Minimax Rates for Sparse PCA

A APPENDIX - SUPPLEMENTARY
MATERIAL

A.1 Additional Technical Tools

We state below two results that we use frequently in
our proofs. The first is well-known consequence of the
CS decomposition. It relates the canonical angles be-
tween subspaces to the singular values of products and
differences of their corresponding projection matrices.

Lemma A.1.1 (Stewart and Sun [22, Theorem 1.5.5]).
Let X and ) be k-dimensional subspaces of RP with
orthogonal projections Iy and Ily. Let 01 > o2 >

-+ > oy be the sines of the canonical angles between
X and Y. Then

1. The singular values of Ilx (I, — I1y) are

..,ak,O,...,O.

01,02, .

2. The singular values of Ilx — Iy are

017015027027"'70-16)0-/6707"'70'

Lemma A.1.2. Let 2,y € S™'. Then
lzz” —yyT |7 < 2|z —yl3
If in addition ||z — y||l2 < V2, then

lza® = yy 5 > lla — yll3
Proof. By Lemma A.1.1 and the polarization identity

1
§HMT —yyl | =1-(a"y)?

2
(2=l
2

= llz = yl3 — ll= — yl3/4
= llo = yl3(1 = |z - yl3/4) .

The upper bound follows immediately. Now if ||z —
y[|3 < 2, then the above right-hand side is bounded
from below by ||z — yl|3/2. [ ]

A.2 Proofs for Theorem 2.1

Proof of Lemma 3.1.2 Our construction is based
on a hypercube argument. We require a variation of
the Varshamov-Gilbert bound due to Birgé and Mas-
sart [4]. We use a specialization of the version that
appears in [15, Lemma 4.10].

Lemma. Let d be an integer satisfying 1 < d <
(p —1)/4. There exists a subset Qg C {0,1}P~ that
satisfies the following properties:

1. Jw|lo = d for all w € Qq,

2. |lw—=w|lo > d/2 for all distinct pairs w,w’ € Qq,
and

3. log|Qq| > cdlog((p — 1)/d), where ¢ > 0.233.

Let d € [1,(p — 1)/4] be an integer, 0y be the cor-
responding subset of {0,1}P~! given by preceding
lemma,

[N

,ewdié) € R?,

2(w) = (1—)

and

0 ={z(w):weq}.

Clearly, © satisfies the following properties:

1.ecsy

2. €/vV2 < |01 — Bs]l2 < V/2¢ for all distinct pairs
01,02 € B4,

3. [10]12 < 14 €2d@=9/2 for all 6 € ©, and

4. log|®| > cd[log(p — 1) — log d], where ¢ > 0.233.

To ensure that © is also contained in BE(R,), we will
choose d so that the right side of the upper bound in
item 3 is smaller than R,. Choose

d= {min{(p— 1)/4, (Rq/eq)ﬁ }J .

The assumptions that p > 5, ¢ < 1, and Rq > 1 guar-
antee that this is a valid choice satisfying d € [1, (p —
1)/4]. The choice also guarantees that © C B2 (R,),
because

16]]9 < 1+ e9d@=9/2
<1+¢?(Ry/e?) =R,
for all # € ©. To complete the proof we will show that
log|©] satisfies the lower bound claimed by the lemma.

Note that the function a — alog[(p—1)/a] is increasing
on [0,(p — 1)/e] and decreasing on [(p — 1)/e, 00). So

if
— 2
R,\?7 p-1
= (e <P -
¢ (€q> - 47

log|®©| > cd [log(p — 1) — log d]
> (¢/2)a[log(p — 1) —loga] ,

then

because d = |a| > a/2. Moreover, since d < (p —1)/4
and the above right hand side is maximized when a =
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(p — 1) /e, the inequality remains valid for all a > 0 if
we replace the constant (¢/2) with the constant

o (o) T log(p = 1) — log P77
P e logtp— 1) tog 721

Proof of Lemma 3.1.3 Let A; = z;x] fori=1,2.
Then Ei = )‘lAi + )\2 (Ip — Az) Since 21 and 22 have
the same eigenvalues and hence the same determinant,

D(P1||P2) = [ (25 1%) — log det (35 '%y)]
n
= 5[ E212 ]
n
= fT (2512 — X2)).

