
A Composite Likelihood View for Multi-Label Classification

Yi Zhang Jeff Schneider
School of Computer Science, Carnegie Mellon University

Abstract

Given limited training samples, learning to
classify multiple labels is challenging. Prob-
lem decomposition [24] is widely used in this
case, where the original problem is decom-
posed into a set of easier-to-learn subprob-
lems, and predictions from subproblems are
combined to make the final decision.

In this paper we show the connection between
composite likelihoods [17] and many multi-
label decomposition methods, e.g., one-vs-all,
one-vs-one, calibrated label ranking, proba-
bilistic classifier chain. This connection hold-
s promise for improving problem decomposi-
tion in both the choice of subproblems and
the combination of subproblem decisions.

As an attempt to exploit this connection, we
design a composite marginal method that im-
proves pairwise decomposition. Pairwise la-
bel comparisons, which seem to be a natural
choice for subproblems, are replaced by bi-
variate label densities, which are more infor-
mative and natural components in a compos-
ite likelihood. For combining subproblem de-
cisions, we propose a new mean-field approxi-
mation that minimizes the notion of compos-
ite divergence and is potentially more robust
to inaccurate estimations in subproblems.

Empirical studies on five data sets show that,
given limited training samples, the proposed
method outperforms many alternatives.

1 Introduction

Multi-label classification has received considerable at-
tention from the machine learning community [24]. In
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such problems, it is desirable to capture the (condition-
al) dependency of labels while keeping the algorithm
both computationally and statistically efficient.

Many researchers focus on problem decomposition
techniques, which usually decompose the multi-label
classification problem into a set of simpler and easier-
to-learn subproblems, estimate prediction models for
the subproblems, and then combine the prediction-
s from subproblems to make the final classification.
Popular choices of subproblems include one-vs-all de-
composition (i.e., the relevance of each individual la-
bel) [23], one-vs-one decomposition (i.e., the pairwise
comparison between any two labels) [8, 12], a combi-
nation of both one-vs-all and one-vs-one decomposi-
tions [9], and conditional relevance of one label given
other labels (e.g., classifier chain methods) [22, 6].

Despite having some empirical success, the choice of
subproblems in many decomposition methods seem-
s arbitrary and relies on intuition, and more impor-
tantly, the combination of subproblem predictions in
the final decision making is usually based on heuristics
(e.g., voting). To address these issues, we first show
the connection between multi-label decomposition al-
gorithms and composite likelihood [26, 16], a technique
based on partial specification of the likelihood as the
product of simple component likelihoods to efficient-
ly model complex dependencies. We believe that this
connection holds great promise for improving the de-
sign of multi-label decomposition methods, especially
in the choice of subproblems and the combination of
subproblem predictions in decision making.

As an attempt to exploit this connection, we design a
composite marginal method that improves the popular
pairwise decomposition approaches. For choosing sub-
problems, although pairwise label comparison is wide-
ly used and seems to be a natural choice, bivariate
densities provide more information about pairwise la-
bel relation and are more natural as part of a compos-
ite likelihood. For combining subproblem prediction-
s, we propose a new mean-field approximation proce-
dure based on composite likelihood, which minimizes
the notion of composite divergence and is potentially
more robust to inaccurate estimations in subproblems.
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On five real-world data sets, we compare our method
with several multi-label decomposition methods and a
joint learning approach that captures label dependen-
cy using a graphical model. Empirical results show
that, given limited training samples, the proposed
method outperforms alternatives and provides supe-
rior predictions under a variety of evaluation criteria.

In the rest of this paper, we will first introduce compos-
ite likelihoods in Section 2, and establish the connec-
tion between multi-label decomposition methods and
composite likelihood in Section 3. To exploit this con-
nection, we propose a composite marginal method for
multi-label classification in Section 4, and present em-
pirical results in Section 5. We conclude in Section 6.

2 Composite Likelihood Methods

In this section we first give an overview on common-
ly used forms of composite likelihoods, and then we
briefly motivate and discuss parameter estimation via
composite likelihoods.

2.1 Overview

Composite likelihood is a partial specification of the
full likelihood function by multiplying a set of simple
component likelihoods, where each component likeli-
hood is in the form of either a marginal or a condi-
tional density. Composite likelihood can be viewed as
an oversimplified form of the full likelihood, but such
an approximation can provide certain benefits in pa-
rameter estimation, notably in computation, statisti-
cal efficiency (with limited samples), and robustness
(to model specification). Research on composite likeli-
hood can be dated back to Besag’s pseudolikelihood [1]
and Cox’s partial likelihood [3]. Lindsay [17] formal-
izes the term composite likelihood for “product of like-
lihoods”. Some excellent overviews and discussion on
this subject have been recently published [26, 16].

