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Abstract

We describe the first sub-quadratic sampling al-
gorithm for the Multiplicative Attribute Graph
Model (MAGM) of Kim and Leskovec (2010).
We exploit the close connection between MAGM
and the Kronecker Product Graph Model
(KPGM) of Leskovec et al. (2010), and show
that to sample a graph from a MAGM it suf-
fices to sample small number of KPGM graphs
and quilt them together. Under a restricted set
of technical conditions our algorithm runs in
O
�
(log2(n))3 |E|

�
time, where n is the number

of nodes and |E| is the number of edges in the
sampled graph. We demonstrate the scalability
of our algorithm via extensive empirical evalua-
tion; we can sample a MAGM graph with 8 mil-
lion nodes and 20 billion edges in under 6 hours.

1 Introduction

In this paper we are concerned with statistical models on
graphs. Typically one is interested in two aspects of graph
models, namely scalable inference and efficiency in gener-
ating samples. While scalable inference is very important,
an efficient sampling algorithm is also critical:

• To assess the goodness of fit, one generates graphs
from the model and compares graph statistics of the
samples with the original graph (Hunter et al. 2008).

• To test whether a certain motif is overrepresented in
the graph, one strategy is to sample large number of
graphs in the null hypothesis to approximate the p-
value of the test statistic (Shen-Orr et al. 2002).
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• To predict the future growth of the graph, one may fit
the model on the current graph and generate a larger
graph with the estimated parameters.

The stochastic Kronecker Product Graph Model (KPGM)
was introduced by Leskovec et al. (2010) as a scalable
statistical model on graphs. Compared to previous mod-
els such as Exponential Random Graph Models (ERGMs)
(Robins et al. 2007) or latent factor models (Hoff 2009),
KPGM sports a number of advantages. In particular, the
inference algorithm of KPGM is scalable to very large
graphs, and sampling a graph from the model takes time
that is proportional to the expected number of edges. This
makes the KPGM a very attractive model to study. How-
ever, Moreno and Neville (2009) report that KPGM fails to
capture some characteristics of real-world graphs, such as
power-law degree distribution and local clustering.

In order to address some of the above shortcomings
and to generalize the expressiveness of KPGM, Kim and
Leskovec (2010) recently proposed the Multiplicative At-
tribute Graph Model (MAGM). MAGM can provably
model the power-law degree distribution while KPGM can
not. Furthermore, Kim and Leskovec (2010) demonstrate
empirically that MAGM is better able to capture graph
statistics of real-world graphs (Kim and Leskovec 2011).
The issue of inference for MAGM is addressed by Kim and
Leskovec (2011) via an efficient variational EM algorithm.

However, the issue of efficiently sampling graphs from
MAGM remains open. Currently, all algorithms that we
are aware of scale as O(n2) in the worst case, where n
is the number of nodes. This is because, the probability
of observing an edge between two nodes is determined by
the so-called n × n edge probability matrix. Unlike the
case of KPGM where the edge probability matrix has a
Kronecker structure which can be exploited to efficiently
sample graphs in expected O(log2(n)|E|) time, where |E|
is the number of edges, no such results are known for
MAGM. In the absence of any structure, naively sam-
pling each entry of the adjacency matrix requires O(n2)
Bernoulli trials, which is prohibitively expensive for gener-
ating real-world graphs with millions of nodes.
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In this paper we show that under a restricted set of technical
conditions, with high probability, a significant portion of
the edge probability matrix of MAGMs is the same as that
of KPGMs (modulo permutations). We then exploit this
observation to quilt O((log2(n))2) graphs sampled from a
KPGM to form a single sample from a MAGM. The ex-
pected time complexity of our sampling scheme is thus
O((log2(n))3|E|).

1.1 Notation and Preliminaries

A graph G consists of an ordered set of n nodes V =
{1, 2, . . . , n}, and a set of directed edges E ⊂ V ×V . A
node i is said to be a neighbor of another node j if they are
connected by an edge, that is, if (i, j) ∈ E. Furthermore,
for each edge (i, j), i is called the source node of the edge,
and j the target node. We define the adjacency matrix of
graph G as the n× n matrix A with Aij = 1 if (i, j) ∈ E,
and 0 otherwise. Also, the following standard definition of
Kronecker product is used (Bernstein 2005):

Definition 1 Given real matrices X ∈ Rn×m and Y ∈
Rp×q , the Kronecker product X ⊗ Y ∈ Rnp×mq is

X ⊗ Y :=




X11Y X12Y . . . X1mY
...