The spectral decomposition o = A Ag + Ao (I, — A2)
allows us to easily calculate that
Syt =N, — Ag) + AT A,

Since orthogonal projections are idempotent, i.e.
AiA; = A,

251 (51 - 22)

- AIA_lm [(A1/A2)(Ip — As) + As)(A; — A)

- A1;1M [(A/A2) (I, — A)A; — Ag(Ay — Ay))]
- AlA_lAz (A /A2) (I — As)A; — Ay(I, — Ay)].

Using again the idempotent property and symmetry
of projection matrices,

Tr((I, — A2) A1)

= Tr((I, — A2) (I, — A2) A1 Ay)
= Tf(Al(Ip — AQ)(IP — AQ)Al)
= A1 (L, — A2) [

and similarly,
TI(AQ(IP — Al)) =
By Lemma A.1.1,

1A2(1, — ALl -

1
A1 (I, — A2) I3 = [|A2(I, — A7 = §||A1 — Ao
Thus,
_ (M — X)?
Tr(3; 1(21 —¥)) = WHAl AZH%

and the result follows. [ |

A.3 Proofs for Theorem 2.2

Proof of Lemma 3.2.1 We begin with the expan-
sion,

(2, 0.6 — 007)

= Tr{20,67} — Tr{x067}

= Tr{2(I, — 067)0,01 } — Tr{X067 (I, — 6,67)} .

Since #; is an eigenvector of ¥ corresponding to the
eigenvalue A1,

Te{%(I, — 007)6,67}
= Tr {6,607 (1, — 007)0,67 }
=\ Te {0,607 (1, — 007)6,67}
=\ Tr{6,67 (1, — 007)%0,6T}
= Mi|6:67 (1, — 667)|% -
Similarly, we have
Te{%007 (I, — 0,67)}
= Tr{(I, — 6,67)200" (I, — 6,61)}
= Tr{07 (1, — 6,67)%(I, — 6,67)0}
< X Tr {07 (1, — 6,0T)%6}
= X106 (I, — 0:67)% .

Thus,
(2,0:07 —607) > (A — X2) 1067 (1, — 6:67) | %
= 30 = )00 — 0,67 .
The last inequality follows from Lemma A.1.1. |

Proof of Lemma 3.2.2 Since the distribution of
S'—3 does not depend on u = EX;, we assume without

loss of generality that 4 = 0. Let a,b € {1,...,p} and
Dy, = - fj(x Ja(Xon)y — 3
ab — n m)a m )b ab

=1
1 n
== G—E
n <
=1
Then

(S — )b

Using the elementary inequality 2|ab] < a? + b%, we
have by Assumption 2.2 that

[1Gillwy = (X, 1a) (X, 1) [|up,
< max||[(X;, La)[* |4,

= Dap — XaXp .

< 2max||<21/2Zi, 1a>||12¢,2
<2\ K2,
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In the third line, we used the fact that the ;-norm is
bounded above by a constant times the t¢y-norm [see
24, p. 95]. By a generalization of Bernstein’s Inequality
for the 1;-norm [see 24, Section 2.2], for all ¢t > 0

P(|Day| > 8tA1K?) < P(|(Das| > 4¢[1Gill,)
< 2exp(—nmin{t, t*}/2).

