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A APPENDIX - SUPPLEMENTARY
MATERIAL

A.1 Additional Technical Tools

We state below two results that we use frequently in
our proofs. The first is well-known consequence of the
CS decomposition. It relates the canonical angles be-
tween subspaces to the singular values of products and
differences of their corresponding projection matrices.

Lemma A.1.1 (Stewart and Sun [22, Theorem I.5.5]).
Let X and Y be k-dimensional subspaces of Rp with
orthogonal projections ΠX and ΠY . Let σ1 ≥ σ2 ≥
· · · ≥ σk be the sines of the canonical angles between
X and Y. Then

1. The singular values of ΠX (Ip −ΠY) are

σ1,σ2, . . . ,σk, 0, . . . , 0 .

2. The singular values of ΠX −ΠY are

σ1,σ1,σ2,σ2, . . . ,σk,σk, 0, . . . , 0 .

Lemma A.1.2. Let x, y ∈ Sp−1
2 . Then

‖xxT − yyT ‖2F ≤ 2‖x− y‖22

If in addition ‖x− y‖2 ≤
√
2, then

‖xxT − yyT ‖2F ≥ ‖x− y‖22

Proof. By Lemma A.1.1 and the polarization identity

1

2
‖xxT − yyT ‖2F = 1− (xT y)2

= 1−
(
2− ‖x− y‖2

2

)2

= ‖x− y‖22 − ‖x− y‖42/4
= ‖x− y‖22(1− ‖x− y‖22/4) .

The upper bound follows immediately. Now if ‖x −
y‖22 ≤ 2, then the above right-hand side is bounded
from below by ‖x− y‖22/2. !

A.2 Proofs for Theorem 2.1

Proof of Lemma 3.1.2 Our construction is based
on a hypercube argument. We require a variation of
the Varshamov-Gilbert bound due to Birgé and Mas-
sart [4]. We use a specialization of the version that
appears in [15, Lemma 4.10].

Lemma. Let d be an integer satisfying 1 ≤ d ≤
(p − 1)/4. There exists a subset Ωd ⊂ {0, 1}p−1 that
satisfies the following properties:

1. ‖ω‖0 = d for all ω ∈ Ωd,

2. ‖ω − ω′‖0 > d/2 for all distinct pairs ω,ω′ ∈ Ωd,
and

3. log|Ωd| ≥ cd log((p− 1)/d), where c ≥ 0.233.

Let d ∈ [1, (p − 1)/4] be an integer, Ωd be the cor-
responding subset of {0, 1}p−1 given by preceding
lemma,

x(ω) =
(
(1− ε2)

1
2 , εωd−

1
2
)
∈ Rp ,

and

Θ = {x(ω) : ω ∈ Ωd} .

Clearly, Θ satisfies the following properties:

1. Θ ⊆ Sp−1
2 ,

2. ε/
√
2 < ‖θ1 − θ2‖2 ≤

√
2ε for all distinct pairs

θ1, θ2 ∈ Θd,

3. ‖θ‖qq ≤ 1 + εqd(2−q)/2 for all θ ∈ Θ, and

4. log|Θ| ≥ cd[log(p− 1)− log d], where c ≥ 0.233.

To ensure that Θ is also contained in Bp
q(Rq), we will

choose d so that the right side of the upper bound in
item 3 is smaller than Rq. Choose

d =
⌊
min

{
(p− 1)/4,

(
R̄q/ε

q
) 2

2−q

}⌋
.

The assumptions that p ≥ 5, ε ≤ 1, and R̄q ≥ 1 guar-
antee that this is a valid choice satisfying d ∈ [1, (p−
1)/4]. The choice also guarantees that Θ ⊂ Bp

q(Rq),
because

‖θ‖qq ≤ 1 + εqd(2−q)/2

≤ 1 + εq
(
R̄q/ε

q
)
= Rq

for all θ ∈ Θ. To complete the proof we will show that
log|Θ| satisfies the lower bound claimed by the lemma.
Note that the function a )→ a log[(p−1)/a] is increasing
on [0, (p − 1)/e] and decreasing on [(p − 1)/e,∞). So
if

a :=

(
R̄q

εq

) 2
2−q

≤ p− 1

4
,

then

log|Θ| ≥ cd [log(p− 1)− log d]

