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Abstract

Recently, forward greedy selection method
has been successfully applied to approxi-
mately solve sparse learning problems, char-
acterized by a trade-off between sparsity and
accuracy. In this paper, we generalize this
method to the setup of sparse approximation
over a pre-fixed dictionary. A fully correc-
tive forward selection algorithm is proposed
along with convergence analysis. The per-
iteration computational overhead of the pro-
posed algorithm is dominated by a subprob-
lem of linear optimization over the dictionary
and a subproblem to optimally adjust the ag-
gregation weights. The former is cheaper in
several applications than the Euclidean pro-
jection while the latter is typically an un-
constrained optimization problem which is
relatively easy to solve. Furthermore, we
extend the proposed algorithm to the set-
ting of non-negative/convex sparse approxi-
mation over a dictionary. Applications of our
algorithms to several concrete learning prob-
lems are explored with efficiency validated on
benchmark data sets.

1 Introduction

We consider in this paper the sparse learning prob-
lem where the target solution can potentially be ap-
proximated by a solution that admits a sparse repre-
sentation in a give dictionary. Among others, several
examples falling inside this model include: 1) Coordi-
natewise sparse learning where the optimal solution is
expected to be a sparse combination of canonical basis
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vectors, 2) low rank matrix approximation where the
target solution is expected to be the weighted sum of
a few rank-1 matrices in the form of outer product of
unit-norm vectors, and 3) boosting classification where
strong classifier is a linear combination of several weak
learners. Formally, this class of problems can be uni-
fied inside the following framework of sparse approxi-
mation over a dictionary V in a Euclidean space &:

Iglei?f(m), st. z € Lig(V), (1)

where f is assumed a real valued differentiable convex
function and

Lr(V):= U {Zauu:auER} (2)

UCV,|UI<K \ucU

is the union of the linear hulls spanned by those subsets
U C V with cardinality |U| < K. Here we allow the
dictionary V to be finite or infinite. In the aforemen-
tioned examples, V is the canonical basis vectors in
coordinatewise sparse learning (finite), a certain fam-
ily of rank-1 matrices in low-rank matrix approxima-
tion (infinite), and a set of weak classifiers in boosting
(finite or infinite).

Due to the cardinality constraint, problem (1) is non-
convex and thus we resort to approximation algo-
rithms for solution. Recently, a sparse approxima-
tion algorithm known as Fully Corrective Forward
Greedy Selection (FCFGS) (Shalev-Shwartz et al.,
2010) has been proposed for coordinatewise sparse
learning, then extended to low rank matrix learn-
ing (Shalev-Shwartz et al., 2011) and decision tree
boosting (Johnson & Zhang, 2011). Theoretical anal-
ysis (Shalev-Shwartz et al., 2010; Zhang, 2011) and
strong numerical evidences (Shalev-Shwartz et al.,
2011; Johnson & Zhang, 2011) show that FCFGS is
more appealing, both in sparsity and accuracy, than
traditional forward selection algorithms such as se-
quential greedy approximation (Zhang, 2003) and gra-
dient boosting (Friedman, 2001).

In this paper, we propose a generic forward selec-
tion algorithm, namely forward basis selection (FBS),
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which generalizes FCFGS to approximately solve prob-
lem (1). One important property of FBS is that it
will automatically select out a group of bases in the
dictionary for sparse representation. The O(2) rate of
convergence is established for FBS under mild assump-
tions on dictionary and objective function. When dic-
tionary is finite, a better O(In 1) geometric rate bound
can be obtained under proper conditions. We then ex-
tend the FBS to non-negative sparse approximation
and convex sparse approximation which to our knowl-
edge has not been explicitly addressed in the existing
literatures on fully-corrective-type forward selection
methods. Such extensions facilitate the applications of
FBS to positive semi-definite matrix learning and more
general convex constrained sparse learning problems.
The convergence properties are analyzed for both ex-
tensions. On iterate complexity, the per-iteration com-
putational overhead of FBS is dominated by a linear
gradient projection and a subproblem to optimally ad-
just the aggregation weights of bases. The former is
significantly cheaper in several applications than the
Euclidean projection used in projected-gradient-type
methods. The latter is typically of limited size and
thus is relatively easy to solve. We study the applica-
tions of the proposed method and its variants in sev-
eral concrete sparse learning problems, and evaluate
the performances on several benchmarks. Before pro-
ceeding, we establish the notation to be used in the
rest of this paper.

1.1 Notation

We denote (-,-) the linear product and || - || = 1/(-, )
the Euclidean norm. For a vector z, we denote ||z
its ¢1-norm, ||z||o the number of non-zero components,
and supp(z) the indices of non-zero components. The
linear hull of dictionary V is given by

L(V):= {Zavv fay € R}.

veV

We say f has restricted strong convexity and restricted
strong smoothness over L(V) at sparsity level k, if
there exists positive constants p (k) and p_(k) such
that for any z,2’ € L(V) and z — 2’ € L(V),

F&) ~ £ (VF).a’ ) < LB a2,

and

F&!) £l (Vi ).a ) > L2

We say dictionary V' is bounded with radius A if Vv €

In the next subsection, we briefly review the FCFGS
algorithm for coordinatewise sparse learning which
motivates our study.

