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We provide in this supplementary material proofs that are omitted in the
submission.

A Proof of Lemma 5

Proof. By Condition 2 we have
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which leads to
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This established the first claim. Next, note that
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where the last inequality holds from S’ > S. O
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B Proof of Lemma 6
Proof. To prove the lemma, we need the following two results. Lemma B.1 is
adapted from Theorem?2.13 of [1], and Lemma B.2 is from [2].

Lemma B.1. Let T be an n X q matriz, whose entries are all i.3.d. N(0,1)
Gaussian variables; then

Pr(|Tlop > vV + /G + €) < exp(—€?/2).

Lemma B.2. Let U be a x? statistic with D degrees of freedom. For any posi-
tive x,
Pr(U — D > 2V Dx + 2x) < exp(—zx).

We now proceed to prove Lemma 6. Note that || X TW|lae2 < maxi—1.... p | Xi|l2]|W|lop <
[W{lop- Note that Lemma B.1 implies that for W with i.i.d. N(0,0%/n) entries,
we have with probability

Pr([Wllop = To(1+/a/n)) < exp(~6(n+q)/2) < 1/(4n®),  (B.1)

where the last inequality holds when n > 2. On the other hand, fix a Xi—r ,
X,"W; ~ N(0, || X;||302/n), and hence
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By Lemma B.2, we have
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which by union bound leads to
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Here, (a) holds since HX |l2 <1 and (b) holds by applying to Lemma B.2 to x?
random variable — . Lemma 6 follows by a union bound on Equation (B.1)
and (B.2). O



C Proof of Example 1

In this appendix we show the validity of the claim in Example 1. Recall the
following theorem from [1] (Thm. 2.13).

Theorem C.1. Given m,n € N with m < n, put © = m/n and consider the
n X m random matriz I' whose entries are real, independent Gaussian random
variable following N(0,1/n). Let the singular value be o1(L') >, > o,(T).
Then for any t > 0,

Pr(oy(D) > 14V0+t) < exp(—nt?/2); Pr(om,(I) < 1—VO—t) < exp(—nt?/2).

Then, fix any I C [1 : p] with |I| = S+ S’ and denote M = X; we have that
M is a (S +S’) x n random matrix with IID entries following N (0,1/n). Thus,
for any ¢t > 0,

Pr(¢min(S+5") <1 —+/(S+5")/n—1)
< ( st, ) X Pr(ocgts (M) <1—+/(S+S8)/n—1)
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where the first inequality follows from a union bound on all subsets with cardi-
nality S + S’. Similarly
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Set t = \/4(S + 5")log p/n we have that with probability at least 1 — 1/p?,
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When Slogp < n/1764 and S’ = 48S, we have that (S + 57) logp/n < 1/36
which implies that ¢min (S +5") > 1/2 and ¢max(S’) < 3/2 Hence

SI¢IIIiIl(S + S,) Z 16S¢max(sl)7

as claimed.
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