≥ (c/2)a [log(p− 1)− log a] ,

because d = ,a- ≥ a/2. Moreover, since d ≤ (p− 1)/4
and the above right hand side is maximized when a =
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(p− 1)/e, the inequality remains valid for all a ≥ 0 if
we replace the constant (c/2) with the constant

c′ = (c/2)
p−1
4 [log(p− 1)− log p−1

4 ]
p−1
e [log(p− 1)− log p−1

e ]

= (c/2)
e log 4

4
≥ 0.109 .

!

Proof of Lemma 3.1.3 Let Ai = xixT
i for i = 1, 2.

Then Σi = λ1Ai + λ2(Ip −Ai). Since Σ1 and Σ2 have
the same eigenvalues and hence the same determinant,

D(P1‖P2) =
n

2

[
Tr(Σ−1

2 Σ1)− p− log det(Σ−1
2 Σ1)

]

=
n

2

[
Tr(Σ−1

2 Σ1)− p
]

=
n

2
Tr(Σ−1

2 (Σ1 − Σ2)) .

The spectral decomposition Σ2 = λ1A2 + λ2(Ip −A2)
allows us to easily calculate that

Σ−1
2 = λ−1

2 (Ip −A2) + λ−1
1 A2 .

Since orthogonal projections are idempotent, i.e.
AiAi = Ai,

Σ−1
2 (Σ1 − Σ2)

=
λ1 − λ2
λ1

[(λ1/λ2)(Ip −A2) +A2](A1 −A2)

=
λ1 − λ2
λ1

[(λ1/λ2)(Ip −A2)A1 −A2(A2 −A1)]

=
λ1 − λ2
λ1

[(λ1/λ2)(Ip −A2)A1 −A2(Ip −A1)] .

Using again the idempotent property and symmetry
of projection matrices,

Tr((Ip −A2)A1)

= Tr((Ip −A2)(Ip −A2)A1A1)

= Tr(A1(Ip −A2)(Ip −A2)A1)

= ‖A1(Ip −A2)‖2F

and similarly,

Tr(A2(Ip −A1)) = ‖A2(Ip −A1)‖2F .

By Lemma A.1.1,

‖A1(Ip −A2)‖2F = ‖A2(Ip −A1)‖2F =
1

2
‖A1 −A2‖2F .

Thus,

Tr(Σ−1
2 (Σ1 − Σ2)) =

(λ1 − λ2)2

2λ1λ2
‖A1 −A2‖2F

and the result follows. !

A.3 Proofs for Theorem 2.2

Proof of Lemma 3.2.1 We begin with the expan-
sion,

〈Σ, θ1θT1 − θθT 〉
= Tr{Σθ1θT1 }− Tr{ΣθθT }
= Tr{Σ(Ip − θθT )θ1θ

T
1 }− Tr{ΣθθT (Ip − θ1θ

T
1 )} .

Since θ1 is an eigenvector of Σ corresponding to the
eigenvalue λ1,

Tr{Σ(Ip − θθT )θ1θ
T
1 }

= Tr{θ1θT1 Σ(Ip − θθT )θ1θ
T
1 }

= λ1 Tr{θ1θT1 (Ip − θθT )θ1θ
T
1 }

= λ1 Tr{θ1θT1 (Ip − θθT )2θ1θ
T
1 }

= λ1‖θ1θT1 (Ip − θθT )‖2F .

Similarly, we have

Tr{ΣθθT (Ip − θ1θ
T
1 )}

= Tr{(Ip − θ1θ
T
1 )Σθθ

T (Ip − θ1θ
T
1 )}

= Tr{θT (Ip − θ1θ
T
1 )Σ(Ip − θ1θ

T
1 )θ}

≤ λ2 Tr{θT (Ip − θ1θ
T
1 )

2θ}
= λ2‖θθT (Ip − θ1θ

T
1 )‖2F .