Formally, consider q random variables Y =
(Y1, . . . , Yq), the parameter vector θ ∈ Θ and the
full likelihood function L(θ; y) with one observation
y. Following the notation in [17, 26], we denote by
{A1, . . . ,AK} a collection of K marginal or condition-
al events, with corresponding component likelihoods
{Lk(θ; y) ∝ f(y ∈ Ak; θ)}Kk=1. A composite likelihood
approximates the likelihood function L(θ; y) by:

LC(θ; y) =

K∏

k=1

Lk(θ; y)wk (1)

where {Lk(θ; y)}Kk=1 are marginal or conditional densi-
ties, and {wk}Kk=1 are (optional) nonnegative weight-
s on components. In this paper we mainly consider
wk = 1, k = 1, 2, . . . ,K for simplicity.

Composite marginal likelihoods is a large class
of composite likelihoods that use low-dimensional
marginal densities as component likelihoods. The
simplest example of composite marginal likelihood is
the so-called independence likelihood. For q variables
y = (y1, . . . , yq), we have:

Lind(θ; y) =

q∏

i=1

f(yi; θ) (2)

Naturally this specification does not capture interac-
tions between different variables. Another well stud-
ied class of likelihoods, which considers small blocks of
variables, is the pairwise likelihood [15, 5, 26, 16]:

Lpair(θ; y) =

q−1∏

i=1

q∏

j=i+1

f(yi, yj ; θ) (3)

which includes interactions between pairs of variables
into the likelihood function.

Composite conditional likelihoods ia another
popular class of composite likelihoods based on con-
ditional densities, which date back to pseudolikeli-
hood [1]. Its general form is the following:

Lcond(θ; y) =

K∏

k=1

f(yBk
|yN (Bk); θ) (4)

where each Bk indexes a block of variables, and N (Bk)
indexes neighbors of the variables in Bk. Two widely
used composite conditional likelihoods in both longitu-
dinal studies [20] and bioinformatics [18] are pairwise
conditional likelihood :

Lpcl(θ; y) =

q∏

i=1

q∏

j=1

f(yi|yj ; θ) (5)

and full conditional likelihood :

Lfcl(θ; y) =

q∏

i=1

f(yi|y(−i); θ) (6)

where y(−i) denotes all variables but yi.

2.2 Computation, robustness, and statistical
efficiency of estimation

Composite likelihood provides an approximation to
the full likelihood function that has been widely used
in parameter estimation. Research on composite likeli-
hood estimation has been focused on computational ef-
ficiency, robustness to model misspecification, and sta-
tistical efficiency. Parameter estimation via composite
likelihoods is computationally more efficient than op-
timizing the joint likelihood function, especially when
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parameters in component likelihoods are decoupled
and estimated separately, e.g., as in [7, 20]. Also, it
has been argued by many researchers that compos-
ite likelihood estimation is more robust to model mis-
specification since only model assumptions on lower
dimensional conditional or marginal densities, instead
of the detailed specification of full joint density, are re-
quired [26, 16]. Statistical efficiency of the estimation,
as a result of reduced interactions among parameters,
has also been intensively studied [19, 11, 26, 16].

3 A Composite Likelihood View of
Multi-Label Problem
Decomposition

In this section, we show the connection between com-
posite likelihoods and many recent multi-label decom-
position methods.

3.1 The Full Multi-Label Model

One way to capture the full dependency of q labels is
to treat each of the 2q label combinations as a separate
class. This is usually called the label powerset method
(LP) [24]. In the statistics literature, this method is
linked to directly modeling the joint probability of all
2q entries in a q-dimensional contingency table [4]. The
drawback of this approach is obvious. Large amounts
of observations are needed to estimate this full model
well, and the computational complexity of the train-
ing algorithm usually scales exponentially in q. This
is what motivates composite likelihoods: the full like-
lihood is expensive to estimate and perform inference.

