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Abstract

We study sparse principal components anal-
ysis in the high-dimensional setting, where p
(the number of variables) can be much larger
than n (the number of observations). We
prove optimal, non-asymptotic lower and up-
per bounds on the minimax estimation error
for the leading eigenvector when it belongs
to an !q ball for q ∈ [0, 1]. Our bounds are
sharp in p and n for all q ∈ [0, 1] over a wide
class of distributions. The upper bound is
obtained by analyzing the performance of !q-
constrained PCA. In particular, our results
provide convergence rates for !1-constrained
PCA.

1 Introduction

High-dimensional data problems, where the number of
variables p exceeds the number of observations n, are
pervasive in modern applications of statistical infer-
ence and machine learning. Such problems have in-
creased the necessity of dimensionality reduction for
both statistical and computational reasons. In some
applications, dimensionality reduction is the end goal,
while in others it is just an intermediate step in the
analysis stream. In either case, dimensionality reduc-
tion is usually data-dependent and so the limited sam-
ple size and noise may have an adverse affect. Princi-
pal components analysis (PCA) is perhaps one of the
most well known and widely used techniques for un-
supervised dimensionality reduction. However, in the
high-dimensional situation, where p/n does not tend
to 0 as n → ∞, PCA may not give consistent esti-
mates of eigenvalues and eigenvectors of the popula-
tion covariance matrix [12]. To remedy this situation,
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sparsity constraints on estimates of the leading eigen-
vectors have been proposed and shown to perform well
in various applications. In this paper we prove opti-
mal minimax error bounds for sparse PCA when the
leading eigenvector is sparse.

1.1 Subspace Estimation

Suppose we observe i.i.d. random vectors Xi ∈ Rp,
i = 1, . . . , n and we wish to reduce the dimension of
the data from p down to k. PCA looks for k uncorre-
lated, linear combinations of the p variables that have
maximal variance. This is equivalent to finding a k-
dimensional linear subspace whose orthogonal projec-
tion A minimizes the mean squared error

mse(A) = E‖(Xi − EXi) − A(Xi − EXi)‖2
2 (1)

[see 10, Chapter 7.2.3 for example]. The optimal sub-
space is determined by spectral decomposition of the
population covariance matrix

Σ = EXiX
T
i − (EXi)(EXi)

T =

p∑

j=1

λjθjθ
T
j , (2)

where λ1 ≥ λ2 ≥ · · ·λp ≥ 0 are the eigenvalues and
θ1, . . . θp ∈ Rp, orthonormal, are eigenvectors of Σ. If
λk > λk+1, then the optimal k-dimensional linear sub-
space is the span of Θ = (θ1, . . . , θk) and its projection
is given by Π = ΘΘT . Thus, if we know Σ then we may
optimally (in the sense of eq. (1)) reduce the dimension
of the data from p to k by the mapping x '→ ΘΘT x.

In practice, Σ is not known and so Θ must be esti-
mated from the data. In that case we replace Θ by
an estimate Θ̂ and reduce the dimension of the data
by the mapping x '→ Π̂x, where Π̂ = Θ̂Θ̂T . PCA uses
the spectral decomposition of the sample covariance
matrix

S =
1

n

n∑

i=1

XiX
T
i − X̄X̄T =

p∧n∑

j=1

ljuju
T
j ,

where X̄ is the sample mean, and lj and uj are eigen-
values and eigenvectors of S defined analogously to
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eq. (2). It reduces the dimension of the data to k by
the mapping x !→ UUT x, where U = (u1, . . . , uk).

In the classical regime where p is fixed and n → ∞,
PCA is a consistent estimator of the population eigen-
vectors. However, this scaling is not appropriate for
modern applications where p is comparable to or larger
than n. In that case, it has been observed [18, 17, 12]
that if p, n → ∞ and p/n → c > 0, then PCA can be
an inconsistent estimator in the sense that the angle
between u1 and θ1 can remain bounded away from 0
even as n → ∞.

1.2 Sparsity Constraints

Estimation in high-dimensions may be beyond hope
without additional structural constraints. In addition
to making estimation feasible, these structural con-
straints may also enhance interpretability of the es-
timators. One important example of this is sparsity.
The notion of sparsity is that a few variables have large
effects, while most others are negligible. This type of
assumption is often reasonable in applications and is
now widespread in high-dimensional statistical infer-
ence.

Many researchers have proposed sparsity constrained
versions of PCA along with practical algorithms, and
research in this direction continues to be very active
[e.g., 13, 27, 6, 21, 25]. Some of these works are based
on the idea of adding an "1 constraint to the estimation
scheme. For instance, Jolliffe, Trendafilov, and Uddin
[13] proposed adding an "1 constraint to the variance
maximization formulation of PCA. Others have pro-
posed convex relaxations of the “hard” "0-constrained
form of PCA [6]. Nearly all of these proposals are based
on an iterative approach where the eigenvectors are
estimated in a one-at-a-time fashion with some sort
of deflation step in between [14]. For this reason, we
consider the basic problem of estimating the leading
population eigenvector θ1.

