
An Autoregressive Approach to Nonparametric Hierarchical
Dependent Modeling

Zhihua Zhang Dakan Wang Edward Y. Chang
College of Comp. Sci. and Tech.

Zhejiang University
Zhejiang 310027, China
zhzhang@cs.zju.edu.cn

Department of Computer Science
Stanford University
Stanford, CA 94305

vondrak@stanford.edu

Google Research
Beijing 100084, China
edchang@google.com

Abstract

We propose a conditional autoregression
framework for a collection of random prob-
ability measures. Under this framework, we
devise a conditional autoregressive Dirichlet
process (DP) that we call one-parameter de-
pendent DP (ωDDP). The appealing proper-
ties of this specification are that it has two
equivalent representations and its inference
can be implemented in a conditional Pólya
urn scheme. Moreover, these two represen-
tations bear a resemblance to the Pólya urn
scheme and the stick-breaking representation
in the conventional DP. We apply this ωDDP
to Bayesian multivariate-response regression
problems. An efficient Markov chain Monte
Carlo algorithm is developed for Bayesian
computation and prediction.

1 Introduction

Dirichlet processes (DPs) (Ferguson, 1973) or DP mix-
ture models (Lo, 1984) are important nonparametric
Bayesian modeling tools. After Markov chain Monte
Carlo (MCMC) algorithms were developed for DP
mixture models in the 1990s, DP mixture models have
been used very successfully in the literature. A DP is
a distribution on probability measures (i.e., it is a ran-
dom measure) that yields clustering phenomena when
one considers repeated draws from the random mea-
sure. This clustering property allows DPs to formalize
the notion of “borrowing strength” across related s-
tudies (Ferguson, 1973; Antoniak, 1974).
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In recent years, one of the most important develop-
ments in the DP literature is the notion of dependent
DPs (DDPs), which provides a general framework to
describe dependency among a collection of stochastic
processes (MacEachern, 1999).

This paper is concerned with the concrete formulation
of DDPs in dependent nonparametric modeling for a
collection of related random probability distributions
or stochastic functions. A principled approach to this
direction is to treat the weights in the stick-breaking
representation (Sethuraman, 1994) as stochastic func-
tions (De Iorio et al., 2004; Griffin and Steel, 2006;
Petrone et al., 2009). Such treatments are demand-
ing computationally because conventional approaches
for devising MCMC algorithms for DP mixture models
based on the Pólya urn scheme (Blackwell and Mac-
Queen, 1973) can no longer be used. A popular ap-
proach is to truncate the stick-breaking representation,
but this forfeits some of the guarantees associated with
MCMC algorithms (Ishwaran and James, 2001). Re-
cently, Lin et al. (2010) proposed a new approach for
constructing DDPs based on Poisson processes, and
Zhang et al. (2010) developed a matrix-variate DP.

Other ways of achieving dependence among random
measures include the hierarchical DP model (Teh
et al., 2006), the use of linear combinations of real-
izations of independent DPs (Müller et al., 2004) and
kernel-weighted mixture of DPs (Dunson et al., 2007).
These are specialized approaches that can make use of
generalized Pólya urn schemes for posterior inference
and prediction.

In the spirit as the combination approach to combining
random measures we propose an autoregressive model
that yields conditional autoregressive DPs. We refer to
our approach as the ωDDP. The ωDDP specification
results in a conditional Pólya urn scheme, which can be
used to devise efficient MCMC algorithms for posterior
inference and prediction. Moreover, there exists an
interesting resemblance between our ωDDP and the
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conventional DP.

The second contribution of this paper is to exploit
ωDDP in multivariate-response regression problem-
s (Breiman and Friedman, 1997), giving rise to a non-
parametric hierarchical model. Our point of departure
is an expansion of the regression function fj(x) in a se-
ries expansion using a combination of basis functions;
that is,

fj(x) = uj +

k∑

l=1

bjlgl(x), j = 1, . . . , m

where uj are offset terms, bjl are regression coefficients,
and gl(x) are basis functions whose type is usually pre-
specified. In the parametric setting, the regression vec-
tors bj = (bj1, . . . , bjk)T are assumed to be fixed (but
unknown) constants for all samples. This can yield
an underfitted model if the order k does not match
well to the complexity inherent in the samples. To
take an extreme alternative nonparametric approach
we might endow each sample with its own regression
vector. This would overfit, thus we envision a two-
stage form of coupling among these regression vectors.