1.2 Fully Corrective Forward Greedy
Selection

The FCFGS (Shalev-Shwartz et al., 2010) as described
in Algorithm 1 was originally proposed to solve the
following coordinatewise sparse learning problem,

min f(z), s.t. ||z]o < K. (5)
z€R4

At each iterate, FCFGS first selects a coordinate at
which the gradient has the largest absolute value,
and then adjust the coefficients on the coordinates se-
lected so far to minimize f. The algorithm is demon-
strated to be a fast and accurate sparse approximation
method in both theory (Shalev-Shwartz et al., 2010;
Zhang, 2011) and practice (Shalev-Shwartz et al.,
2011; Johnson & Zhang, 2011). More precisely, there
are two appealing aspects of FCFGS:

e Orthogonal coordinates selection: Provided that
the gradient V f(z(*~1)) is nonzero, the algorithm
always selects a new coordinate j¥) at iteration.

e Geometric rate of convergence: It is shown in
(Shalev-Shwartz et al., 2010, Theorem 2.8) that
FCFBS can achieve geometric rate of convergence
under restricted strongly convex/smooth assump-
tions on f.

FCFGS is in spirit identical to the well recognized
Orthogonal Matching Pursuit algorithm (Pati et al.,
1993; Tropp & Gilbert, 2007) in signal processing so-
ciety.

Algorithm 1: Fully Corrective Forward Greedy Se-
lection (FCFGS) (Shalev-Shwartz et al., 2010).

Initialization: z(©) =0, F(O) = (.
Output: z(5%).

2 fork=1,..,K do

Calculate

) = arg max \[Vf($(k71))]j|~ (6)
je{l,...,d}

Set F®) = =1 y {1} and update

+® = argmin  f(z). (7)

supp(z) CF ()

V,||v|| £ A. We say V is symmetric if v € V implies ¢ ond

—vevV.
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This paper proceeds as follows: We present in Sec-
tion 2 the FBS algorithm along with convergence anal-
ysis. Two extensions of FBS are given and analyzed
in Section 3. Several applications of FBS are stud-
ied in Section 4 and the related work is reviewed in
Section 5. Experiments on real data are reported in
Section 6. We conclude this work in Section 7.

2 Forward Basis Selection

The Forward Basis Selection (FBS) method is formally
given in Algorithm 2. The working procedure is as
follows: At each time instance k, we first search for
a steepest descent direction u*) € V which solves
the linear projection subproblem (8). Then the cur-
rent iterate xz(*) is updated via optimizing the sub-
problem (9) over the linear hull of the descent direc-
tions selected so far. Essentially, the subproblem (9) is
an unconstrained convex optimization problem which
can be efficiently optimized via some off-the-shelf ap-
proaches, e.g., quasi-Newton and conjugate gradient,
provided that k is only moderately large. Specially, by
choosing V = {+e’,i =1, ...,d} where {e'}L_, are the
canonical basis vectors in R?, FBS reduces to FCFGS.

Algorithm 2: Forward Basis Selection (FBS).
Initialization: z(®©) =0, U© = 0.

Output: (5.

2 fork=1,..,K do

Calculate u*) by solving

u(k) = aI‘g mm(Vf(x(kil))a u> (8)
ucV

Set U®) = y*+=1 y {u®} and update

+®) = argmin f(z). (9)
zeL(UK))

end

Since FBS is a generalization of FCFGS, one natu-
ral question is whether appealing aspects of FCFGS
such as orthogonal coordinate selection and fast con-
vergence can be similarly established for FBS. We will
answer this question in the following analysis. The
Lemma below shows that before reaching the optimal-
ity, Algorithm 2 always introduces at each iteration a
new basis atom as the descent direction.

Lemma 1. Assume that V is symmetric and we run
Algorithm 2 until time instance k.

(a) If (Vf(x*=D) u®)) £ 0, then the elements in
UF) = LM u®) are linearly independent.
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(b) If (Vf(xF=D) uR)y =0, then 2*=V) is the opti-
mal solution over the linear hull L(V).

The proof is given in Appendix A.1. This lemma in-
dicates that if we run Algorithm 2 until time instance
E with (Vf(z®=D), u®) £ 0, then the atom set U*)
forms k bases in V. This corresponds to the orthog-
onal coordinate selection property of FCFBS, which
justifies why we call Algorithm 2 as forward basis se-
lection.

On convergence performance of FBS, we are interested
in the approximation accuracy of the output z(5) to-
wards a fixed S-sparse competitor Z € Lg(V). We
first discuss the special case where V' is finite and then
address the general case where V is bounded and sym-
metric.

2.1 A Special Case: V is Finite

Let us consider the special case that dictionary V =
{v1,...,un} is finite with cardinality N. Without loss
of generality, we assume that the elements in V are
linearly independent (otherwise we can replace V' with
its bases without affecting the feasible set). Thus, for
any x € L(V) the representation z = Zfil av; is

Let g(a) = f (Zfil aivi). Since f(x) is
convex, it is easy to verify that g(a) is convex in RY.
We may convert problem (1) to the following standard
coordinatewise sparse learning problem

unique.

min g(a), s.t. [jalo < K. (10)

a€RN
In light of this conversion, we can straightforwardly
apply the FCFGS (Algorithm 1) to solve problem (10).
By making restricted strong convexity assumptions on
g(a), it is known from (Shalev-Shwartz et al., 2010,
Theorem 2.8) that the rate of convergence of FCFGS
towards any sparse competitive solution is geometric.