3.2 Multi-Label Problem Decomposition and
Composite Likelihoods

Multi-label decomposition methods transform the o-
riginal problem into a set of subproblems, learn each
subproblem, and combine subproblem predictions to
make the final classification. In general, the choice of
subproblems in a decomposition method corresponds
to a certain instantiation of the composite likelihood:

LC(θ; y|x) =
K∏

k=1

Lk(θ; y|x) (7)

where y = (y1, . . . , yq) ∈ {0, 1}q denotes the label vec-
tor and x denotes the feature vector. Learning the
subproblems corresponds to assuming the parameter-
s inside different Lk(θ; y|x) are independent and es-
timating them separately. The combination of sub-
problem predictions is usually based on heuristics or
exhaustive search, without explicitly leveraging prop-
erties of the composite likelihood.

The simplest way to decompose multi-label classifica-
tion is one-vs-all decomposition, or binary relevance
method (BR), which has been empirically justified in
the context of multi-class classification [23]. For q la-
bels, we consider q subproblems, each to model the
relevance of one label independently. This method cor-
responds to a composite likelihood of the form:

LBR(θ; y|x) =

q∏

i=1

f(yi|x; θi) (8)

where θi denotes the parameters used to model label
i. For prediction, each subproblem provides the condi-
tional probability of one label, and prediction can be
done by thresholding (e.g., at 0.5) and there is no need
to combine subproblem decisions. Since this method
ignores the dependency among labels, suboptimal per-
formance will be obtained if the evaluation criterion
calls for capturing the label dependency [6]. For exam-
ple, this method might predict each label reasonably
well, but rarely get all the labels classified correctly.

Another popular strategy is one-vs-one decomposi-
tion [8], which is used in pairwise label ranking
(PLR) [12]. For q labels, this method captures la-

bel dependency by formulating q(q−1)
2 subproblems,

each learning a classifier to compare two labels. In
this sense, the choice of subproblems in pairwise label
ranking indicates the following composite likelihood:

LPLR(θ; y|x) =

q−1∏

i=1

q∏

j=i+1

f(yi ≥ yj |x; θij) (9)

where θij is the vector of parameters for label pair
(i, j), and the component form f(yi ≥ yj |x; θi) comes
from the fact that in one-vs-one decomposition, sub-
problems are pairwise comparisons. For prediction,
votes are collected from all pairwise classifiers, and la-
bels are ranked by the number of wining votes they re-
ceive, e.g., the label receiving q−1 wining votes will be
ranked first, as it wins all q−1 comparisons with other
labels. Note that this method is only a label ranking
method: a rank order does not give a classification,
and one has to find a threshold for classification.

Calibrated Label Ranking (CLR) is a strategy that
combines both one-vs-one and one-vs-all decomposi-
tions for multi-label classification [9]. The key idea
is to introduce a virtual label that is always ranked
between the relevant set and the irrelevant set of la-
bels. As a result, all we need for classifying q labels
is to obtain a rank order of q + 1 labels (q labels plus
one virtual label) by pairwise label ranking. The dif-
ficulty, however, is how to learn the pairwise classifier
between each actual label and the virtual label. In [9],
this is solved by noticing that the pairwise comparison
between label i and the virtual label is semantically
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equivalent to the one-vs-all decision for label i. As
CLR uses both one-vs-one and one-vs-all subproblem-
s, it corresponds to the composite likelihood:

LCLR(θ; y|x) = [

q∏

i=1

f(yi|x; θi)]·[
q−1∏

i=1

q∏

j=i+1

f(yi ≥ yj |x; θij)]

(10)

Classifier chains (CC) [22] and probabilistic classifi-
er chains (PCC) [6] use subproblems that describe the
conditional relation of labels. Both methods start with
a randomly chosen label order. CC learns a function
to predict each label, conditional on the input features
and antecedent labels along the chosen order. In PCC,
each prediction function is probabilistic, and all func-
tions together define the joint label probability as in
a Bayesian network. In this sense, given a label order
((1), (2), . . . , (q)), CC and PCC are linked to:

LCC(θ; y|x) =

q∏

i=1

f(y(i)|x, y(1), . . . , y(i−1); θ(i)) (11)

For classification using CC, labels are predicted in the
chosen order, based on the input features and predict-
ed antecedent labels. For classification using PCC,
however, efficient inference is not provided and ex-
haustive search is used to find label assignments [6].
Indeed, if we consider (11) as a Bayesian network, the
largest conditional table contains all the labels.

The label powerset method considers all the 2q label
combinations as 2q classes. This corresponds to the
full likelihood approach with 2q configurations. Along
this direction, the pruned labelset method considers
only label combinations that are sufficiently frequent
in the data [21], and the random k-labelsets focus-
es on label combinations that only involve k label-
s [25]. These methods generate multi-class classifica-
tion problems with less than 2q classes, and it cor-
responds to specifying a single component likelihood,
but with less entries than in the full likelihood.