In particular, we make use of DP priors to provide a
joint distribution to the regression vectors for each re-
sponse at the first stage, and then incorporate these
DP priors thorough ωDDP at the second stage. The
clustering property of DPs naturally allows the shar-
ing of statistical strength between and within the two
stages, but also allows no sharing. Moreover, the clus-
tering property is able to transfer statistical strength
from existing regression vectors to new regression vec-
tors, and thus yield out-of-sample prediction.

We employ the conditional Pólya urn scheme for
Bayesian inference. Our regression model is a con-
jugate model, and Bayesian inference for this model
proceeds via a relatively straightforward merging of
MCMC techniques.

Our regression model not only captures the relation-
ship among the output samples, but also the relation-
ship among the output variates. The spatial DP mod-
el of Gelfand et al. (2005) is also able to model these
two types of the relationships. Since the base mea-
sure in the spatial DP model is defined as a Gaussian
process, this model typically requires to repeatedly in-
vert n×n matrices where n is the number of train-
ing samples, limiting their applications in large-scale
datasets. However, our model can avoid this limita-
tion. Note that the kernel weighted mixture of DP-
s (Dunson et al., 2007) is also able to capture relation-
ships among the output samples, but it cannot be used
to model the dependence among the output variates.

2 Dirichlet Process Mixtures

In a Dirichlet Process Mixture (DPM) model, the sam-
ples zi for i = 1, . . . , n are assumed to be drawn from
a mixture component parameterized by θi ∈ Θ. The
θis are in turn generated by the distribution G, which
is assumed to follow a Dirichlet process prior. If G
is drawn from the Dirichlet process DP(G0, α) with
base measure G0 and concentration parameter α over
(Θ,B) then for any finite partition (B1, . . . , Bk) of B,

(G(B1), . . . , G(Bk)) ∼ Dir(αG0(B1), . . . , αG0(Bk)).

Here Dir(α1, . . . , αk) denotes the Dirichlet distribution
with positive parameters α1, . . . , αk.

As is well known, integrating over G results in a
Pólya urn scheme for the θi (Blackwell and MacQueen,
1973); that is,

θ1 ∼ G0(θ1),

θi|θ1, . . . , θi−1 ∼
αG0(θi) +

∑i−1
l=1 δ(θi|θl)

α + i− 1
,

where δ(θi|θl) is a point mass at θl. It is easy to see
that as α→ 0, all the θi are identical to θ1, which in
turn follows G0. When α→∞, the θi becomes iid G0.
Since the θi are exchangeable, the Pólya urn scheme
can be written as

θi|θ−i ∼
αG0(θi) +

∑
l ̸=i δ(θi|θl)

α + n− 1
, (1)

were θ−i represents {θl : l ̸= i}.

3 Nonparametric Hierarchical
Dependent Modeling

In this paper, all vectors are represented in the column
form. We let 1m denote the m×1 vector of 1’s, Im de-
note the m×m identity matrix, and 0 denote the zero
vector (or matrix) whose dimensionality is dependent
upon the context.

In order to model relationships among multiple stud-
ies, we consider a nonparametric hierarchical model.
Let y·j = (y1j , . . . , ynjj)

T denote the response vector
in study j. The model is

[
yij |bij

] ind∼ p(yij |bij), j = 1, . . . , m and i = 1, . . . , nj ;
(2)

[
bij |Gj

] iid∼ Gj , i = 1, . . . , nj for each j.

In general, there are two extreme constructions for the
Gj . For the first construction, Gj are treated as inde-
pendent DPs given hyperparameters θ, so the model is
equivalent to the m separate submodels. For the sec-
ond one, the model is treated as a single conventional
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DP, i.e., G1 = · · · = Gm. As discussed by Müller
et al. (2004), the first case allows too little sharing of
strength in many applications, while the second case
enforces too much sharing.