2.2 General Cases

Given z € Lk (V), it is known from the definition (2)
that there exists a set U C V with cardinality K such
that x = ), .y au(z)u. Typically, such a representa-
tion is not unique. In the following discussion, we are
interested in the representation of z on Lx (V) with
the smallest sum of absolute weights ) . |a.(2)].

Definition 1 (Minimal Representation Length). For
any x € Lk (V), the minimal representation length of
x is defined as

Ok(@) = _min_ {Z au(@)] 2= @), } .

vel uelU
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The following theorem is our main result on approxi-
mation performance of FBS over a bounded and sym-
metric dictionary V.

Theorem 1. Let us run FBS (Algorithm 2) with K
iterations. Assume that V is symmetric and bounded
with radius A. Assume that [ is py(1)-restricted-

strongly smooth over V. Given € >0 and & € Lg(V),
ifVk < K, f(z®) > f(z) and

204 (1)4%Cs @)’

€

K _, (11)
then FBS will output 2 satisfying f(x5)) < f(z)+
€.

The proof is given in Appendix A.2. Notice that the
bound in the right hand side of (11) is proportional
to the minimal representation length Cx (Z) which re-
flects the sparsity of Z over the dictionary V.

3 Extensions

In this section, we extend FBS to the setup of non-
negative and convex sparse approximation over a given
dictionary. These extensions enhance the applicability
of FBS to a wider range of sparse learning problems.

3.1 Non-Negative Sparse Approximation

In certain sparse learning problems, e.g., non-negative
sparse regression and positive semi-definite matrix
learning, the target solution is expected to stay in a
non-negative hull of a dictionary V given by

LYV) = {Zavv tay € R+}.

veV

Let us consider the following problem of non-negative
sparse approximation over V:

mel?f(x), stz € LE(V), (12)
where
LEV):= U {Zauu:au€R+}.
vev,ul<k \ueU

To apply FBS to this problem, we have to modify the
update (9) to adapt the non-negative constraint:

™ = argmin f(z). (13)
zeLt(UMK)

The proceeding subproblem is essentially a smooth op-
timization over half-space with scale dominated by the
time instance k. It can be efficiently solved via quasi-
Newton methods such as PQN (Schmidt et al., 2009).
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Following the similar argument as in the Section 2.2,
it can be proved that Theorem 1 is still valid for this
extension when V' is bounded and symmetric.

Specially, when V is finite with cardinality IV, as dis-
cussed in Section 2.1 that we may convert problem (12)
to the following non-negative coordinatewise sparse
learning problem

min g(a), s.t. [jaflo < K,a>0. (14)

a€RN
To apply the FCFGS (Algorithm 1) to solve prob-
lem (14), we have to make the following slight modifi-
cations of (6) and (7) to adapt the non-negative con-
straint:

i® = argmin [Vg(aF~D)];, (15)
ie{l,...,N}
L) - arg min g(a). (16)

supp(a)CF(*),a>0

By making restricted strong convexity assump-
tions on g(a), with the similar arguments as
in (Shalev-Shwartz et al., 2010, Theorem 2.8), it can
be proved that the geometric rate of convergence of
FCFGS still holds with the preceding modifications
(15) and (16).

3.2 Convex Sparse Approximation

In many sparse learning problems, the feasible set is a
convex hull L2 (V) of a dictionary V given by

LA(V) = {Z QU 1 Ol €R+,Zav = 1}.

veV v

For example, in Lasso (Tibshirani, 1996), the solu-
tion is restricted in the ¢1-norm ball which is a convex
hull of the canonical basis and their negative counter-
parts. Generally, for any convex dictionary V' we have
V = L2(V). Therefore the feasible set of any convex
optimization problem is the convex hull of itself.

Let us consider the following problem of convex sparse
approximation over V:

min f(x), st o€ LE(V), (17)

Te

where

LE(V) = U {Zauu:au€R+,Zaul}.
vcv,lul<k \ueUu u

To apply FBS to solve problem (17), we modify the
update (9) to adapt the convex constraint:

K) = argmin f(x). (18)
zeLA(UMK))

2(
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The preceding subproblem is essentially a smooth op-
timization over simplex with scale k. Again, it can
be efficiently solved via off-the-shelf methods such as
PQN.

We next establish convergence rates of FBS (with
modification (18)) for convex sparse approximation.