3.3 Other Multi-Label Classification
Methods

All the decomposition methods discussed in Sec-
tion 3.2 can be enhanced using randomization and en-
semble learning. A committee of experts can be con-
structed by launching a given method multiple times
with certain randomization, such as sampling train-
ing examples, label orders or label subsets. Ensemble-
based extensions that have been specifically studied
include ensemble classifier chains [22], ensemble prob-
abilistic classifier chains [6], ensemble pruned labelset-
s [21] and random K-labelsets [25]. It is generally ac-
cepted that an ensemble version of an algorithm will

outperform its original non-ensemble version, usually
at the cost of more intensive computation.

Instead of decomposing and learning subproblems in-
dividually, another direction is to jointly model the
dependency among all the labels and features via a s-
ingle graphical model. Research along this direction
includes specifying a conditionally trained undirected
graphical model (i.e., CRF) [10] or learning the struc-
ture of Bayesian networks from data [29, 28] to capture
the joint label relation (conditioned on features). Join-
t modeling via a single graphical model provides an
elegant method of multi-label learning, but potential
challenges include: 1) learning the graphical model is
usually intractable (e.g., training an undirected graph-
ical model, or learning the structure of a Bayesian
network); 2) joint modeling is likely to demand more
training samples than learning simpler subproblems.

Aa an alternative to decomposition methods which are
model-independent, researchers have also been adapt-
ing specific models (such as decision trees, SVMs,
KNNs, neural networks, boosting) internally to pro-
duce multi-label predictions.

An recent overview on a variety of multi-label learning
methods can be found in [24].

4 A Composite Marginal Model for
Multi-Label Classification

Exploiting the composite likelihood view of prob-
lem decomposition, we propose a composite marginal
method for multi-label classification. We consider the
subproblems of estimating the univariate and bivari-
ate label densities as components in a composite like-
lihood, and based on this composite likelihood, we de-
velop a new mean-field approximation procedure that
minimizes the notion of composite divergence for in-
ference and combining subproblem decisions, which is
more robust to certain common estimation and pre-
diction errors in multi-label classification.

4.1 Implications of Composite Likelihood to
Multi-Label Problem Decomposition

Subproblem design. A primary implication of the
composite likelihood perspective to multi-label classi-
fication is on the design of subproblems. For example,
consider the composite marginal likelihood of pairwise
label ranking in (9) and that of calibrated label ranking
in (10). Both composite likelihoods contain pairwise
comparison events {f(yi ≥ yj |x; θij)} as component
likelihoods. However, is the component likelihood in
the form of f(yi ≥ yj |x; θij) the most informative de-
scription of the pairwise label relationship? This issue
will be addressed in Section 4.2.
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Combination of subproblem decisions. Combin-
ing subproblem predictions to make a final classifica-
tion is critical to multi-label decomposition methods.
However, most existing decomposition methods com-
bine subproblem decisions using heuristics such as vot-
ing. The composite likelihood function approximates
the joint label probability in a composite form of sub-
problem predictions, and this form enables the design
of efficient inference procedures that are particularly
suitable for multi-label classification. In Section 4.3,
we develop a new robust mean-field approximation by
exploiting the composite form of the likelihood.

4.2 Composite Marginal Modeling:
Specification and Estimation

As raised in Section 4.1, one issue in (10) is the use of
likelihood components of the form {f(yi ≥ yj |x; θij)}.
Although pairwise comparison between two labels is
very natural subproblem to consider from the algorith-
m perspective, it is not the most informative compo-
nent in a likelihood function. Knowing “yi ≥ yj” only
rules out one scenario (yi = 0, yj = 1) and still leaves
three possibilities: (yi = 0, yj = 0), (yi = 1, yj = 0),
or (yi = 1, yj = 1). In this sense, the bivariate
marginal density fully describes the pairwise relation
of two labels and is thus provides more information
to the composite likelihood. Also, bivariate densi-
ties of the form f(yi, yj |x; θij) is also more natural
than {f(yi ≥ yj |x; θij)} when considered as part of
a likelihood function. Therefore, we consider univari-
ate and bivariate density estimation as subproblems,
which give the following composite likelihood:

LCMM (θ; y|x) = [

q∏

i=1

f(yi|x; θi)]·[
q−1∏

i=1

q∏

j=i+1

f(yi, yj |x; θij)]
λ

(12)
where {f(yi|x; θi)} and {f(yi, yj |x; θij)} are univari-
ate and bivariate marginal densities of labels condi-
tional on the feature vector x, {θi} and {θij} are two
sets of parameter vectors for univariate and bivariate
densities, and λ is the nonnegative weight of bivariate
densities and we set λ = 1 in this paper.