This implies [24, Lemma 2.2.10] the bound

[ max Dol ,,

/ (22)
< cK?%)\ max{ logp’ logp} .
n n

201 Xa Xl < MK, 1) Pllyy + I1KX, 16) g,
X, La) I3, + 14X, 10)I15,

2 n
< =5 ) X LI, + X 1) 13,
i=1

Similarly,

IN

4
< —MKZ.
n
So by a union bound [24, Lemma 2.2.2],
v % logp
2
HHZ%X|XQXI,|H% < KA == (23)

Adding egs. (22) and (23) and then adjusting the con-
stant ¢ gives the desired result, because

llvee(s = S)luc]l,

< ||y D |, + || max | £ Kol ], -

Proof of Lemma 3.2.3 Let B = S5™' N BY(R)).
We will use a recent result in empirical process theory
due to Mendelson [16] to bound

sup b’ (S — 2)b.
beB

The result uses Talagrand’s generic chaining method,
and allows us to reduce the problem to bounding the
supremum of a Gaussian process. The statement of
the result involves the generic chaining complexity,
v2(B,d), of a set B equipped with the metric d. We
only use a special case, v2(B, | - ||2), where the com-
plexity measure is equivalent to the expectation of the
supremum of a Gaussian process on B. We refer the
reader to [23] for a complete introduction.

Lemma A.3.1 (Mendelson [16]). Let Z;, i =1,...,n

be i.i.d. random wvariables. There exists an absolute

constant ¢ for which the following holds. If F is a
symmetric class of mean-zero functions then

n

LS 12z - BiA2)

n
=1
(]:an) ’yg(]:ad@)}
\/ﬁ ’ n )

where dy, = Supfe]-'”wal-

E sup
feF

< e¢max {dwl 2

Since the distribution of S — 3 does not depend on
= EX;, we assume without loss of generality that
p = 0. Then |bT (S — X)b| is bounded from above by a
sum of two terms,

1 n
bT ( > xx! - 2) b
n
i=1

which can be rewritten as

+bT'XXTh,

Dy(b) == (Z;, X120)2 — E(Z;, ©1/2p)?

1

n

Sl

K2

and Dy(b) := (Z,%Y2b)? respectively. To apply
Lemma A.3.1 to Dy, define the class of linear func-
tionals

F:={(,2Y2p) : b e B}.
Then

n

LSz - B2

sup Dy (b) = sup -
i=1

beB feF

)

and we are in the setting of Lemma A.3.1.

First, we bound the )-diameter of F.
dy, = sup|[{Zi, £"/20) |y,
beB

< esupl|(Zi, Z/%b) [, -
beB

By Assumption 2.2,
1(Zi, 52/20) |y, < K[[SY/20]l2 < KA
and so
dy, < cKN/?. (24)

Next, we bound 72(F,12) by showing that the met-
ric induced by the ¥s-norm on F is equivalent to the
Euclidean metric on B. This will allow us to reduce
the problem to bounding the supremum of a Gaussian
process. For any f, g € F, by Assumption 2.2,

1(F = 9)(Z)lws = 1(Zi, SV2(bs — be))lps
< K[I=2(bs — b) |
< KN?[lby — byl (25)
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where by, by, € B. Thus, by [23, Theorem 1.3.6],

a(Fy2) < KA (B, |- |l2) -

Then applying Talagrand’s Majorizing Measure The-
orem [23, Theorem 2.1.1] yields

Yo (F,1bs) < eKAY?E sup(Y,b) (26)
beB

where Y is a p-dimensional standard Gaussian random
vector. Recall that B = BY(R;)NSE~'. So

Esup(Y,b) <E sup
beB bEBY (Ry)NBE (1)

(Y, b).

Here, we could easily upper bound the above quantity
by the supremum over B (R,) alone. Instead, we use a
sharper upper bound due to Gordon et al. [8, Theorem
5.1]:

E  sup  (V,b) < Riy/2+log(2p/R2)

beBY (R1)NBS (1)

where we used the assumption that R} < p/e in the
last inequality. Now we apply Lemma A.3.1 to get

E sup Dy (B)
beB
2 2
o maX{Rl log(p/Rl),R% log(p/Rl)} .
n n

Turning to Do (b), we can take n = 1 in Lemma A.3.1
and use a similar argument as above, because

Dy(b) < (Z,5120)2 —B(Z,5V20)?| + E(Z,%'/?b)2.