3.2.1 YV is Finite

When V' is finite with cardinality N, based on the
discussion in Section 2.1 we may convert problem (17)
to the following convex sparse learning problem

min g(a), s.t. oo < K,a€ Ay,  (19)
a€RN

where Ay = {a € RY : a € R, |||y = 1} is the N-
dimensional simplex. To apply the FCFGS (Algorithm
1) to solve problem (19), we have to make the following
modifications of (6) and (7) to adapt the convexity
constraint:

i® = argmin [Vg(a* V)], (20)
ie{l,...,N}
ok = arg min g(a). (21)

supp(@) CF () ,ae A,

The following result shows that by making re-
stricted strong convexity/smoothness assumptions
on ¢, the geometric rate of convergence of
FCFGS (Shalev-Shwartz et al., 2010, Theorem 2.8)
is still wvalid with the preceding modifications.
This result is a non-trivial extension of the re-
sult (Shalev-Shwartz et al., 2010, Theorem 2.8) to the
setting of convex sparse approximation. In the rest
of this subsection, the restricted strong smoothness
and restricted strong convexity are both defined over
canonical bases.

Theorem 2. Let g(«) be a differentiable convex func-
tion with domain RN and & a S-sparse vector in a sim-
plex. Let us run K iterations of FCFGS (Algorithm
1) to solve problem (19) with update (20) and (21).
Assume that g is py (K + 1)-strongly smooth and is
p—(K + S)-strongly convex. Assume that g is L-
Lipschitz continuous, i.e., |g(a) — g(o/)| < L|ja — ||
Given € > 0, if Vk < K, g(a®) > g(a) and

1 g9(a) —g(a)
K > SK.9) In . , (22)
where
L pe(K+1) p(K+S)
s(K,S) .—mln{ u 7 74Sp+(K—|-1)}7

then FCFGS (Algorithm 1) will output o) satisfying
g(aX)) < g(a) +e.
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The proof is given in Appendix A.3. To the best of our
knowledge, Theorem 2 for the first time establishes a
geometric rate of convergence for fully-corrective-type
convex sparse approximation approaches.

3.2.2 V is Bounded

We now turn to the general case where V' is a bounded
set. The following theorem is our main result.
Theorem 3. Let us run K iterations of FBS (Algo-
rithm 2) with ©*) updated by (18). Assume that V is
bounded with radius A. Assume that f is po (K + 1)-
strongly smooth over V. Given e >0 and & € L>(V),
ifVk < K, f(z®) > f(z) and

F@9) = £(z)
I (K + 1),42] ’

then FBS will output x5 satisfying f(x5)) < f(z) +
€.

€

K>log2[ -1,

The proof is given in A.4. Note that in this result, we
do not require V' to be symmetric.

Remark 1. When dictionary V s convex, the
FBS with modification (18) can be regarded as a
generic first-order method to minimize f over V.
The first-order optimization approaches have been
extensively studied and applied in machine learn-
ing. On one hand, compared to the optimal first-
order methods (Tseng, 2008; Nesterov, 2004) which
converge with rate O(1/\/€) and the quasi-Newton
methods (Schmidt et al., 2009) with near super-linear
convergence rate, a moderately increased number of
O(1/€) steps are needed in total by the FBS for arbi-
trary convex objectives. On the other hand, as demon-
strated shortly in Section 4 that for some relatively
complex constraints, e.g., £1-norm and nuclear-norm
constraints, the linear projection operator (8) used in
FBS is significantly cheaper than FEuclidean projec-
tion operator used in most projected gradient methods.
Therefore, the O(1/€) rate in Theorem 8 represents
the price for the severe simplification in each individ-
ual step, as well as the inherent sparsity over V.

4 Applications

In this section, we apply FBS and its extensions to
several statistical learning problems which can be for-
mulated as (1) with particular choices of dictionary V.
Here we focus on three applications: low-rank matrix
learning, positive semi-definite matrix learning and ¢;-
ball constrained sparse learning.

4.1 Low-Rank Matrix Learning

Let us consider the following low-rank constrained ma-
trix learning problem which is widely applied in matrix
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completion and approximation:

min

min (X,

s.t. rank(X) < K. (23)

The motivation of applying FBS to this problem is
the observation that the feasible set {X € R™*™ :
rank(X) < K} = Lk (V) where

Viy i= {uvT,u eR™ v e R |ul| = |v] =1}

This is because, by the SVD theory any X € R™*"
of rank no more than K can be written as X =
Zfil o;u;vl . Based on this equivalence, we may solve
the following problem

st. X € Lx(Viy).
XEeRmxn

We now specify FBS for sparse approximation in this
special case. The linear projection (8) at time instance
k becomes

y*) — arg maX<—Vf(X(k_1))>Y>' (24)
YeV,

The following result establishes a closed-form solution
for the preceding linear projection.

Proposition 1. For any X € R"™*™, one solution of
Y = argmaxyy, (X,Y) is given by Y = uv” where
u and v are the left and right singular vectors corre-
sponding to the largest singular value of X.

The proof is given in Appendix A.5. By invoking the
preceding proposition to (24) we immediately get that
Y#) = yuT where u and v are the leading left and
right singular vectors of —V f(X®*~1). On the prob-
lem of leading singular vector computation, some effi-
cient procedures using the Lanczos algorithm can be
found in (Hazan, 2008; Arora et al., 2005).

4.2 Positive Semidefinite & Low Rank
Matrix Learning

In this subsection, we consider the following problem
of convex optimization over the cone of Positive Semi-
Definite (PSD) matrices with low rank constraint.

min

X
XGR"X” f( ),

st. X = 0,rank(X) < K.  (25)

To solve this problem, we consider applying FBS to
perform sparse approximation over L} (Vis,) where
Vpsa is given by

Vpsd = {uuT7u e R, |lu]| = 1}.