The "q balls for q ∈ [0, 1] provide an appealing way to
make the notion of sparsity concrete. These sets are
defined by

Bp
q(Rq) = {θ ∈ Rp :

∑p
j=1|θj |q ≤ Rq}

and

Bp
0(R0) = {θ ∈ Rp :

∑p
j=11{θj !=0} ≤ R0} .

The case q = 0 corresponds to “hard” sparsity where
R0 is the number of nonzero entries of the vectors. For
q > 0 the "q balls capture “soft” sparsity where a few
of the entries of θ are large, while most are small. The
soft sparsity case may be more realistic for applications
where the effects of many variables may be very small,
but still nonzero.

1.3 Minimax Framework and
High-Dimensional Scaling

In this paper, we use the statistical minimax frame-
work to elucidate the difficulty/feasibility of estima-
tion when the leading eigenvector θ1 is assumed to be-
long to Bp

q(Rq) for q ∈ [0, 1]. The framework can make
clear the fundamental limitations of statistical infer-
ence that any estimator θ̂1 must satisfy. Thus, it can
reveal gaps between optimal estimators and computa-
tionally tractable ones, and also indicate when practi-
cal algorithms achieve the fundamental limits.

Parameter space There are two main ingredients
in the minimax framework. The first is the class of
probability distributions under consideration. These
are usually associated with some parameter space cor-
responding to the structural constraints. Formally,
suppose that λ1 > λ2. Then we may write eq. (2)
as

Σ = λ1θ1θ
T
1 + λ2Σ0 , (3)

where λ1 > λ2 ≥ 0, θ1 ∈ Sp−1
2 (the unit sphere of "2),

Σ0 ' 0, Σ0θ = 0, and ‖Σ0‖2 = 1 (the spectral norm
of Σ0). In model (3), the covariance matrix Σ has a
unique largest eigenvalue λ1. Throughout this paper,
for q ∈ [0, 1], we consider the class

Mq(λ1, λ2, R̄q, α, κ)

that consists of all probability distributions on Xi ∈
Rp, i = 1, . . . , n satisfying model (3) with θ1 ∈ Bp

q(R̄q+
1), and Assumption 2.1 (below) with α and κ depend-
ing on q only.

Loss function The second ingredient in the mini-
max framework is the loss function. In the case of
subspace estimation, an obvious criterion for evaluat-
ing the quality of an estimator Θ̂ is the squared dis-
tance between Θ̂ and Θ. However, it is not appropriate
because Θ is not unique—Θ and ΘV span the same
subspace for any k × k orthogonal matrix V . On the
other hand, the orthogonal projections Π = ΘΘT and
Π̂ = Θ̂Θ̂T are unique. So we consider the loss function
defined by the Frobenius norm of their difference:

‖Π̂ − Π‖F .

In the case where k = 1, the only possible non-
uniqueness in the leading eigenvector is its sign am-
biguity. Still, we prefer to use the above loss function
in the form

‖θ̂1θ̂T
1 − θ1θ1‖F

because it generalizes to the case k > 1. Moreover,
when k = 1, it turns out to be equivalent to both
the Euclidean distance between θ1, θ̂1 (when they be-
long to the same half-space) and the magnitude of the
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sine of the angle between θ1, θ̂1. (See Lemmas A.1.1
and A.1.2 in the Appendix.)

Scaling Our goal in this work is to provide non-
asymptotic bounds on the minimax error

min
θ̂1

max
P∈Mq(λ1,λ2,R̄q,α,κ)

EP ‖θ̂1θ̂T
1 − θ1θ1‖F ,

where the minimum is taken over all estimators that
depend only on X1, . . . , Xn, that explicitly track
the dependence of the minimax error on the vector
(p, n, λ1, λ2, R̄q). As we stated early, the classical p
fixed, n → ∞ scaling completely misses the effect
of high-dimensionality; we, on the other hand, want
to highlight the role that sparsity constraints play in
high-dimensional estimation. Our lower bounds on the
minimax error use an information theoretic technique
based on Fano’s Inequality. The upper bounds are
obtained by constructing an #q-constrained estimator
that nearly achieves the lower bound.

1.4 #q-Constrained Eigenvector Estimation

Consider the constrained maximization problem

maximize bT Sb,

subject to b ∈ Sp−1
2 ∩ Bp

q(ρq)
(4)

and the estimator defined to be the solution of the
optimization problem. The feasible set is non-empty
when ρq ≥ 1, and the #q constraint is active only when
ρq ≤ p1− q

2 . The #q-constrained estimator corresponds
to ordinary PCA when q = 2 and ρq = 1. When
q ∈ [0, 1], the #q constraint promotes sparsity in the
estimate. Since the criterion is a convex function of b,
the convexity of the constraint set is inconsequential—
it may be replaced by its convex hull without changing
the optimum.