We just need to bound the to-norms of f(Z) and

(f—=9)(Z) to get bounds that are analogous to egs. (24)
and (25). Since Z is the sum of the independent ran-
dom variables Z;/n,

sup|| f(2) |3, = supll(Z, S'/b)|7,
beB beB

< supe |2, 2% |3, /n®
beB =

< sup K2\ ||bs||3/n
beB

< CKQ)\l/nv

and similarly,

I(F = 9)(2)llys < KX ]lby = bgll3/n.

So repeating the same arguments as for Dq, we get a
similar bound for Ds. Finally, we bound EDs(b) by

E(X,b)% = b7 ( zn: zn:IEXZ-X]T/rﬂ)b

i=1 j=1

_ bT(ZIEXiXiT/nQ)b
i=1

= |=1%b)13/n

S /\1/71

Putting together the bounds for Dy and Dy and then
adjusting constants completes the proof. |

Proof of Lemma 3.2.4 Using a similar argument
as in the proof of Lemma 3.2.3 we can show that

E sup

A A2
b7 (S — £)b| < cK?\; max { } ,
besE ™ NBE (d)

Vvn'on

where

A=E sup
S5 NBG(d)

(Y;0)

and Y is a p-dimensional standard Gaussian Y. Thus
we can reduce the problem to bounding the supremum
of a Gaussian process.

Let N C S5™"NB%(d) be a minimal §-covering of 57N
Bf(d) in the Euclidean metric with the property that
for each x € S5~ NBE(d) there exists y € N satisfying
|z —yll2 <6 and x —y € Bj(d). (We will show later
that such a covering exists.)

Let b* € S5~" NBA(d) satisty

sup  (Y,b) = (Y, b").
S5 NBg(d)

Then there is be N such that [b* — I~)||2 < 6 and
b* —b e BE(d). Since (b*—b)/[|b* —b|l2 € S5~ ' NBLE(d),
(Y,b") = (Y,b* — b) + (Y. b)

<4 sup (Y, u) + (Y,b)

w€SY ™ NBP (d)
< * .
< 8(Y,07) + max(Y, b)
Thus,

sup (Y, b) < (1 —0)" " max(Y,b).
beSE ™ NBE (d) beN

Since (Y, b) is a standard Gaussian for every b € N, a
union bound [24, Lemma 2.2.2] implies

Emax(Y,b) < cy/log|V]
€



Minimax Rates for Sparse PCA

for an absolute constant ¢ > 0. Thus,

E  sup (Vb)) <c(l—3)"/logNV]

beSE ™ NBE (d)

Finally, we will bound log|A/| by constructing a d-
covering set and then choosing §. It is well known
that the minimal J-covering of S9! in the Euclidean
metric has cardinality at most (1 + 2/8)%. Associate
with each subset I C {1,...,p} of size d, a mini-
mal §-covering of the corresponding isometric copy of
ngl. This set covers every possible subset of size d,
so for each € S5' N By(d) there is y € N satisfying
|lx —ylla < 6§ and x —y € By(d). Since there are (p
choose d) possible subsets,

log|NV| < log (Z) + dlog(1+2/6)

d
< log (%) + dlog(1+2/9)

=d+ dlog(p/d) + dlog(1+2/6).

In the second line, we used the binomial coefficient
bound (%) < (ep/d)?. If we take § = 1/4, then

log| V| < d+ dlog(p/d) + dlog9
< cdlog(p/d),

where we used the assumption that d < p/2. Thus,

A=E sup (Y,b) <cdlog(p/d)
S5 NBY (d)

for all d € [1,p/2). [ |