This is motivated from the SVD theory that any PSD
matrix X € R™"*"™ with rank at most K can be written
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as X = 21}(:1 ouul with o; > 0. In this case, at time
instance k, the subproblem (8) in FBS becomes

y®) — argmax(—Vf(X(k_l)),Y>~ (26)
YeVysd

The following result shows that we can find a closed-
form solution for the preceding linear projection.

Proposition 2. For any matriz X € R" ", one solu-
tion of Y = argmaxy¢y. (X,Y) is given by Y = uuT
where u is the leading eigenvector of X.

The proof is given in Appendix A.6. By invoking
the preceding proposition to (26) we immediately get
that Y *) = yuT where u is the leading eigenvector of
~Vf(X®*=1). The Lanczos algorithm can be utilized
for leading eigenvector calculation.

We conclude this example by pointing out that FBS is
also directly applicable to solve Semi-Definite Program
(SDP), i.e., problem (25) without the rank constraint.
Indeed, SDP is a special case of problem (25) when
K — o0.

4.3 Sparse Learning over /;-norm Ball

Consider the problem of convex minimization over ¢;-
norm ball which is widely applied in signal processing
and machine learning:

min f(z), st. ||z|1 <7 (27)
z€R4

The inspiration of using FBS to solve this problem is
from the observation that the £;-norm ball ||z||; < 7 is
the a convex hull of the set Vp, , = {£7e’,i =1, ...,d}.
In order to do convex sparse approximation, we may
apply the variant of FBS as stated in Section 3.2 to
solve the following problem:

min f(z), st.x€ EIA((VZMT). (28)
zER?
We now specify FBS for this case. The gradient linear
projection (20) is given by

u® = —rsign([V f(z®))];)e?,

where j = argmax; [V f(z*)];|. Such a linear pro-
jection only involves simple max-operation of a vector
and thus is more efficient especially in high dimen-
sional data set than Euclidean ¢;-norm ball projec-
tion (Duchi et al., 2008) which requires relatively more
sophisticated vector operations.

5 Related Work

Recently, forward greedy selection algorithms have re-
ceived wide interests in machine learning. A cat-
egory of algorithms called coreset (Clarkson, 2008)
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have been successfully applied in functional approxi-
mation (Zhang, 2003) and coordinatewise sparse learn-
ing (Kim & Kim, 2004). This body of work dates
back to the Frank-Wolfe algorithm (Frank & Wolfe,
1956) for polytope constrained optimization. Some
variants of coreset method are proposed in the sce-
narios of SDP (Hazan, 2008) and low-rank matrix
completion/approximation (Jaggi & Sulovsky, 2010;
Shalev-Shwartz et al., 2011) which only requires par-
tial SVD for leading singular value at individual iter-
ation step. In the context of boosting classification,
the restricted gradient projection algorithms stated
in (Grubb & Bagnell, 2011) is essentially a forward
greedy selection method over £2-functional space. Re-
cently, Tewari et al. (2011) proposed a Frank-Wolf-
type method to minimize convex objective over the
(scaled) convex hull of a a collection of atoms. Dif-
ferent from their method, FBS always introduces a
new basis (atom) into the active set and thus leads to
sharper convergence rate under proper assumptions.

The modified FBS with update (18) can be taken as
a generic first-order method for convex optimization.
In many existing projected gradient algorithms, e.g.
proximal gradient methods (Tseng, 2008) and quasi-
Newton methods (Schmidt et al., 2009), Euclidean
projection is utilized at each iteration to guarantee
the feasibility of solution. Differently, our method uti-
lizes the linear projection operator (8) which is cheaper
than Euclidean projection in problems such as SDP.
Recently, a forward-selection-type of algorithm has
been studied in (Jaggi, 2011) for convex optimization,
which can be regarded as a generalized steepest de-
scent method. Our method differs from this method in
the fully corrective adjustment at each iteration which
improves the convergence.

6 Experiments

In this section, we demonstrate the numerical perfor-
mances of FBS in two applications: low rank repre-
sentation for subspace segmentation and sparse SVMs
for document classification. Our algorithms are im-
plemented in Matlab (Version 7.7, Vista). All runs
are performed on a commodity desktop with Intel
Core2/Quad 2.80GHz and 8G RAM.

6.1 FBS for Low Rank Representation

We test in this experiment the performance of FBS
when applied to low rank and PSD constrained matrix
learning. Specially, we focus on the following problem
of low rank representation (Liu et al., 2010; Ni et al.,
2010) for subspace segmentation:

st. X=XD,D=0, (29)

min rank(D),
DGRTL Xn
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where X = [z1,%9,...,7,] € R¥™" are n observed
data vectors drawn from p unknown linear subspaces
{8;}¥_,. The analysis in (Liu et al., 2010) shows that
the optimal representation D* of problem (29) cap-
tures the global structure of data and thus naturally
forms an affinity matrix for spectral clustering. Fur-
thermore, it is justified in (Ni et al., 2010) that the
PSD constraint is effective to enforce the representa-
tion D to be a valid kernel.

