper. This work is supported by the Australian ARC
the nonzero groups of coefficients in the group sparse remiscovery project (ARC DP-120103730).
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