Given a set of N training examples D = {yn,xn}Nn=1,
the overall composite likelihood function is:

LCMM (θ; D) =

N∏

n=1

LCMM (θ; yn|xn) (13)

Since we assume parameters in different components
are independent, maximum composite likelihood esti-

mation (MCLE) can be performed separately:

θ̂i = argmax
θi

N∏

n=1

f(yni |xn; θi), i = 1, 2, . . . , q (14)

θ̂ij = argmax
θij

N∏

n=1

f(yni , y
n
j |xn; θij), (15)

i = 1, 2, . . . , q − 1 and j = i+ 1, . . . , q

Note that problem (14) is essentially to estimate a
probabilistic binary classifier, and problem (15) is to
estimate a probabilistic 4-class classifier (for the four
possible configurations of two labels).

4.3 Composite Marginal Modeling: Inference
via Robust Mean-Field Approximation

Given ({θ̂i}, {θ̂ij}), the composite likelihood provides
a joint conditional probability of labels:

P̂ (y|x) =
1

Z
·[
q∏

i=1

f(yi|x; θ̂i)]·[
q−1∏

i=1

q∏

j=i+1

f(yi, yj |x; θ̂ij)]
λ

(16)

where f(yi|x; θ̂i) and f(yi, yj |x; θ̂ij) are discrete poten-
tials, and Z is the partition function.

For a testing example x, exact inference on y ∈ {0, 1}q
using P̂ (y|x) has a time complexity exponential in q.
For efficient classification, we may consider the classi-
cal mean-field approximation [13, 14]:

Q(y) =

q∏

i=1

Qi(yi) (17)

which is the fully factorized distribution on y, with
each Qi(yi) a Bernoulli distribution on label yi. Tradi-
tionally, we will use fixed point equations to minimize
the following KL divergence [14]:

Q̂ = argmin
Q

KL(Q||P̂ ) = argmin
Q

∑

y∈{0,1}q
Q(y) log

Q(y)

P̂ (y|x)

(18)
However, KL(Q||P̂ ) is highly sensitive to a specific
type of estimation error that happens frequently in
multi-label classification: underestimating the proba-
bility of rare label combinations. When label combi-
nation y are rare, maximum likelihood estimation as
in (14) and (15) will produce model parameters that
further underestimate P̂ (y|x), thus pushing P̂ (y|x) to
zero. This is known as the imbalance class problem [2].
Unfortunately, due to the use of Q as the base distri-
bution, KL(Q||P̂ ) is sensitive to regions where Q is
non-zero but P̂ is close to zero, which is also evident
in (18) as P̂ appears in the denominator. Thus, mini-
mizing KL(Q||P̂ ) will react dramatically to underesti-
mation errors in P̂ , i.e., Q is forced to be zero wherever
P̂ approaches zero.
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As a result, we need a new divergence measure
D(Q||P̂ ) which, as KL(Q||P̂ ), can be optimized effi-
ciently by fixed point equations (to reach a stationary
point), and more importantly, D(Q||P̂ ) needs to be ro-
bust to underestimation errors in P̂ . A convenient way
to define a divergence measure for a composite likeli-
hood is to use composite divergence [26], which is the
linear weighted combination of divergences to all the
component distributions. Since P̂ is the normalized
LCMM in (12), we propose the following divergence:

D(Q||P̂ ) =
q∑

i=1

D(Q||f(·|x; θ̂i)) + λ

q−1∑

i=1

q∑

j=i+1

D(Q||f(·, ·|x; θ̂ij)) (19)

in which the divergence between Q and each univariate
discrete distribution f(·|x; θ̂i) is defined as:

D(Q||f(·|x; θ̂i)) =
1∑

yi=0

(Qi(yi)− f(yi|x; θ̂i))
2 (20)

and the divergence between Q and each bivariate dis-
crete distribution f(·, ·|x; θ̂ij) is:

D(Q||f(·, ·|x; θ̂ij)) =
1∑

yi=0

1∑

yj=0

(Qi(yi)Qj(yj)− f(yi, yj |x; θ̂ij))
2 (21)

which are the sum of squared differences of the prob-
ability mass over possible events in f(·|x; θ̂i) and

f(·, ·|x; θ̂ij), respectively. Note that Q reduces to Qi
and Qi ·Qj in the two equations as Q is fully factorized.
Compared to the KL divergence in (18), the new diver-
gences in (20) and (21) are more robust to the underes-

timation cases f(yi|x; θ̂i)→ 0 and f(yi, yj |x; θ̂ij)→ 0,

and thus so is the linear combination D(Q||P̂ ) in (19).