To apply FBS to solve the low rank representation
problem, we alternatively solve a penalized version
which fits the model (25):

min || X —XD|%, s.t. rank(D) < K,D =0, (30)
DeRan

where || - |7 is the Frobenius norm. We can apply the
non-negative variant of FBS as stated in Section 3.1 &
4.2 to approximately solve problem (30).

We conduct the experiment on the Extended Yale Face
Database B (EYD-B)!. The EYD-B contains 16, 128 im-
ages of 38 human subjects under 9 poses and 64 illumi-
nation conditions. Following the experimental setup
in (Liu et al., 2010), we use the first 10 individuals
with 64 near frontal face images for each individual in
our experiment. The size of each cropped gray scale
image is 42 x 48 pixels and we use the raw pixel vales
to form data vectors of dimension 2016. Each image
vector is then normalized to unit length.

We compare FBS with the LRR (Liu et al., 2010)?
which solves problem (29) via Augmented Lagrange
Multiplier (ALM). For clustering, the respectively
learnt representations D by FBS and LRR are fed into
the same spectral clustering routine. In this experi-
ment, we initialize D(® = 0 and set K = 70 in FBS.
Table 1 lists the results on EYD-B. It can be observed
that FBS and LRR achieve the comparative cluster-
ing accuracies while the former needs much less CPU
time. Meanwhile, it can be seen from the row “Rank”
that FBS outputs a representation matrix with lower
rank than that of LRR. This experiment validates that
FBS is an efficient and effective sparse approximation
method for low rank representation problem.

Table 1: Results on the EYD-B dataset.
’ Algorithms \ FBS LRR ‘
Rank 70 135

CPU time 31.9 114.8

Accuracy (%) | 64.8  63.9

"http://vision.ucsd.edu/~leekc/ExtYaleDatabase/
ExtYaleB.html

*Matlab code is available at http://sites.google.
com/site/guangcanliu/
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6.2 FBS for Sparse Ly-SVMs

Denote D = {(zi,y:) }1<i<n a set of observed data,
z; € R? is the feature vector, and y; € {+1,—1} is
the binary class label. Let us consider the following
problem of Ly-SVMs constrained by ¢1-norm ball:

A
min R(w) + f||w||2, s.t. |Jw|1 < T, (31)
weRd 2

where R(w) := 5= 31" | (max{0, 1 — y;(w,x;)})? is the
empirical risk suffered from w. We apply the convex
sparse approximation variant of FBS as discussed in
Section 3.2 & 4.3 to solve problem (31). For this ex-
periment, we use the rcvl.binary dataset (d = 47,236)
which is a standard benchmark for binary classification
on sparse data. A training subset of size n = 20,242
and a testing subset of size 20,000 are used. In this
experiment, we initialize w(®) = 0 and set A\ = 1075,

We compare FBS with two representative projected
gradient methods, the APG (Tseng, 2008) and the
PQN (Schmidt et al., 2009), both call the Euclidean
projection to project the current iterate onto the fea-
sible set. From Figure 1(a) we can observe that PQN
converges the fastest, while FBS converges sharper
than APG. Figure 1(b) plots the objective evolving
curves of FBS under different radius 7, which show
that FBS works well under a large range of 7. Table 2
lists the quantitative results by different algorithms.
It can be observed from the row “Sparsity” that FBS
outputs the sparsest solution at the cost of a slightly
increased testing error. This can be interpreted by the
sparse approximation nature of FBS. From the row
“CPU Projection” we can see that the linear projec-
tion used in FBS is more efficient than the Euclidean
projection used in APG and PQN. On overall compu-
tational efficiency, PQN performs the best.

Table 2: Results on the rcvl.binary dataset.

y Algorithms | FBS APG PQN |
Objective 022 022 022
Iteration 51 200 9
Sparsity 51 600 112

CPU Projection (sec.) | 0.03 0.74  0.15
CPU over all (sec.) 452  6.56 0.74
Testing Error (%) 11.64 10.87 10.40

7 Conclusion

The proposed FBS algorithm generalizes the FCFGS
from coordinatewise sparse approximation to a relaxed
setting of sparse approximation over a fixed dictionary.
At each iteration, FBS automatically selects a new ba-
sis atom in the dictionary achieving the minimum in-
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Figure 1: Objective value evolving curves on the
rcvl.binary data set. For better viewing, please see
the original pdf file.

ner product with the current gradient, and then opti-
mally adjusting the combination weights of the bases
selected so far. We then extend FBS to the setup of
non-negative and convex sparse approximation. Con-
vergence analysis shows that FBS and its extensions
generally converge sublinearly, while geometric rate of
convergence can be derived under stronger conditions.
The per-iteration computational overhead of FBS is
dominated by a linear projection which is more effi-
cient than Euclidean projection in problems such as co-
ordinatewise sparsity and low-rank constrained learn-
ing. The subproblem of combination weights optimiza-
tion can be efficiently solved via off-the-shelf methods.
The proposed methods are applicable to several sparse
learning problems with efficiency validated by experi-
ments on benchmarks. To conclude, FBS is a generic
yet efficient method for sparse approximation over a
fixed dictionary.
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Appeﬂle holds for ) D) - (@)