...
...

...
Xn1Y Xn2Y . . . XnmY


 .

The k-th Kronecker power X [k] is ⊗k
i=1X .

2 Kronecker Product Graph Model

The Stochastic Kronecker Product Graph Model of
Leskovec et al. (2010) is usually parametrized by a 2 × 2
initiator matrix

Θ :=

�
θ00 θ01

θ10 θ11

�
, (1)

with each θij ∈ [0, 1], and a size parameter d ∈ Z+. For
simplicity, let the number of nodes n be 2d. The case where
n < 2d can be taken care by discarding (2d − n) number
of nodes later as discussed in Leskovec et al. (2010), but in
our context we will only use n = 2d for KPGM.

The n× n edge probability matrix P is defined as the d-th
Kronecker power of the parameter Θ, that is,

P = Θ[d] = Θ⊗Θ⊗ . . .⊗Θ� �� �
d times

. (2)

The probability of observing an edge between node i and j
is simply the (i, j)-th entry of P , henceforth denoted as Pij .
See Figure 1 (left) for an example of the edge probability
matrix of a KPGM, and observe its fractal structure which
follows from the definition of P .

Figure 1: Examples of edge probability matrix (Left:
KPGM, Right: MAGM). Darker cells imply a higher prob-
ability of observing an edge. On the left, one can see the
fractal-like Kronecker structure; dividing the matrix into
four equal parts yields four sub-matrices which up to a scal-
ing look exactly the same.

Note that one can generalize the model in two ways
(Leskovec et al. 2010). First, one can use larger
initiator matrices. Second, different initiator matrices
Θ(1),Θ(2), . . . ,Θ(d) can be used at each level. In this case,
the edge probability matrix becomes

P = Θ(1) ⊗Θ(2) ⊗ · · · ⊗Θ(d). (3)

In this paper we will work with (3) because it is closer in
spirit to the MAGM which we will introduce later. For
notational simplicity, we will denote

Θ̃ :=
�
Θ(1),Θ(2), . . . ,Θ(d)

�
. (4)

2.1 Sampling

The straightforward way to sample a graph from a KPGM
is to individually sample each entry Aij of the adjacency
matrix A independently. This is because, given the parame-
ter matrix Θ, the event of observing an edge between nodes
i and j is independent of observing an edge between nodes
i� and j� for (i, j) �= (i�, j�). Thus one can view the adja-
cency matrix A as a n × n array of independent Bernoulli
random variables, with P (Aij = 1 | Θ) = Pij . Such an
algorithm requires O(n2) effort.

However, the Kronecker structure in the edge probability
matrix P can be exploited to sample a graph in expected
O(log2(n)|E|) time. The idea of Algorithm 1 suggested
by Leskovec et al. (2010) is as follows:

The algorithm first determines the number of edges in the
graph. Since the number of edges |E| =

�
i,j Aij is the

sum of n2 independent Bernoulli random variables, it ap-
proximately follows the normal distribution for large n.
Thus, one can sample the number of edges according to
this normal distribution.

Next, the algorithm samples each individual edge accord-
ing to the following recursive scheme. Let S denote the set
of candidate nodes for the source and T the candidate target
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nodes. Initially both S and T are {1, 2, . . . , n}. Using the
matrix Θ, the proportion of expected number of edges in
each quadrisection (north-west, north-east, south-west and
south-east) of the adjacency matrix can be computed via

(a+1)n/2�

i=an/2+1

(b+1)n/2�

j=bn/2+1

Pij ∝ θ
(1)
ab , 0 ≤ a, b ≤ 1. (5)

Then one can sample a pair of integers (a, b), 0 ≤ a, b ≤ 1,
with the probability of (a, b) proportional to θab, to reduce
S and T to {an/2 + 1, an/2 + 2, . . . , (a + 1)n/2} and
{bn/2 + 1, bn/2 + 2, . . . , (b + 1)n/2}, respectively. Due
to the Kronecker structure of the edge probability matrix
P , repeating this quadrisection procedure d times reduces
both S and T to single nodes S = {i} and T = {j}, which
are now connected by an edge. There is a small non-zero
probability that the same edge is sampled multiple times.
In this case the generated edge is rejected and a new edge
is sampled (see pseudo-code in Algorithm 1).