3.1 Conditional Autoregressive DPs

Let G = {Gj , j = 1, . . . ,m} denote a collection of ran-
dom probability measures on (Φ,B). We model the Gj

in autoregressive form of

Gj = ωjjG
∗
j +

∑

l ̸=j

ωjlGl, j = 1, . . . , m, (3)

where 0 ≤ ωjl < 1 and
∑m

l=1 ωjl = 1. From (3), we
get the following conditional autoregressive model

E(Gj(B)|Gl(B), l ̸= j) = ωjjG0(B) +
∑

l ̸=j

ωjlGl(B)

for any Borel set B ∈ B. We thus say the Gj defined by
(3) follow conditional autoregressive DPs. We denote
Gj ∼ DDP(G∗,ωj) where ωj = (ωj1, . . . , ωjm)T and
G∗ = {G∗

1, . . . , G
∗
m}.

Using the induction principle (details are given in Ap-
pendix), we can express (3) in the following form

G1 = β11G
∗
1

G2 = β21G1 + β22G
∗
2 (4)

... =
...

Gm = βm1G1 + · · ·+ βm,m−1Gm−1 + βmmG∗
m,

where the βjl satisfy βjl ≥ 0, βll > 0 and
∑j

l=1 βjl = 1,
and the G∗

j are independent from DP(G0, νj). Thus,
models (4) and (3) are mutually equivalent. Model (4)
shows that the conditional autoregressive DP can serve
for countably infinite random probability distribution-
s. That is, given a new study m+1 (out-of-sample
study), we always have

Gm+1 = β(m+1),(m+1)G
∗
m+1 +

m∑

l=1

β(m+1),lGl.

On the other hand, let us denote Ω = [ωjl] (m×m),
dg(Ω) = diag(ω11, . . . , ωmm), M = Ω − dg(Ω) and
A = [aij ] = (Im −M)−1dg(Ω). Then, A is nonneg-
ative and row stochastic, i.e. A ≥ 0 and A1m = 1m

(the proof is given in Appendix B). Thus, the Gj can
be expressed as

Gj =
m∑

l=1

ajlG
∗
l , G∗

l
ind∼ DP(G0, νl), (5)

for j = 1, . . . , m (also see Dunson et al., 2007, Theo-
rem 2). Conversely, given a row stochastic matrix A

for (5), we cannot always obtain a row stochastic ma-
trix Ω for (3). Thus, it is not always possible to derive
(3) from (5). However, when the inverse B = [bjl] of
row stochastic A satisfies bjj > 0 and bjl ≤ 0 for j ̸= l;
namely, B is an M -matrix (Saad, 2003), we can derive
an Ω and obtain (3) from (5). Summarizing, we are
able to show (the proof involves straightforward alge-
braic manipulations):

Theorem 1 Assume that A = [ajl] in (5) satisfies
ajl ≥ 0, ajj > 0 and

∑m
l=1 ajl = 1, and it is nonsingu-

lar. If B = A−1 is an M -matrix, then there exists an
Ω = (dg(B))−1[Im + dg(B)−B] such that (3) holds.

3.2 One-parameter Dependent DP

In this paper we present a family of special matrices
A; that is,

A =
1

ω + m

(
ωIm + 1m1T

m

)
, for ω > 0.

Thus, (5) reduces to

Gj =
ω + 1

ω + m
G∗

j +
1

ω + m

∑

l ̸=j

G∗
l . (6)

Noting that A−1 = 1
ω

(
(ω+m)Im−1m1T

m

)
which is an

M -matrix, we obtain Ω given by

Ω =
1

ω+(m−1)

(
(ω − 1)Im + 1m1T

m

)
.

Subsequently, we have

Gj =
ω

ω+m−1
G∗

j+
1

ω+m−1

∑

l ̸=j

Gl. (7)

Again, using the induction principle, we can equiva-
lently express (7) as

Gj =
ω

ω+j−1
G∗

j+
1

ω+j−1

j−1∑

l=1

Gl. (8)

Since the resulting dependent DP is scaled only by
a single parameter ω, we call it one-parameter DDP
(ωDDP) and denote by Gj ∼ DDP(G∗, ω). It is easily
seen from either (7) or (6) that, as ω →∞, the Gj (=
G∗

j ) are mutually independent from DP(G0, νj), while

as ω → 0, we have G1 = · · · = Gm (= 1
m

∑m
l=1 G∗

l ). It
is also worth pointing out that our ωDDP bears a close
resemblance to the conventional DP; in particular, (6)
corresponds to the (truncated) stick-breaking repre-
sentation and (7) (or (8)) corresponds to the Pólya
urn scheme (or the Chinese restaurant process).
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3.3 Conditional Pólya urn Scheme

Applying DDP(G∗, ω) to model (2), we have

[
bij |Gj

] iid∼ Gj , i = 1, . . . , nj for each j; (9)

Gj ∼ DDP(G∗, ω), G∗
j

ind∼ DP(G0, νj).