= >0,
T @)
A Technical Proofs and consequently
The goal of this appen(#ix section is.to prove several f(m(k)) < f( B (f(x(kfl)) f(z )2.
results stated in the main body of this paper. = 204 (1) A2Cq(z)2
A.1 The Proof of Lemma 1 Denote ¢, := f(z®)) — f(Z). The preceding inequality
implies

Proof. Part (a): We prove the claim with induction. )
Obviously, the claim holds for & = 1 (since u(!) # 0). er < o — €i—1
Given that the claim holds until time instance k — 1. - 2p40(1)A2Cs(7)2
Assume that at time instance k, {u(,...,u®} are
linearly dependent. Since {u(,...,u "D} are lin- Invoking the Lemma B.2 in (Shalev-Shwartz et al.,
early independent, we have that u(*) can be expressed 2010) shows that
as a linear combination of {u,... u*=V}. Due to ) 5
the optimality of z(*~1 for solving (9) at time instance e < 2p+(1)A°Cs(2)
k-1, wehave <Vf( (E=1)) ) =0, i < k—1. There- k41

(k)y — .
fore, (Vf(z(*"1)),u™)) = 0, which leads to contradic If K satisfies (11), then it is guaranteed ex <e. O

tion. Thus, the claim holds for k. This proves the
desired result.

Part (b): Given that (Vf(z®=D) u®) = 0, we
have Yo € V, (Vf(z®*~1),v) > 0, which implies = We first prove the following lemma which is key to our

(V f(z®=1) v) = 0 since V is symmetric. Therefore  analysis.
~1) is optimal over L(V). O

A.3 Proof of Theorem 2

Lemma 2. Given & € Ay with supp(&) = F, let F
be an index set such that F\ F # (). Let
A.2 The Proof of Theorem 1

o= argmin  g(«).
Proof. From the update of z(*) in (9) and the defini- supp(e) CFa€A N
grc])r;oé restricted strong smoothness in (3) we get that Assume that g is L-Lipschitz continuous, p+(|F| +1)-

restricted-strongly smooth and p_(|F U F|)-restricted-
Fa®) strongly conver. Assume that g(a) > g(a&). Let j =
arg min; [Vg(«));. Then there existsn € [0,1] such that

< f (x(k—n +,7u<k>) _
(1)42 g(a) —g((1 —n)a+ne’) > s(g(a) — g(a)),
< FE) 4 (it u®) ¢ B
2 where constant s is given by
_ 1)A2,r]2
< (k=1)y 4 n Vv f(g* 1)’5+P+( _
= S g e Y (I E V(180 2 G
= fe® D) T (vf®D), 5 — okD) L 4p(|F|+1)|F]
Cs(z)
+p+( )A%1° Proof. Due to the strong smoothness of g(a) and « €
2 -, A, we have that for n € [0, 1] the following inequality
_ , - 1)A™7” holds
< fa®D U g gty g P AT
< S0+ Gl (@) F ) + PR

g((1 —mn)e+ne’)
where the second inequality follows the restricted < hi(n) == g(@) + n(Vg(a),e’ —a) + 20°p, (|F| +1).
strong smoothness and the boundness assumption of
V, the third inequality follows (8) and the assump- The definition of j implies h;(n) < hi(n), i =1,...,N.
tion that V is symmetric, the first equality follows the The lemma is a direct consequence of the following
optimality condition (Vf(z(*~D), 2 =1} = 0 of the stronger statement
iterate 2(* =1 and the last inequality follows from the
convexity of f. Particularly, the preceding inequality g(a) — hj(n) > s(g(a) — g(&)), (A.2)
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for an appropriate choice of 7 € [0, 1] and s given by
(A.1). We now turn to show the validity of the in-
equality (A.2).

Denote F¢ = F\ F and 7 = > icpe 4. It holds that
(recall a; > 0)

thi(n) < > dshi(n)
i€ Fe
= 719(a)+n (Z a;[Vg(a)]i = 7(Vg(a), a>)
i€ Fe
+20*7p4 (IF| +1). (A.3)
From the optimality of o we get that
),y de'/(1—7)—a)>0. (A.4)

ieF

Indeed, >, a;e'/(1 —71) € Ay and is supported on
F. Additionally, o; = 0 for i ¢ F and &; = 0 for i ¢ F.
Therefore

;Cdi[wmﬂz
= iZFC(ain(aﬂ (1—7)as)
< l > (@lVg(a)li = (1= r)ay)
- ZevFgu(Z),a—(l—T)w

(Vg(a),a - a) + 7(Vy(a),q),

where the inequality follows (A.4). Combining the pre-
ceding inequality with (4) we obtain that

3" @lVg(a)l — 7(Vg(a), a)

icFe

(Vg(a),a - a)
p_(FUF)
— gla) - ==

Combining the above with (A.3)

< lac = &>,

9(@)

Thj(n)
Tg(a) —n (g(a) —g(a) +

+20%7p4 (|F| + 1).