Algorithm 1 Sampling Algorithm of Stochastic Kronecker
Graphs

1: procedure KPGMSAMPLE(Θ̃)
2: E ← ∅
3: m←�d

k=1(θ
(k)
00 + θ

(k)
01 + θ

(k)
10 + θ

(k)
11 )

4: v ←�d
k=1((θ

(k)
00 )2 + (θ

(k)
01 )2 + (θ

(k)
10 )2 + (θ

(k)
11 )2)

5: Generate X ∼ N (m, m− v)
6: for x = 1 to X do
7: Sstart, Tstart ← 1
8: Send, Tend ← n
9: for k ← 1 to d do

10: Sample (a, b) ∝ θ
(k)
ab

11: Sstart ← Sstart + a
�

n
2k

�
.

12: Tstart ← Tstart + b
�

n
2k

�
.

13: Send ← Send − (1− a)
�

n
2k

�
.

14: Tend ← Tend − (1− b)
�

n
2k

�
.

15: end for
16: # We have Sstart = Send, Tstart = Tend

17: E ← E ∪ {(Sstart, Tstart)}
18: end for
19: return E
20: end procedure

3 Multiplicative Attribute Graph Model

An alternate way to view KPGM is as follows: Associate
the i-th node with a bit-vector b(i) of length log2(n) such
that bk(i) is the k-th digit of integer (i − 1) in its binary
representation. Then one can verify that the (i, j)-th entry
of the edge probability matrix P in (3) can be written as

Pij =
d�

k=1

θ
(k)
bk(i) bk(j). (6)

Under this interpretation, one may consider bk(i) = 1
(resp. bk(i) = 0) as denoting the presence (resp. absence)
of the k-th attribute in node i. The factor θ(k)

bk(i) bk(j) de-
notes the probability of an edge between nodes i and j
based on the value of their k-th attribute. The attributes
are assumed independent, and therefore the overall prob-
ability of an edge between i and j is just the product of
θ
(k)
bk(i) bk(j)’s.

The Multiplicative Attribute Graph Model (MAGM) of
Kim and Leskovec (2010) is also obtained by associating
a bit-vector f(i) with a node i. However, f(i) need not
be the binary representation of (i − 1) as was the case
in the KPGM. In fact, f(i) need not even be of length
log2(n). We simply assume that fk(i) is a Bernoulli ran-
dom variable with P (fk(i) = 1) = µ(k). In addition to
Θ̃ defined in (4), the model now has additional parameters
µ̃ :=

�
µ(1), µ(2), . . . , µ(d)

�
, and the (i, j)-th entry of the

edge probability matrix Q is written as

Qij =
d�

k=1

θ
(k)
fk(i) fk(j). (7)

4 Quilting Algorithm

A close examination of (6) and (7) reveals that KPGM and
MAGM are very related. The only difference is that in the
case of the KPGM the i-th node is mapped to the bit vector
corresponding to (i − 1) while in the case of MAGM it is
mapped to an integer λi (not necessarily (i− 1)) whose bit
vector representation is f(i). We will call λi the attribute
configuration of node i in the sequel.

For ease of theoretical analysis and in order to convey our
main ideas we will initially assume that d = log2(n), that
is, we assume that f(i) is of length log2(n) or equivalently
0 ≤ λi < n (this assumption will be relaxed in Section
4.2). Under the above assumption, every entry of Q has a
corresponding counterpart in P because

Qij = Pλi λj
. (8)

The key difficulty in sampling graphs from MAGM arises
because the attribute configuration associated with differ-
ent nodes need not be unique. To sidestep this issue we
partition the nodes into B sets such that no two nodes in a
set share the same attribute configuration.

While a number of partitioning schemes can be used,
we find the following scheme to be easy to analyze and
efficient in practice: For each i define the set Zi :=
{j s.t. j ≤ i and λi = λj}. Clearly |Zi| counts nodes j
whose index is smaller than or equal to i and which share
the same attribute configuration λi. We now define the c-th
set Dc in our partition as Dc := {i s.t. |Zi| = c}. No two
nodes in Dc share the same attribute configuration. Fur-
thermore, one can show that the number of sets B is mini-
mized by this scheme.
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Q

Q(1,1) Q(1,2)

Q(2,1) Q(2,2)

Figure 2: Partition the MAGM edge probability matrix Q
into B2 pieces such that no two nodes in a piece share the
same attribute configuration.