See Figure 1-(a) for a graphical model representation.
By introducing indicators rij , the above model can be
equivalently expressed as

[
bij |rij = h

]
∼G∗

h, G∗
h∼DP(G0, νh), h = 1, . . . , m;

[
rij |ω

]
∼ Multinomial({1, . . . , m}, γj),

where γj = (γj1, . . . , γjm)T with γjj = (ω+1)/(ω+m)
and γjl = 1/(ω+m) for j ̸= l. As is well known (Black-
well and MacQueen, 1973), integrating over G∗

h results
in a Pólya urn scheme for bij ; that is,

[
bij |b−ij , rij = h, r−ij

]
∼

νhG0 +
∑

l ̸=i δ(bij |blh)

νh + nh − 1
,

(10)
where δ(x|b) is a point mass at b, b−ij represents
{blk : l ̸= i or k ̸= j}, and similarly for r−ij . Let Φh =
{ϕkh, k = 1, . . . , ch} denote the set of distinct values
among the {bij : rij = h}, ηkh denote occurrences
of ϕkh, and ηh =

∑
k ηkh, for h = 1, . . . , m. The

set of configuration indicators S = {sij} is defined by
sij = (lh) if and only if bij = ϕlh. Thus, (S, Φ) is an
equivalent representation of the bij , and hence (10)
reduces to

[
bij |b−ij , rij = h, r−ij

]
∼

νhG0 +
∑ch

l=1 η−
lhδ(bij |ϕlh)

νh + η−
h

,

(11)
where η−

kh represents the number of clustering (kh),
with bij removed, and similarly for η−

h . By marginal-
izing over rij , the conditional prior of bij on r−ij is
given by

[
bij |b−ij , r−ij

]
(12)

∼
m∑

h=1

νhγjh

νh + η−
h

G0 +
m∑

h=1

ch∑

l=1

γjhη−
lh

νh + η−
h

δ(bij |ϕlh).

For a new b0j , it follows from (12) that the conditional
predictive prior for b0j as

[
b0j |{bij}, r−ij

]
(13)

∼
m∑

h=1

νhγjh

νh + ηh
G0 +

m∑

h=1

ch∑

l=1

γjhηlh

νh + ηh
δ(bij |ϕlh).

Note that there are possibly some h ∈ {1, . . . , m} such
that ηh = 0.

4 Nonparametric Models for
Multivariate-Response Regression

In this section we apply our ωDDP to multivariate
regression problems. We are now given a set of train-
ing data {xi,yi}ni=1 where xi is a d×1 input vector
and yi = (yi1, . . . , yim)T ∈ Rm is an m-dimensional
response vector.

We consider the following regression model

yij = uj + gT
i bij + ϵj ,

where the ϵj are independent normal errors with mean
0 and variance σ2, gi = g(xi) = (g1(xi), . . . , gk(xi))

T

are basis functions and bij are k×1 regression vectors.
Unlike the conventional regression model, the current
model allows each sample xi to have its own bij . In
this paper, we specifically define gj(x) = K(x,xj),
where K(x,xj) is a reproducing kernel.For simplicity,
we let yij ← yij − 1

n

∑n
i=1 yij and set uj = 0 for j =

1, . . . , m.

To capture the relationships among the yij , we model
them as (9) where we set ν1 = · · · = νm = ν and define
G0 as

G0(·|τ,Σ) = Nn(0, τ−1K−1),

where K = [K(xi,xj)] is the n×n kernel matrix. We
further assume that σ−2, τ , ν follow Gamma distri-
butions Γ(σ−2|aσ

2 , bσ

2 ), Γ(τ |aτ

2 , bτ

2 ) and Γ(ν|aν

2 , bν

2 ),
respectively. In addition, ω and the other hyperpa-
rameters of the priors for ν, τ and σ2 are fixed.