<

p-(FUF), d”2>
2

Invoking Lemma 3 on the right hand side of the pre-
ceding inequality we get that 35 € [0, 1] such that

. [ )
g(a) = h;(n) > 27'mm{1’47-p+(|F|—|—1)}’

where § := g(a) — g(a) + MH@ —al|®. We next
distinguish the following two cases:
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(a) If 6 > 47p4(|F| +1). In this case,

o) ) > o
> 2p4(|F|+1)
_ pelFL+ 1) (gle) -~ o(@)

L )

where the last inequality follows from the Lips-
chitz continuity g(a) — g(&) < L||a — &|| < 2L.

(b) If 6 < 47p4(|F| + 1). In this case,

g(@) = h; (1)
62

872p1(|F|+1)
_ 20-(IFUF)(g(a) — g(@)]la — &l
- 872p4 (|F| +1) ,
o p-(FUF)(9(a) = 9(a) ¥ic e 67
- Ar2p (|F] +1)
- 9(a))

dp (|F[+ 1)[[allo

p_(F U F))(g(a) — (@)
1 (F|+ D)IF

(
) —
(
~([FU F])(g(a )|
)
)

Combining both cases we prove the claim (A.2). O

Proof of Theorem 2. Denote ¢, = g(a®) — g(a).
The definition of update (21) implies that g(a(®)) <
min,eo,1) 9((1 — n)a=b + nei™). The conditions of
Lemma 2 are satisfied and therefore we obtain that
(with F = F®*) and F = supp(a))

g(a®) > 5(K, S)ep_1,

}

Applying this in-

o1 —e = glaFD)—
where s is given by

K+1)
L

p—(K+5)

s(K,5) = min{p+(

Therefore, €, < ep—1(1 — s(K, 5)).
equality recursively we obtain ¢, < o (1 — s(K, S))".
Using the inequality 1 — s < exp(—s) and rearranging
we get that e, < €gexp(—ks(K,S)). When K satisfies
(22), it can be guaranteed that ex < e. O

A.4 The Proof of Theorem 3

The following simple lemma is useful in our analysis.

Lemma 3. Denote by f : [0,1] = R a quadratic func-
tion f(x) = ax® + bz + c with a > 0 and b < 0. Then
we have mingejo,1) f(z) < c+ b min{1, —%}.
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Proof of Theorem 3. By the definition of restricted
strongly-smooth (3) and the definition of z(¥) in (18)
it holds that

F)

< min f((1—n)z®D 4 pu)
n€el0,1]

< min f(@® )+ p(VFFD), u®) - pED)y
n€l0,1]
+WHU(M _ k12

< min f@FD) 4V (@FED), u®) — g*-D)y
n€0,1]
+2p4 (K + 1) A%

< min fE®D) 4V @* D),z — 20D)
n€elo,1]
+2p4 (K +1)A%)°

< min f@® D) +n(f@) — Fa®D))

n€lo,1]
+2p4 (K + 1) A%,

where the third inequality follows the boundness of set
V', the forth inequality follows the update rule (8), and
the last inequality follows the convexity of f.

Denote ¢, := f(z®)) — f(z). Invoking Lemma 3 on
the preceding inequality we get that

( —€k—1 min €k—1
.f( )<f( kl) ) {174p+(K+1)A2}7

which implies

L €k—1
< €p_ l,————— ;.
€ < €1+ 9 m1n{,4p+<K+1)A2}
When ¢,1 > 4p (K + 1)A%, we obtain that

€ < %61@717 that is, € converges towards 4p, (K +
1)A% in geometric rate. Hence we need at most

log, [W} to achieve this level of precision.

Subsequently, we have

2
€r < €1 — 616—71
Invoking Lemma B.2 in (Shalev-Shwartz et al.,
we have

2010)

8py (K +1)A2
e < M,
k+1
and ¢, < ¢ after at most w — 1 more steps.
Altogether, FBS converges to the desired precision € if

€1 8p+ (K + ].)A2
K >1 -1
=08 me 1)142} ‘
This proves the validity of the Theorem. O
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A.5 The Proof of Proposition 1

Proof. Let || X|l2 = max{o;,i = 1,...,7} be the spec-
tral norm of matrix X. From the well known fact
that spectral norm || - |2 and nuclear norm || - ||«
are dual from one another, see, e.g., (Cai et al.,
2010; Candes & Recht, 2009), we get that (X,Y) <
I Xl2llY]l+ < [|IX|l2- The equality holds for ¥ = uv?
where u and v are the leading left singular vector and
right singular vector of X, respectively. This proves
the claim. O

A.6 The Proof of Proposition 2

Proof. Rewrite the matrices in terms of the eigen-
decomposition of the positive semidefinite matrix Y =
UAUT = Sy Aiwjul’, where A a vector containing
the diagonal entries of A. From the constraint of Y we
have A € § := {\; > 0 and >, \; < 1}. Insert this
expression into the objective function

max (X,Y)
YeVpsa

N X, A.
- e LN X (A

where O is the set of orthonormal matrices also known
as the Stiefel manifold. Let v be the leading eigenvec-
tor of X. Then > ;" Nul Xu; < 37 Aol Xv <

vT Xv. Obviously the equality holds for Y = vvT.
This proves the result. O
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