Theorem 2 (Size Optimality of the Partition) Let the
partition of {1, . . . , n} obtained by the above scheme be
denoted as D1, D2, . . . , DB . Then, B, the number of
nonempty sets in the partition, is minimized.

Proof See Appendix A.

Using the partition D1, . . . , DB , we can partition the edge
probability matrix Q into B2 sub-matrices (Figure 2):

Q
(k,l)
i,j =

�
Qi,j if i ∈ Dk, j ∈ Dl,

0 otherwise.

Q(1,1) Q�(1,1)

permute

Figure 3: Each piece of the edge probability matrix is per-
muted to become a sub-matrix of the KPGM edge proba-
bility matrix. One can then apply Algorithm 1 to sample
graphs from this permuted edge probability matrix and re-
tain the sub-graph of interest.

Next, by applying a permutation which maps λi to i we can
transform each of the B2 sub-matrices of Q into a subma-
trix of P as illustrated in Figure 3. Formally, define

Q
�(k,l)
i,j =

�
Qx,y if x ∈ Dk, y ∈ Dl, i = λx, j = λy

0 otherwise.

Algorithm 1 can be used to sample graphs from this per-
muted edge probability matrix with parameters Θ̃. We fil-

ter the sampled graph to only retain the sub-graph of inter-
est. Finally, the sampled sub-graphs are un-permuted and
quilted together to form a sample from the MAGM (see
Figure 4). Let A�(k,l) denote the adjacency matrix of the
graph sampled from the edge probability matrix Q�(k,l) via
Algorithm 1. Define

A
(k,l)
i,j =

�
A

�(k,l)
x,y if i ∈ Dk, j ∈ Dl, x = λi, y = λj

0 otherwise.
(9)

The quilted adjacency matrix A is given by
�

k,l A
(k,l).

See Algorithm 2.

A(1,1) A(1,2)

A(2,1) A(2,2)

A

Figure 4: The sub-graphs sampled from the previous step
are un-permuted and quilted together to form a graph sam-
pled from the MAGM.

Algorithm 2 Sampling Algorithm of Multiplicative At-
tribute Graphs

1: function MAGSAMPLEEDGES( Θ̃, f(1), . . . , f(n) )
2: B ← maxi |Zi|
3: for k ← 1 to B do
4: for l← 1 to B do
5: E(k,l) ← KPGMSAMPLE(Θ̃)
6: for each (x, y) ∈ E(k,l) do
7: if (i, j) such that i ∈ Dk, j ∈ Dl, and

x = λi, y = λj exists then
8: E ← E ∪ {(i, j)}
9: end if

10: end for
11: end for
12: end for
13: return E
14: end function

Theorem 3 (Correctness) Algorithm 2 samples the en-
tries of the adjacency matrix A independently with
P
�
Aij = 1 | Θ̃, λ1, . . . , λn

�
= Qij .

Proof See Appendix A
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4.1 Time Complexity

Since the expected running time of Algorithm 1 is
O(log2(n)|E|), the expected time complexity of quilting
is clearly O(B2 log2(n)|E|). The key technical challenge
in order to establish the efficiency of our scheme is to show
that with high probability B is small, ideally O(log2(n)).

Balanced Attributes Suppose the distribution of each at-
tribute is balanced, that is, µ(1) = µ(2) = · · · = µ(d) = 0.5
and n = 2d. Define a random variable Xi

c = 1 if λi = c
and zero otherwise. Since µ(k) = 0.5, it follows that
P
�
Xi

c = 1
�

= 1
2d = 1

n . If we let Yc =
�n

i=1 Xi
c, then

clearly B = maxc Yc. Since Xi
c are independent Bernoulli

random variables, Yc is a binomial random variable which
converges to a Poisson random variable with parameter 1 as
n → ∞. Using standard Chernoff bounds for the Poisson
distribution (see Theorem 5), we can write

P (Yc > t) ≤ et

ett
, and hence (10)

P (B = max Yc > t) ≤
n�

c=1

P[Yc > t] ≤ net

ett
. (11)

Replacing t by log2(n),

P (B > log2(n)) ≤ n2

e(log2(n))log2(n)
. (12)

As n → ∞, (12) goes to 0 (also see Figure 5). Therefore
we have

Theorem 4 When µ(1) = µ(2) = · · · = µ(d) = 0.5, and
n = 2d, with high probability the size of partitions B is
smaller than log2(n).