Thus,

〈Σ, θ1θT1 − θθT 〉 ≥ (λ1 − λ2)‖θθT (Ip − θ1θ
T
1 )‖2F

=
1

2
(λ1 − λ2)‖θθT − θ1θ

T
1 ‖2F .

The last inequality follows from Lemma A.1.1. !

Proof of Lemma 3.2.2 Since the distribution of
S−Σ does not depend on µ = EXi, we assume without
loss of generality that µ = 0. Let a, b ∈ {1, . . . , p} and

Dab =
1

n

n∑

i=1

(Xm)a(Xm)b − Σab

=:
1

n

n∑

i=1

ζi − Eζi .

Then
(S − Σ)ab = Dab − X̄aX̄b .

Using the elementary inequality 2|ab| ≤ a2 + b2, we
have by Assumption 2.2 that

‖ζi‖ψ1 = ‖〈Xi, 1a〉〈Xi, 1b〉‖ψ1

≤ max
a

‖|〈Xi, 1a〉|2‖ψ1

≤ 2max
a

‖〈Σ1/2Zi, 1a〉‖2ψ2

≤ 2λ1K
2 .
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In the third line, we used the fact that the ψ1-norm is
bounded above by a constant times the ψ2-norm [see
24, p. 95]. By a generalization of Bernstein’s Inequality
for the ψ1-norm [see 24, Section 2.2] , for all t > 0

P(|Dab| > 8tλ1K
2) ≤ P(|(Dab| > 4t‖ζi‖ψ1)

≤ 2 exp(−nmin{t, t2}/2) .

This implies [24, Lemma 2.2.10] the bound

∥∥max
ab

|Dab|
∥∥
ψ1

≤ cK2λ1 max

{√
log p

n
,
log p

n

}
.

(22)

Similarly,

2‖X̄aX̄b‖ψ1 ≤ ‖|〈X̄, 1a〉|2‖ψ1 + ‖|〈X̄, 1b〉|2‖ψ1

≤ ‖〈X̄, 1a〉‖2ψ2
+ ‖〈X̄, 1b〉‖2ψ2

≤ 2

n2

n∑

i=1

‖〈Xi, 1a〉‖2ψ2
+ ‖〈Xi, 1b〉‖2ψ2

≤ 4

n
λ1K

2 .

So by a union bound [24, Lemma 2.2.2],

∥∥max
ab

|X̄aX̄b|
∥∥
ψ1

≤ cK2λ1
log p

n
. (23)

Adding eqs. (22) and (23) and then adjusting the con-
stant c gives the desired result, because

∥∥‖vec(S − Σ)‖∞
∥∥
ψ1

≤
∥∥max

ab
|Dab|

∥∥
ψ1

+
∥∥max

ab
|X̄aX̄b|

∥∥
ψ1

.

!

Proof of Lemma 3.2.3 Let B = Sp−1
2 ∩ Bp

1(R1).
We will use a recent result in empirical process theory
due to Mendelson [16] to bound

sup
b∈B

bT (S − Σ)b .

The result uses Talagrand’s generic chaining method,
and allows us to reduce the problem to bounding the
supremum of a Gaussian process. The statement of
the result involves the generic chaining complexity,
γ2(B, d), of a set B equipped with the metric d. We
only use a special case, γ2(B, ‖ · ‖2), where the com-
plexity measure is equivalent to the expectation of the
supremum of a Gaussian process on B. We refer the
reader to [23] for a complete introduction.

Lemma A.3.1 (Mendelson [16]). Let Zi, i = 1, . . . , n
be i.i.d. random variables. There exists an absolute

constant c for which the following holds. If F is a
symmetric class of mean-zero functions then

E sup
f∈F

∣∣∣∣∣
1

n

n∑

i=1

f2(Zi)− Ef2(Zi)

∣∣∣∣∣

≤ cmax

{
dψ1

γ2(F ,ψ2)√
n

,
γ22(F ,ψ2)

n

}
,

where dψ1 = supf∈F‖f‖ψ1 .