Minimizing D(Q||P̂ ) in (19) w.r.t. a single Bernoulli
Qi with all other {Qj}j 6=i fixed can be solved in closed
form. Thus, we can iteratively apply fixed point equa-
tions and converge quickly to a stationary point.

5 Empirical Studies

Data. We perform our experiments on five real-world
multi-label data sets: Enron, Medical, Yeast, Scene,
and Emotion1. Enron and Medical are text data with
labels related to email analysis and medical decision.
Yeast is a biological data set where genes are labeled
by functions. Scene is an image data set where labels
denote different scenes. Emotion is a collections of
songs labeled by emotions. We select the top ten labels
if the data set has more than ten labels.

1http://mulan.sourceforge.net/

Methods. We compare our proposed method to sev-
eral popular multi-label decomposition methods as
well as a joint modeling approach that captures the
label dependency using graphical models [29]. See Sec-
tion 3 for a review of decomposition methods.

• Binary relevance (BR): learn to classify each label
independently (i.e., one-vs-all decomposition).

• Pairwise label ranking (PLR): perform pairwise la-
bel comparison to rank all the labels.

• Calibrated label ranking (CLR): combine both pair-
wise comparison and one-vs-all classifiers.

• Classifier chain (CC): a chain of classifiers to model
conditional label relation given a label order.

• Random k-labelsets (RK): an ensemble algorithm
combines classifiers for label sets of size K.

• Multi-label learning by exploiting label dependency
(LEAD): a joint modeling approach which learn-
s and incorporates a Bayesian network into multi-
label classification to capture label dependency.

• Composite marginal model (CMM): the proposed
method described in Section 4, which exploits the
composite likelihood view to improve subproblem
choice and prediction combination.

All the methods need base learners to solve the sub-
problems. We use linear SVMs for binary decision-
s, multi-class SVMs (based on one-vs-one decomposi-
tion) for multi-class cases. If probabilistic estimates
are required for binary problems, logistic regression is
used instead of SVMs, and for multi-class probabilistic
estimates, we use the method in [27]. All these learn-
ers are available in the LIBSVM2 and LIBLINEAR
packages3. Structure learning of Bayesian networks is
performed using Bayesian Net Toolbox (BNT)4 and
its structure learning package extension (BNT-SLP)5.

All problem decomposition methods can be extended
to randomized ensemble versions by sampling exam-
ples, label orders or label sets. However, in this paper
we limit our attention to the methods themselves (ex-
cept RK, which is already the ensemble version). Ran-
dom k-labelsets is tested in its ensemble form (of size
30) since the raw version is not a complete multi-label
classifier. All methods except CLR need a threshold
to assign 0/1 values to labels. We simply use 0.5. One
can also search for an optimal threshold in [0, 1]. The
regularization parameters of the base learners are cho-
sen by cross validation. We use K=2 for RK since
most rivals focus on pairwise label relations.

Evaluation. We report on four evaluation measures.

2http://www.csie.ntu.edu.tw/ cjlin/libsvm/
3http://www.csie.ntu.edu.tw/ cjlin/liblinear/
4http://code.google.com/p/bnt/
5http://ofrancois.tuxfamily.org/slp.html
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Table 1: Results on Medical data: means (and standard errors) over 30 random runs. The best model is marked
with *, and all competitive models (by paired t-tests with the best model, α = 0.05) are shown in bold.

Methods Hamming Loss Subset 0/1 Loss Ranking Loss One Error

BR 0.0325 (0.0007) 0.2608 (0.0048) 0.3627 (0.0075) 0.0787 (0.0033)
PLR 0.3721 (0.0011) 1.0000 (0.0000) 0.3678 (0.0050) 0.0978 (0.0029)
CLR 0.0338 (0.0006) 0.2708 (0.0043) 0.3687 (0.0054) 0.0888 (0.0025)
CC 0.0358 (0.0007) 0.2707 (0.0061) 0.3888 (0.0018) 0.1606 (0.0047)
RK 0.0329 (0.0007) 0.2610 (0.0055) 0.3863 (0.0016) 0.1109 (0.0030)

LEAD 0.0331 (0.0006) 0.2563 (0.0046) 0.3400 (0.0113) 0.0770 (0.0029)
CMM 0.0313*(0.0005) 0.2524*(0.0043) 0.3276*(0.0082) 0.0706*(0.0027)

Table 2: Results on Yeast data: means (and standard errors) over 30 random runs. The best model is marked
with *, and all competitive models (by paired t-tests with the best model, α = 0.05) are shown in bold.