Unbalanced Attributes As before, we let µ(1) = µ(2) =
· · · = µ(d) = µ and n = 2d, but now we analyze the
case when µ �= 0.5. By transposing some of Θ(k) if nec-
essary, it suffices to restrict our attention to µ ∈ (0.5, 1].
We define the random variables Xi

c and Yc as in the previ-
ous section. However, now P

�
Xi

c

�
depends on the number

of 1’s in the binary representation of c. In particular, if
c = 2d = n then P

�
Xi

n

�
= µlog2(n) and Yn = nµlog2(n).

Furthermore, P
�
Xi

c

�
< µlog2(n) for every c �= n. There-

fore, when µ is close to 1 and n is large, B := maxc Yc

equals Yn = nµlog2(n) with high probability (see Figure 6).
The expected running time of our algorithm then becomes
(nlog2(µ)+1 log2(n)|E|).

4.2 Handling the Case When n �= 2d

To simplify the analysis assume µ(1) = · · · = µ(k) = 0.5.

n > 2d Case First, consider the case n > 2d, and
let d� := �log2(n)�, d�� := �log2(n)�. Each Yc now
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Figure 5: Number of nodes vs. size of the partition, when
µ(k)’s are all set to be 0.5. For each n, we performed 10
trials and report average values (blue solid line). The red
dashed line is the bound predicted by (12). Observe that in
practice, the size of the partition grows much slower than
O(log2(n)).
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Figure 6: Number of nodes vs. size of the partition, when
µ(k)’s are all set to be 0.55, 0.60, 0.70, and 0.90. Again, 10
number of F matrices were sampled for each n and µ, and
the average size of the partition is taken. For small values
of n, nµd approximation is not tight but the observed value
is sandwiched between log2(n) and nµd. For µ > 0.70,
the nµd approximation is tight.
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converges to the Poisson distribution with parameter n
2d ,

and using the Chernoff bound again, one can prove that
B = O(2d�−d log2(n)) with high probability, for large n.
For details, refer to Appendix C.

Therefore, the expected time complexity is bounded by
O((log2(n))2d|E|), and the algorithm gets faster as d de-
creases.

n < 2d Case For the sake of completeness we will make
some remarks for the case when n < 2d. However, Kim
and Leskovec (2010) and Kim and Leskovec (2011) report
that in practice d ≈ log2(n) usually results in the most
realistic graphs. In general, for large d the value of B is
small, but the number of edges in graphs sampled by Algo-
rithm 1 ,which is called by line 5 of Algorithm 2, increases
exponentially with d. Therefore, the overall complexity of
the algorithm is at least Ω(4d−d�� E[|E|]), and thus naively
applying Algorithm 2 is not advantageous when d − d�� is
high. Our experiments in Section 6.4 confirm this behavior.

5 Speeding up the Algorithm

The key to speeding up our algorithm for the case when
µ(k) �= 0.5 is the following observation: When µ(k) ap-
proaches 0 or 1, the number of distinct attribute configu-
rations reduces significantly. For instance, when µ(k) ap-
proaches 1 attribute configurations which contain more 1’s
in their binary representation are generated with greater fre-
quency. Similarly, when µ(k) approaches 0 the attribute
configurations which contain more 0’s in their binary rep-
resentation are preferred. Figure 7 represents this phe-
nomenon visually.

We select a number B� (see below) and collect all nodes
i whose attribute configuration λi occurs at most B� times
in the set {λ1, λ2, . . . , λn} into a set W . Since each at-
tribute configuration occurs at most B� times in W , the
sub-graph corresponding to the nodes in W can be sam-
pled in O

�
B�2 log2(n) |E|

�
by using Algorithm 2.

We partition the nodes whose attribute configuration occurs
more than B� times into sets D̂1, . . . , D̂R such that the at-
tribute configuration of each node in D̂i is the same, say
λ�

i. The sub-graph corresponding to each D̂i is an uniform
random graph with probability of an edge being equal to
Pλ�

i,λ
�
i
. On the other hand, the sub-graph corresponding to

nodes D̂i and D̂j for i �= j is also an uniform random graph
with the probability of an edge being equal to Pλ�

i,λ
�
j
. Fi-

nally, the sub-graph corresponding to a node i� in W and
the set D̂j is an uniform random graph with the probability
of an edge being equal to Pλi� ,λ

�
j
. These sub-graphs can

be sampled with O((|W | + d)R + |E|), O(dR + |E|), and
O(dR2 + |E|) effort respectively1.