Since the distribution of S − Σ does not depend on
µ = EXi, we assume without loss of generality that
µ = 0. Then |bT (S −Σ)b| is bounded from above by a
sum of two terms,

∣∣∣∣∣b
T

(
1

n

n∑

i=1

XiX
T
i − Σ

)
b

∣∣∣∣∣+ bT X̄X̄T b ,

which can be rewritten as

D1(b) :=

∣∣∣∣∣
1

n

n∑

i=1

〈Zi,Σ
1/2b〉2 − E〈Zi,Σ

1/2b〉2
∣∣∣∣∣

and D2(b) := 〈Z̄,Σ1/2b〉2, respectively. To apply
Lemma A.3.1 to D1, define the class of linear func-
tionals

F := {〈·,Σ1/2b〉 : b ∈ B} .

Then

sup
b∈B

D1(b) = sup
f∈F

∣∣∣∣∣
1

n

n∑

i=1

f2(Zi)− Ef2(Zi)

∣∣∣∣∣ ,

and we are in the setting of Lemma A.3.1.

First, we bound the ψ1-diameter of F .

dψ1 = sup
b∈B

‖〈Zi,Σ
1/2b〉‖ψ1

≤ c sup
b∈B

‖〈Zi,Σ
1/2b〉‖ψ2 .

By Assumption 2.2,

‖〈Zi,Σ
1/2b〉‖ψ2 ≤ K‖Σ1/2b‖2 ≤ Kλ1/21

and so
dψ1 ≤ cKλ1/21 . (24)

Next, we bound γ2(F ,ψ2) by showing that the met-
ric induced by the ψ2-norm on F is equivalent to the
Euclidean metric on B. This will allow us to reduce
the problem to bounding the supremum of a Gaussian
process. For any f, g ∈ F , by Assumption 2.2,

‖(f − g)(Zi)‖ψ2 = ‖〈Zi,Σ
1/2(bf − bg)〉‖ψ2

≤ K‖Σ1/2(bf − bg)‖2
≤ Kλ1/21 ‖bf − bg‖2 , (25)
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where bf , bg ∈ B. Thus, by [23, Theorem 1.3.6],

γ2(F ,ψ2) ≤ cKλ1/21 γ2(B, ‖ · ‖2) .

Then applying Talagrand’s Majorizing Measure The-
orem [23, Theorem 2.1.1] yields

γ2(F ,ψ2) ≤ cKλ1/21 E sup
b∈B

〈Y, b〉 , (26)

where Y is a p-dimensional standard Gaussian random
vector. Recall that B = Bp

1(R1) ∩ Sp−1
2 . So

E sup
b∈B

〈Y, b〉 ≤ E sup
b∈Bp

1(R1)∩Bp
2(1)

〈Y, b〉 .

Here, we could easily upper bound the above quantity
by the supremum over Bp

1(Rq) alone. Instead, we use a
sharper upper bound due to Gordon et al. [8, Theorem
5.1]:

E sup
b∈Bp

1(R1)∩Bp
2(1)

〈Y, b〉 ≤ R1

√
2 + log(2p/R2

1)

≤ 2R1

√
log(p/R2

1) ,

where we used the assumption that R2
1 ≤ p/e in the

last inequality. Now we apply Lemma A.3.1 to get

E sup
b∈B

D1(B)

≤ cK2λ1 max

{
R1

√
log(p/R2

1)

n
,R2

1
log(p/R2

1)

n

}
.

Turning to D2(b), we can take n = 1 in Lemma A.3.1
and use a similar argument as above, because

D2(b) ≤ |〈Z̄,Σ1/2b〉2 − E〈Z̄,Σ1/2b〉2|+ E〈Z̄,Σ1/2b〉2 .

We just need to bound the ψ2-norms of f(Z̄) and
(f−g)(Z̄) to get bounds that are analogous to eqs. (24)
and (25). Since Z̄ is the sum of the independent ran-
dom variables Zi/n,

sup
b∈B

‖f(Z̄)‖2ψ2
= sup

b∈B
‖〈Z̄,Σ1/2bf 〉‖2ψ2

≤ sup
b∈B

c
n∑

i=1

‖〈Zi,Σ
1/2bf 〉‖2ψ2

/n2

≤ sup
b∈B

cK2λ1‖bf‖22/n

≤ cK2λ1/n ,

and similarly,

‖(f − g)(Z̄)‖ψ2 ≤ cKλ1‖bf − bg‖22/n .