4.1 Inference

Posterior inference is achieved by generating realiza-
tions of the parameters from the conditional joint den-
sity [b, σ2, τ, ν|Y]. Using the same notations as those
in the previous section, we present a Gibbs sampler,
which consists of the following steps:

(a) Update (bij , rij , sij) from
[(bij , rij , sij)|(b−ij , r−ij , s−ij), ν, τ, σ2,Y] for
j = 1, . . . , m and i = 1, . . . , n;

(b) Update ϕkh from [ϕkh|r, τ, ν, σ2,Y] for h =
1, . . . , m and k = 1, . . . , ch;

(c) Update σ−2, τ and ν from [σ−2|Y,b, aσ, bσ],
[τ |{Φh}mh=1, aτ , bτ ] and [ν|{Φh}mh=1, aν , bν ].

The Gibbs sampler exploits the simple structure of
the conditional posterior for each bij . In terms of the
conditional Pólya urn scheme in (12), the conditional
distribution is given by

[bij |b−ij , r−ij , ν, γ, τ, σ2,Y]

∝ q0Nn(bij |σ−2Qigiyij , Qi) +

m∑

h=1

ch∑

l=1

qlh
γjhη−

lh

ν + η−
h

δ(bij |ϕlh),
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Figure 1: Graphical Representations: (a) ωDDP mixture model, (b) m independent DP mixture models, and
(c) DP mixture model.

where

qlh = N(yij |gT
i ϕlh, σ2),

q0 = N(yij |0, (τ−1gT
i K−1gi + σ2))

m∑

h=1

νγjh

ν + η−
h

,

and

Qi = (τK + σ−2gig
T
i )−1

= τ−1K−1 − τ−1K−1gi(τσ2 + gT
i K−1gi)

−1gT
i K−1.

Thus, given b−ij , with probability proportional to

qlh
γjhη−

lh

ν+η−
h

, we draw bij from distribution δ(·|ϕlh), or

with probability proportional to q0, we draw bij from
Nn(·|σ−2Qigiyij , Qi).

To speed mixing of the Markov chain, Bush and
MacEachern (1996) suggested resampling the ϕkh af-
ter every step. For each h = 1, . . . , m and k =
1, . . . , ch, we have

[ϕkh|Y, S, τ, σ2] ∝ Nn(ϕkh|0, τ−1K−1)×
∏

(ij): sij=(kh)

N(yij |gT
i ϕkh, σ2),

from which it follows that the conditional density of
ϕkh is given by

[
ϕkh|Y, S,K, τ, σ2]

∼ Nn

(
ϕkh|σ−2Ψkh

∑

(ij): sij=(kh)

yijgi, Ψkh

)

with Ψkh = (τK+σ−2
∑

(ij): sij=(kh) gig
T
i )−1 for each

h = 1, . . . ,m and k = 1, . . . , ch.

Given the prior of σ−2, we then obtain the update of
σ−2 as

[σ−2|y,b, aσ, bσ]

∼ Γ
(
σ−2

∣∣∣aσ+nm

2
,
bσ+

∑m
j=1

∑n
i=1(yij−gT

i bij)
2

2

)
.

Since τ is only dependent on the ϕkh, we use the Gibbs
sampler to update them from their own conditional
distributions as

[τ |ϕ, aτ , bτ ]

∼ Γ
(
τ
∣∣∣aτ+n

∑m
h=1 ch

2
,
bτ +

∑m
h=1

∑ch
k=1 ϕT

khKϕkh

2

)
.

As for the update of ν, it is immediately obtained
from MacEachern (1998).

The main computational burden of the algorithm
comes from the calculation of Ψkh. However, we
can use the Sherman-Morrison-Woodbury formula to
calculate Ψkh. This formula allows us to invert an
ηkh×ηkh matrix instead of an n×n matrix. Thus,
when reproducing kernels as basis functions are used
for a large-scale dataset, the algorithm is still efficient.

4.2 Prediction

Given a new input vector x0, we predict the cor-
responding response y0 = (y01, . . . , y0m)T . Let the
b0j be the associated regression vectors. Prediction

1420



An Autoregressive Approach to Nonparametric Hierarchical Dependent Modeling

is based on the cluster structure of the bij . A non-
Bayesian approach is to choose the ch with the high-
est posterior probability among those drawn from the
MCMC algorithm. Let b̂kh, k = 1, . . . , ch be the M-
CMC approximations of the bkh associated with ch,
for h = 1, . . . , m. Consequently, y0h is predicted as

ŷ0h =
1

ch

ch∑

k=1

gT
0 b̂kh

where g0 = (g1(x0), . . . , gn(x0))
T . This approach re-

quires large storage to record the results for the compu-
tation of posterior probabilities, thus it is not feasible
in practice.