1 Instead of sampling k i.i.d. Bernoulli random variables

100 101 102 103 104

100

101

102

103

104

attribute configuration (ranked)

nu
m
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ro

fo
cc

ur
re

nc
es

µ = 0.5
µ = 0.6
µ = 0.7
µ = 0.9

Figure 7: We rank attribute configurations based on their
frequency of occurrence and plot them for different values
of µ. We fixed d = 15, and n = 215 for this plot. When
µ = 0.5, the graph is very flat since every attribute config-
uration has the same probability 1

2d of being sampled. On
the other hand, when µ = 0.9, the probability mass is very
concentrated on a small number of configurations. Note
that this is a log-log plot.

It remains to discuss how to choose the parameter B�. To-
wards this end let

T (B�) = B�2 log(n) |E| + (|W | + d)R + dR2.

Then, the overall time complexity of our algorithm is
O(T (B�)). We calculate T (B�) for every B�, and choose
the value which minimizes T (B�). Since there are only n
distinct values of B�, this procedure requires O(n) time.

6 Experiments

We empirically evaluated the efficiency and scalability of
our sampling algorithm. Our experiments are designed to
answer the following questions: Does our algorithm pro-
duce graphs with similar characteristics as observed by
Kim and Leskovec (2010). How does our algorithm scale
as a function of n, the number of nodes in the graph. Fur-
thermore, since our theoretical analysis assumed µ = 0.5
and d = log2(n) we were interested in the following ad-
ditional questions: How does the algorithm behave for
µ �= 0.5. How does our algorithm scale when the num-
ber of features d is different from log2(n).

Our code is implemented in C++ and will be made avail-
able for download from http://www.stat.purdue.
edu/˜yun3. All experiments are run on a machine with
a 2.1 GHz processor running Linux. For the first three ex-
periments we uniformly set n = 2d, where n is the number

X1, X2, . . . , Xk with parameter p, we use a geometric distribu-
tion with parameter p to sample to generate random variables Kj

such that 1 ≤ K1 < K2 < . . . ≤ k, and set XKj = 1.
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Figure 8: The number of edges |E| as a function of the size
n of the graphs sampled from the MAGM for two different
values of Θ. The near linear rate of growth on the log-
log plots confirms the observation that |E| = nc for some
constant c.

of nodes in the graph and d is the dimension of the fea-
tures. We used the same Θ matrices at all levels, that is,
we set Θ = Θ(1) = Θ(2) = · · · = Θ(k). Furthermore,
we experimented with the following Θ matrices used by
Kim and Leskovec (2010) and Moreno and Neville (2009)
respectively:

Θ1 =

�
0.15 0.7
0.7 0.85

�
and Θ2 =

�
0.35 0.52
0.52 0.95

�
(13)

6.1 Properties of the Generated Graphs

Theorem A guarantees that our algorithm generates valid
graphs from the MAGM. In our first experiment we also
verify this claim empirically. Towards this end, we set
µ = 0.5 and generated graphs of size n = 2d for various
values of d. For each n we repeated the sampling proce-
dure 10 times and studied various properties of the gener-
ated graphs. As reported by Kim and Leskovec (2010), the
number of edges |E| in the graphs generated by MAGM
grow as |E| = nc for some constant c. Graph samples gen-
erated by our algorithm also confirm to this observation, as
can be seen in Figure 8. Furthermore, Kim and Leskovec
(2010) report that the proportion of nodes in the largest
strong component increases asymptotically to 1. We also
observe this behavior in the samples generated by our al-
gorithm (see Figure 9). These experiments indeed confirm
that our algorithm samples valid graphs from the MAGM.

6.2 Scalability

To study the scalability of our algorithm we fixed µ = 0.5
and generated 10 graphs of size n = 2d for various values
of d. Figure 10 compares the running time of our algorithm
vs a naive scheme which uses n2 independent Bernoulli
trials based on the entries of the edge probability matrix.