So repeating the same arguments as for D1, we get a
similar bound for D2. Finally, we bound ED2(b) by

E〈X̄, b〉2 = bT
( n∑

i=1

n∑

j=1

EXiX
T
j /n

2
)
b

= bT
( n∑

i=1

EXiX
T
i /n

2
)
b

= ‖Σ1/2b‖22/n
≤ λ1/n .

Putting together the bounds for D1 and D2 and then
adjusting constants completes the proof. !

Proof of Lemma 3.2.4 Using a similar argument
as in the proof of Lemma 3.2.3 we can show that

E sup
b∈Sp−1

2 ∩Bp
0(d)

|bT (S − Σ)b| ≤ cK2λ1 max

{
A√
n
,
A2

n

}
,

where
A = E sup

Sp−1
2 ∩Bp

0(d)

〈Y, b〉

and Y is a p-dimensional standard Gaussian Y . Thus
we can reduce the problem to bounding the supremum
of a Gaussian process.

LetN ⊂ Sp−1
2 ∩Bp

0(d) be a minimal δ-covering of Sp−1
2 ∩

Bp
0(d) in the Euclidean metric with the property that

for each x ∈ Sp−1
2 ∩Bp

0(d) there exists y ∈ N satisfying
‖x − y‖2 ≤ δ and x − y ∈ Bp

0(d). (We will show later
that such a covering exists.)

Let b∗ ∈ Sp−1
2 ∩ Bp

0(d) satisfy

sup
Sp−1
2 ∩Bp

0(d)

〈Y, b〉 = 〈Y, b∗〉 .

Then there is b̃ ∈ N such that ‖b∗ − b̃‖2 ≤ δ and
b∗− b̃ ∈ Bp

0(d). Since (b
∗− b̃)/‖b∗− b̃‖2 ∈ Sp−1

2 ∩Bp
0(d),

〈Y, b∗〉 = 〈Y, b∗ − b̃〉+ 〈Y, b̃〉
≤ δ sup

u∈Sp−1
2 ∩Bp

0(d)

〈Y, u〉+ 〈Y, b̃〉

≤ δ〈Y, b∗〉+max
b∈N

〈Y, b〉 .

Thus,

sup
b∈Sp−1

2 ∩Bp
0(d)

〈Y, b〉 ≤ (1− δ)−1 max
b∈N

〈Y, b〉 .

Since 〈Y, b〉 is a standard Gaussian for every b ∈ N , a
union bound [24, Lemma 2.2.2] implies

Emax
b∈N

〈Y, b〉 ≤ c
√
log|N |
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for an absolute constant c > 0. Thus,

E sup
b∈Sp−1

2 ∩Bp
0(d)

〈Y, b〉 ≤ c(1− δ)−1
√
log|N |

Finally, we will bound log|N | by constructing a δ-
covering set and then choosing δ. It is well known
that the minimal δ-covering of Sd−1

2 in the Euclidean
metric has cardinality at most (1 + 2/δ)d. Associate
with each subset I ⊆ {1, . . . , p} of size d, a mini-
mal δ-covering of the corresponding isometric copy of
Sd−1
2 . This set covers every possible subset of size d,

so for each x ∈ Sp−1
2 ∩ B0(d) there is y ∈ N satisfying

‖x − y‖2 ≤ δ and x − y ∈ B0(d). Since there are (p
choose d) possible subsets,

log|N | ≤ log

(
p

d

)
+ d log(1 + 2/δ)

≤ log
(pe
d

)d
+ d log(1 + 2/δ)

= d+ d log(p/d) + d log(1 + 2/δ) .

In the second line, we used the binomial coefficient
bound

(p
d

)
≤ (ep/d)d. If we take δ = 1/4, then

log|N | ≤ d+ d log(p/d) + d log 9

≤ cd log(p/d) ,

where we used the assumption that d < p/2. Thus,

A = E sup
Sp−1
2 ∩Bp

0(d)

〈Y, b〉 ≤ cd log(p/d)

for all d ∈ [1, p/2). !