In this paper we are interested in Bayesian non-
parametric prediction. In particular, we utilize the
conditional predictive prior for b0j in (13). Let
{b(t), (σ2)(t), τ (t), ν(t)}, t = 1, . . . , T , be the MCMC
realizations of the parameters after the burn-in period.
We consider a Bayesian averaging approach (Raftery

et al., 1997). The approach is to draw b
(t)
0j from

(13) with the parameter realizations. We thus have

b̂0j = 1
T

∑T
t=1 b

(t)
0j , and hence ŷ0j = gT

0 b̂0j .

5 Example Studies

We conduct some numerical experiments to test
the performance of our proposed Bayesian regression
method and compare it with the model shown in Fig-
ure 1-(b). Specifically, y·j = (y1j , . . . , ynj)

T , j =
1, . . . , m, are modeled as m mutually independent DP
(iDP) mixture models. namely, for j = 1, . . . ,m,

yij |bij , σ
2 ind∼ Nn(y·j |gT

i bij , σ2), i = 1, . . . , n;

bij |Gj
iid∼ Gj , i = 1, . . . , n;

Gj |ν, G0
iid∼ DP(G0, ν);

G0(·|K, τ) = Nn(·|0, τ−1K−1).

The above iDPs can be easily implemented by set-
ting ω to a very large value in our ωDDP model. In
addition to the above iDP model, we further use an-
other baseline which assumes that the m independent
models follow the settings in the most recent litera-
ture (Shahbaba and Neal, 2009; Hannah et al., 2010).
Namely, for j = 1, . . . , m, the specification is

(xi, yij)|bij , σ
2, µi,Σi

ind∼ N(yij |xT
i bij , σ2)×

Nn(xi|µi, Σi), i = 1, . . . , n;

(bij , µi, Σi)|Gj
iid∼ Gj , i = 1, . . . , n;

Gj |ν, G0
iid∼ DP(G0, ν).

We here refer to this model as dpReg. It has been illus-
trated by Shahbaba and Neal (2009) that the dpReg
model can handle nonlinear data fairly well.

Table 1: Summary of the four used datasets: d–the
dimension of x, m–the dimension of y, k–the number
of instances; n–the number of training data

Dataset d m k n
Chemometrics 22 6 58 35
biscuit 700 4 70 39
forest fire 7 6 517 150
robot arm 12 6 600 300

In the third counterpart which is also used for compar-
ison, p(y·1, . . . ,y·m) follows a DP mixture model and
the base measure G0 is defined as a Gaussian process.
In particular, we establish the following model:

y·j |sj , σ
2 ind∼ Nn(y·j |Ksj , σ2In), j = 1, . . . , m;

sj |G iid∼ G, j = 1, . . . , q;

G|ν,G0 ∼ DP(G0, ν);

G0(·|K, τ) = Nn(·|0, τ−1K−1).

This model is equivalent to the spatial Dirichlet pro-
cess (sDP) mixture model of Gelfand et al. (2005),
which is also a special formulation of dependent DPs.
We use the MCMC algorithms built on the Pólya urn
scheme for these models.

We adopted four datasets to compare our algorithm
with iDPs and dpReg: the Chemometrics data, the
biscuit data, the forest fire data, and the robot-arm
data. The Chemometrics data was introduced in (Sk-
agerberg et al., 1992). According to the suggestion in
(Breiman and Friedman, 1997), we instead use the log-
arithms of the responses values for our experimental
analysis. The biscuit dataset was respectively used by
Breiman and Friedman (1997) and Brown et al. (2001)
to analyze their regression methods. The forest fire da-
ta is available in the UCI machine learning repository,
and the robot arm data was used by Teh et al. (2005).
The information about each dataset is summarized in
Table 1

For each dataset, we estimate the parameters from the
training dataset and evaluate the performance on the
test dataset. For regression response j, we adopt the
root mean squared error to be the performance metric:

Ej =

√√√√ 1

n2

n2∑

i=1

(yj(xi)− ŷj(xi))2, j = 1, . . . , m.

Here n2 is the number of instances in the test dataset,
yj(xi) is the true regression response and ŷj(xi) is the
predicted response from a regression model.