Methods Hamming Loss Subset 0/1 Loss Ranking Loss One Error

BR 0.3137 (0.0020) 0.9140 (0.0033) 0.4531 (0.0017) 0.4823 (0.0058)
PLR 0.3050 (0.0011) 0.9588 (0.0026) 0.3833*(0.0009) 0.2401*(0.0008)
CLR 0.2963 (0.0014) 0.9147 (0.0042) 0.3839 (0.0008) 0.2412 (0.0008)
CC 0.3225 (0.0022) 0.8598 (0.0034) 0.4290 (0.0013) 0.2452 (0.0013)
RK 0.2664 (0.0008) 0.8631 (0.0053) 0.4097 (0.0031) 0.2711 (0.0075)

LEAD 0.2684 (0.0010) 0.8811 (0.0051) 0.3886 (0.0007) 0.2413 (0.0010)
CMM 0.2651*(0.0009) 0.8594*(0.0043) 0.3916 (0.0008) 0.2418 (0.0012)

Table 3: Results on Emotion data: means (and standard errors) over 30 random runs. The best model is marked
with *, and all competitive models (by paired t-tests with the best model, α = 0.05) are shown in bold.

Methods Hamming Loss Subset 0/1 Loss Ranking Loss One Error

BR 0.2354 (0.0027) 0.7863 (0.0045) 0.4937 (0.0030) 0.3394 (0.0074)
PLR 0.2681 (0.0018) 0.8645 (0.0021) 0.4859 (0.0028) 0.2954 (0.0042)
CLR 0.2294 (0.0024) 0.7810 (0.0057) 0.4877 (0.0019) 0.2914 (0.0049)
CC 0.2431 (0.0033) 0.7818 (0.0067) 0.5134 (0.0026) 0.4285 (0.0069)
RK 0.2155*(0.0019) 0.7465*(0.0051) 0.5238 (0.0029) 0.3109 (0.0066)

LEAD 0.2600 (0.0025) 0.8713 (0.0052) 0.4845 (0.0034) 0.3281 (0.0060)
CMM 0.2163 (0.0018) 0.7599 (0.0044) 0.4787*(0.0018) 0.2884*(0.0044)

1) Hamming loss: the percentage of misclassified la-
bels; 2) subset 0-1 loss: the percentage of examples
that at least one label is misclassified, which tests the
ability to capture label dependency; 3) ranking loss:
the probability that an irrelevant label is ranked high-
er than a relevant label, which measures the ability
to capture the relative order between labels. 4) One
error: the percentage of examples for which the top
ranked label turns out to be irrelevant.

Experimental settings. We perform 30 random run-
s and report means and standard errors of each evalu-
ation measure. Data sets come with more than enough
training examples (several of them contain thousands
of training samples). As we are interested in perfor-
mance with limited training data, in each random run
we sample 200 training examples.

Results on five data sets are shown in Table 5 to

Table 3. We summarize the results as follows:

• PLR and CLR perform well on ranking loss and one
error, because their decisions are mainly based on
pairwise comparison of labels and focus more on
obtaining the correct rank order of labels. PLR
has terrible performance on hamming loss and sub-
set 0/1 loss because PLR is designed as a rank-
ing algorithm and is incapable of deciding the rele-
vance/irrelance of labels. CLR is designed to im-
prove PLR by introducing a virtual label (which
serves as an adaptive threshold between relevant and
irrelevant labels) and thus CLR obtains average per-
formance on hamming loss and subset 0/1 loss.

• CC attains average performance on hamming loss
and subset 0/1 loss, but falls behind on ranking loss
and one error. The conditional relation of labels
captures certain label dependencies, but is not well
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Table 4: Results on Scene data: means (and standard errors) over 30 random runs. The best model is marked
with *, and all competitive models (by paired t-tests with the best model, α = 0.05) are shown in bold.