Note that using the naive sampling scheme we could not
sample graphs with more than 262,144 nodes in less than 8
hours. In contrast, the running time of our algorithm grows
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Figure 9: The fraction of nodes in the largest strong com-
ponent as a function of the size n of the graphs sampled
from the MAGM for two different values of Θ. Asymptot-
ically, the fraction of edges approaches 1 implying that the
entire graph is part of the same strong component.
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Figure 10: Comparison of running time (in milliseconds)
of our algorithm vs the naive sampling scheme as a function
of the size n of the graphs sampled from the MAGM for
two different values of Θ.

significantly slower than O(n2) and consequently we were
able to comfortably sample graphs with a million nodes in
less than twenty minutes. The largest graphs produced by
our algorithm contain over 8 million nodes (8,388,608) and
20 billion edges. In fact these graphs are, to the best of our
knowledge, at least 32 times larger than the largest MAGM
graphs reported in literature in terms of number of nodes.
Furthermore, we observed that our algorithm exhibits the
same behavior across a range of Θ values (not reported
here). To further demonstrate the scalability of our algo-
rithm we plot the running time of our algorithm normalized
by the number of edges in the graph in Figure 11. Across
a range of n values, our algorithm spends a constant time
for each edge that is generated. We can therefore conclude
that the running time of our algorithm grows empirically as
O(|E|).

6.3 Effect of µ

Our theoretical analysis (Theorem 4) guarantees the scala-
bility of our sampling algorithm for µ = 0.5. In this section
we explore empirically how the running time of our algo-
rithm varies as we vary µ. Towards this end we define and
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Figure 11: Running time per each edge (in milliseconds)
for our algorithms vs the naive algorithm as a function
of n the number of nodes. Note that the normalized run-
ning time of our algorithm is nearly constant and does not
change as n increases.
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Figure 12: Relative running time ρ(µ) for two different val-
ues of Θ.

study the relative running time ρ(µ) := T (µ)
T (0.5) , where T (µ)

denotes the running time of the algorithm as a function of
µ. In Figure 12 we plot ρ(µ) for different values of n = 2d.

As expected, our algorithm performs well for µ = 0.5, in
which case the size of partition B is bounded by log2(n)
with high probability. Similarly, when µ ≈ 0 or 1 the at-
tribute configurations have significantly less diversity and
hence sampling becomes easy. However, there is also a ten-
dency that the running time increases as µ increases. This
is because the number of edges is also a function of µ, and
due to our choice of Θ it is an increasing function. This
phenomenon is more conspicuous for Θ2 than Θ1, since
θ11 of the former is larger than that of the latter.

One may also be interested in ρmax := max0≤µ≤1 ρ(µ). In
order to estimate ρmax we let µ ∈ {0.1, 0.2, . . . , 0.9} and
plotted the worst value of ρ(µ) as a function of n the num-
ber of nodes in Figure 13. In all cases ρmax was attained
for µ = 0.7 or µ = 0.9. It is empirically seen that the fac-
tor ρ(µ) increases as the number of nodes n increases, but
the speed of growth is reasonably slow such that still the
sampling of graphs with millions of nodes is feasible for
any value of µ.
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Figure 13: Estimated ρmax as a function of the number of
nodes for two different values of Θ.
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Figure 14: The effect of dimension d on the running time,
where other parameters are fixed as µ = 0.5 and n = 215.
d = 15 (when n = 2d) is highlighted by the dashed line.

6.4 Effect of d

Now we study how the performance of our model varies
as d changes. In particular we fix n = 215 and vary d
to investigate its effect on running time of our algorithm.
Figure 14 shows that there is no significant difference in the
running time for d ≤ log2(n). However, as we explained
in Section 4.2, the running time of our algorithm increases
exponentially when d > log2(n).

7 Conclusion

We introduced the first sub-quadratic algorithm for effi-
ciently sampling graphs from the MAGM. Under technical
conditions, the expected running time of our algorithm is
O
�
(log2(n))

3 |E|
�

. Our algorithm is very scalable and is
able to produce graphs with approximately 8 million nodes
in under 6 hours. Even when the technical conditions of
our analysis are not met, our algorithm scales favorably.
We are currently working on rigorously proving the perfor-
mance guarantees for the case when µ �= 0.5.

Efficiently sampling MAGM graphs for the case when
d ≥ log2(n) remains open. We are currently investigating
how high-dimensional similarity search techniques such as
locality sensitive hashing (LSH) or inverse indexing can be
applied to this problem.
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