We run each MCMC algorithm for 10, 000 sweeps, dis-
carding the first 5, 000 sweeps as the burn-in, and av-
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erage the estimated parameters in each iteration after
the burn-in for prediction. For all experiments, the
input data is standardized to have zero mean and uni-
ty variance, and K is chosen to be the RBF Gaussian

Kernel K(xi,xj) = exp(
−||xi−xj ||2

δ2 ). The scale param-
eter δ is set to be the mean of the Euclidean distances
over all training instance pairs. The hyperparameters
for the scale factors are set as follows: ω = 10, aτ = 10,
bτ = 1, aσ = 10, bσ = 1, aν = 20 and bν = 1.

Table 2: Predictive Squared Errors For the Biscuit
Data.

Method y1 y2 y3 y4 Average
sDP 0.0533 0.4960 0.3466 0.0547 0.2377
iDPs 0.2123 0.5261 0.2693 0.0366 0.2611

ωDDP 0.0644 0.3965 0.2004 0.0544 0.1789

Tables 2, 3, 4 and 5 show the estimated prediction
errors for all datasets. In the four tables, the best en-
try in each column is highlighted. We can see that
ωDDP is the winner in most cases and consistent-
ly beat other algorithms with respect to the average
mean squared error. Thus, these results empirically
demonstrate that our dependent DP model is effective
in the real-world applications. Notice that for the bis-
cuit data, we do not report the results with dpReg.
This is because the input dimension is 700, and dpReg
is devised only for input data with moderate dimen-
sions.

We also do not report the results with sDP for the for-
est fire data and the robot arm data due to that the
computation of the sDP mixture model is demanding.
First, the MCMC algorithm for sDP involves the com-
putation of n×n matrices at each sweep. Second, this
algorithm needs to calculate the densities of n-variate
normal distributions Nn

(
· |0, τ−1Kn + σ2In

)
and

Nn(·|Ksj , σ2In). In the experiments, we find that the
ratios (say, r) between some of these values get very
large. This results in a slowly mixing Markov chain.
To alleviate this problem, we apply a simple trunca-
tion trick; namely, r is set to 0.001 if r < 0.001 and
set to 1000 if r > 1000. As discussed in Section 4.1,
the ωDDP and iDP mixture models are efficient com-
putationally. Moreover, their MCMC algorithms only
involve calculating the densities of univariate normal
distributions (see Section 4.1). Thus, they work very
well without the need for the above trick.

Although the parameter ω in ωDPP can be adaptively
learnt, we we simply specify ω = 10 in our experi-
ments. Basically, the choice of ω depends on the di-
mension of output vector (i.e. m). The higher the di-
mension, the smaller ω should be. However, ω should
not be too big; otherwise it just degenerates to inde-

pendent DPs. In the experiments, we find that as long
as we do not set ω as some extreme values (too big or
too small), the performances make little difference.

6 Discussion

One further extension to the ωDDP model is to con-
sider the following setting

[
yij |bij

] ind∼ p(yij |bij),
[
bij |Gij

] iid∼ Gij ,

Gij =
m∑

k=1

nk∑

l=1

a
(ij)
lk G∗

lk,

G∗
lk

iid∼ DP(G0, vlk).

Here a
(ij)
lk ≥ 0 and

∑m
k=1

∑nk

l=1 a
(ij)
lk = 1. This set-

ting can capture dependency between the studies as
well as the instances. When m = 1, the setting tries
to explore dependency between the instances. In this
case, Dunson et al. (2007) proposed a kernel weighted
mixture of DPs as

Gx =
n∑

l=1

bl(x)G∗
l , G∗

l
iid∼ DP(G0, ν), for l = 1, . . . , n,

where bl(x) is a kernel-based weight. This formula-
tion is flexible to model local dependence between the
instances. However, the weight matrix A in the k-
ernel weighted mixture of DPs is defined through a
kernel function and there does not exist a guarantee
to have a corresponding matrix Ω from such A, Thus,
(3) would no longer hold in their method. This im-
plies that a corresponding autoregressive form for Gx

cannot be obtained.

Note that the kernel weighted mixture of DPs was o-
riginally proposed to capture relationships among the
output samples (Dunson et al., 2007). However, it can-
not directly model the dependence among the output
variates because it uses the bl(x) for weights. The goal
of our ωDPP model is to describe the dependence a-
mong the output variates. In this case, it is clear that
the weight matrix A of our model cannot be defined
via a kernel function bl(x) as in the kernel weighted
mixture of DPs.