Methods Hamming Loss Subset 0/1 Loss Ranking Loss One Error

BR 0.1439 (0.0015) 0.6118 (0.0039) 0.5072 (0.0058) 0.3669 (0.0040)
PLR 0.3356 (0.0009) 0.9968 (0.0005) 0.4753 (0.0053) 0.3265 (0.0062)
CLR 0.1397 (0.0012) 0.6181 (0.0046) 0.4733*(0.0057) 0.3237 (0.0052)
CC 0.1491 (0.0015) 0.5410 (0.0053) 0.5030 (0.0030) 0.4162 (0.0039)
RK 0.1223 (0.0010) 0.5724 (0.0063) 0.5057 (0.0038) 0.3339 (0.0039)

LEAD 0.1291 (0.0011) 0.5739 (0.0048) 0.4749 (0.0064) 0.3494 (0.0040)
CMM 0.1138*(0.0008) 0.5250*(0.0037) 0.4862 (0.0057) 0.2872*(0.0027)

Table 5: Results on Enron data: means (and standard errors) over 30 random runs. The best model is marked
with *, and all competitive models (by paired t-tests with the best model, α = 0.05) are shown in bold.

Methods Hamming Loss Subset 0/1 Loss Ranking Loss One Error

BR 0.1958 (0.0016) 0.8653 (0.0067) 0.2911 (0.0025) 0.2753 (0.0043)
PLR 0.3121 (0.0016) 0.9921 (0.0005) 0.3058 (0.0039) 0.2356 (0.0024)
CLR 0.1897 (0.0015) 0.8505 (0.0053) 0.3026 (0.0033) 0.2341*(0.0030)
CC 0.1960 (0.0019) 0.8417 (0.0046) 0.3730 (0.0038) 0.2622 (0.0042)
RK 0.1811 (0.0007) 0.8269*(0.0022) 0.3554 (0.0031) 0.2945 (0.0076)

LEAD 0.1932 (0.0007) 0.8614 (0.0036) 0.2887 (0.0028) 0.2898 (0.0038)
CMM 0.1796*(0.0008) 0.8269*(0.0026) 0.2854*(0.0020) 0.2450 (0.0036)

suited for ranking labels. It has been reported that
ensemble CC has better performance, and interest-
ing future work is to compare ensemble CC with
ensemble versions of other methods.

• RK: as the only method coupled with random-
ized ensemble technique, RK achieves decent perfor-
mance on hamming and subset 0/1 loss but below-
average scores on ranking loss and one error. One
potential reason for the unsatisfactory ranking per-
formance is the use of simple voting to combine pre-
dictions from subproblems, which may lose informa-
tion that is critical for accurate ranking.

• LEAD offers above-average performance on Medical
and Yeast data sets but is not very competitive on
other data sets. Jointly modeling the label depen-
dency using a single graphical model is promising,
but it also tends to require more training samples
than learning simple subproblems in decomposition
methods. Also, structure learning of Bayesian net-
s (or parameter estimation in undirected graphical
models) are still computationally intractable.

• CMM delivers the top performance on all four evalu-
ation criteria (in terms of the number of wining data
sets). This is the only method competitive for both
classification and ranking. The subproblems of esti-
mating univariate and bivariate label densities con-
veys more information than pairwise label compar-
isons, and the robust mean-field procedure provides
a decent approximation to the composite likelihood
without losing critical information for classification

and ranking.

6 Conclusion and Future Work

In this paper we show the connection between multi-
label decomposition methods and composite likeli-
hoods. This connection holds great promise for im-
proving the design of multi-label problem decomposi-
tion in both the choice of subproblems and the combi-
nation of subproblem decisions. As an attempt to ex-
ploit this connection, we design a composite marginal
method that improves pairwise decomposition. Pair-
wise label comparisons are replaced by bivariate densi-
ty estimation, which offers more informative and natu-
ral components in the composite likelihood. For com-
bining subproblem decisions, we propose a new mean-
field approximation that minimizes the notion of com-
posite divergence and is potentially more robust to in-
accurate estimations in subproblems. Empirical stud-
ies show that the proposed method outperforms many
alternatives under a variety of evaluation criteria.

In the future work, we will explore other forms of com-
posite likelihoods in the context of multi-label classifi-
cation. For example, the composite likelihood for clas-
sifier chains in (11) requires a given label order and
does not permit efficient inference. Composite condi-
tional likelihoods such as (5), on the other hand, are
nice alternatives since they allow for efficient (approx-
imate) inference and do not require a label order.
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