7 Conclusion

We have proposed an autoregressive approach to non-
parametric hierarchical dependent modeling problems.
In particular, we have devised an ωDDP and exploit-
ed its application to Bayesian multivariate regression.
The novel aspect is that we can develop an MCMC al-
gorithm, based on the conditional Pólya urn scheme,
for Bayesian computation and prediction.
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Table 3: Predictive Squared Errors For the (Log-transformed) Chemometrics Data.
Method y1 y2 y3 y4 y5 y6 Average

sDP 0.0093 0.0463 0.0016 0.0005 0.0003 0.0004 0.0098
dpReg 0.0082 0.0662 0.0040 0.0010 0.0006 0.0006 0.0135
iDPs 0.0136 0.0753 0.0019 0.0005 0.0003 0.0004 0.0153

ωDDP 0.0085 0.0456 0.0016 0.0003 0.0002 0.0002 0.0095

Table 4: Predictive Squared Errors For the Forest Fire Data.
Method y1 y2 y3 y4 y5 y6 Average
dpReg 0.6909 0.5869 0.8829 1.0459 0.1115 1.3874 0.7842
iDPs 0.6530 0.5831 0.9034 1.0012 0.1145 1.3384 0.7656
ωDDP 0.6170 0.5531 0.9022 0.9977 0.1271 1.3461 0.7572

Table 5: Predictive Squared Errors For the Robot Arm Data.
Method y1 y2 y3 y4 y5 y6 Average
dpReg 0.3984 0.6136 0.4451 0.3650 0.5737 0.3227 0.4531
iDPs 0.7487 0.5938 0.6597 0.5003 0.6030 0.5609 0.6111

ωDDP 0.3937 0.5812 0.4316 0.3676 0.5615 0.3231 0.4431

Our approach can readily be applied to Bayesian mul-
ticategory classification problems. We only need to ad-
d an extra stage into the hierarchical model for regres-
sion, constructing a new hierarchical model for classi-
fication. The extra stage is used to relate class labels
with a set of auxiliary variables, which in turn play the
same role as the responses in the regression model. To
implement an MCMC algorithm for the classification
model, it is only required to insert a Gibbs sampling
that updates the auxiliary variables into the MCMC
algorithm for the regression model. In fact, this im-
plies the use of data augmentation methodology in the
current classification model.
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A The Derivation of Obtaining (4)
from (3)

The proof is done via induction. First, when m = 1,
it is clear to obtain (4) from (3). Suppose the re-
sult holds under m−1. We now consider the case m.
For j = 1, . . . ,m−1, multiplying Gm = ωmmG∗

m +∑
l ̸=m ωmlGl by ωjm and then adding with Gj =

ωjjG
∗
j +

∑
l ̸=j ωjlGl yield

Gj = βjj

ωjjG
∗
j+ωjmωmmG∗

m

ωjj+ωjmωmm
+

∑

j ̸=l,m

βjlGl

where βjj =
ωjj+ωjmωmm

1−ωjmωmj
and

βjl =
ωjl + ωjmωml

1−ωjmωmj
for l ̸= j,m.

It is easily verified that
∑m−1

l=1 βjl = 1. Thus, regard-

ing
ωjjG∗

j +ωjmωmmG∗
m

ωjj+ωjmωmm
as a new G∗

j and using the in-

duction assumption, we complete the proof.

B The Proof of A ≥ 0 and A1m = 1m

The proof can be immediately obtained from Theo-
rem 2 in Dunson et al. (2007). Here we present a
simpler proof. First, we have

A = [Im+dg(Ω)−Ω]−1dg(Ω)

= [Im − (Im+dg(Ω))−1Ω]−1(Im+dg(Ω))−1dg(Ω)

=

{ ∞∑

t=0

((Im+dg(Ω))−1Ω)t

}
(Im+dg(Ω))−1dg(Ω)

≥ 0

due to that Ω ≥ 0, Ω1m = 1m and (Im+dg(Ω))−1 =
diag(1/(1+ω11), · · · , 1/(1+ωmm)) ≥ 0. Second, it
is direct to obtain A1m = 1m from the fact that
dg(Ω)1m = [Im+dg(Ω)−Ω]1m.
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