The case q = 1 is the most interesting from a practical
point of view, because it corresponds to the well-known
Lasso estimator for linear regression. In this case,
eq. (4) coincides with the method proposed by Jol-
liffe, Trendafilov, and Uddin [13], though (4) remains
a difficult convex maximization problem. Subsequent
authors [21, 25] have proposed efficient algorithms that
can approximately solve eq. (4). Our results below are
(to our knowledge) the first convergence rate results
available for this #1-constrained PCA estimator.

1.5 Related Work

Amini and Wainwright [1] analyzed the performance
of a semidefinite programming (SDP) formulation of
sparse PCA for a generalized spiked covariance model
[11]. Their model assumes that the nonzero entries of

the eigenvector all have the same magnitude, and that
the covariance matrix corresponding to the nonzero
entries is of the form βθ1θ

T
1 + I. They derived upper

and lower bounds on the success probability for model
selection under the constraint that θ1 ∈ Bp

0(R0). Their
upper bound is conditional is conditional on the SDP
based estimate being rank 1 . Model selection accuracy
and estimation accuracy are different notions of accu-
racy. One does not imply the other. In comparison,
our results below apply to a wider class of covariance
matrices and in the case of #0 we provide sharp bounds
for the estimation error.

Operator norm consistent estimates of the covariance
matrix automatically imply consistent estimates of
eigenspaces. This follows from matrix perturbation
theory [see, e.g., 22]. There has been much work on
finding operator norm consistent covariance estimators
in high-dimensions under assumptions on the sparsity
or bandability of the entries of Σ or Σ−1 [see, e.g., 3,
2, 7]. Minimax results have been established in that
setting by Cai, Zhang, and Zhou [5]. However, spar-
sity in the covariance matrix and sparsity in the lead-
ing eigenvector are different conditions. There is some
overlap (e.g. the spiked covariance model), but in gen-
eral, one does not imply the other.

Raskutti, Wainwright, and Yu [20] studied the related
problem of minimax estimation for linear regression
over #q balls. Remarkably, the rates that we derive
for PCA are nearly identical to those for the Gaussian
sequence model and regression. The work of Raskutti,
Wainwright, and Yu [20] is close to ours in that they
inspired us to use some similar techniques for the up-
per bounds.

While writing this paper we became aware of an un-
published manuscript by Paul and Johnstone [19].
They also study PCA under #q constraints with a
slightly different but equivalent loss function. Their
work provides asymptotic lower bounds for the min-
imax rate of convergence over #q balls for q ∈ (0, 2].
They also analyze the performance of an estimator
based on a multistage thresholding procedure and
show that asymptotically it nearly attains the optimal
rate of convergence. Their analysis used spiked covari-
ance matrices (corresponding to λ2Σ0 = (Ip − θ1θ

T
1 )

in eq. (3) when k = 1), while we allow a more general
class of covariance matrices. We note that our work
provides non-asymptotic bounds that are optimal over
(p, n, R̄q) when q ∈ {0, 1} and optimal over (p, n) when
q ∈ (0, 1).

In next section, we present our main results along with
some additional conditions to guarantee that estima-
tion over Mq remains non-trivial. The main steps of
the proofs are in Section 3. In the proofs we state
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some auxiliary lemmas. They are mainly technical, so
we defer their proofs to the Appendix. Section 4 con-
cludes the paper with some comments on extensions
of this work.

2 Main Results

Our minimax results are formulated in terms of
non-asymptotic bounds that depend explicitly on
(n, p, Rq, λ1, λ2). To facilitate presentation, we intro-
duce the notations

R̄q = Rq − 1 and σ2 =
λ1λ2

(λ1 − λ2)2
.

R̄q appears naturally in our lower bounds because the
eigenvector θ1 belongs to the sphere of dimension p−1
due to the constraint that ‖θ1‖2 = 1. Intuitively,
σ2 plays the role of the effective noise-to-signal ratio.
When comparing with minimax results for linear re-
gression over $q balls, σ2 is exactly analogous to the
noise variance in the linear model. Throughout the
paper, there are absolute constants c, C, c1, etc,. . . that
may take different values in different expressions.

The following assumption on Rq, the size of the $q ball,
is to ensure that the eigenvector is not too dense.

Assumption 2.1. There exists α ∈ (0, 1], depending
only on q, such that

R̄q ≤ κq(p − 1)1−αR̄
2α
2−q
q


σ

2

n
log

p − 1

R̄
2

2−q
q




q
2

, (5)

where κ ≤ cα/16 is a constant depending only on q,
and

1 ≤ R̄q ≤ e−1(p − 1)1−q/2 . (6)

Assumption 2.1 also ensures that the effective noise σ2

is not too small—this may happen if the spectral gap
λ1 − λ2 is relatively large or if λ2 is relatively close

to 0. In either case, the distribution of Xi/λ
1/2
1 would

concentrate on a 1-dimensional subspace and the prob-
lem would effectively degrade into a low-dimensional
one. If Rq is relatively large, then Sp−1

2 ∩Bp
q(Rq) is not

much smaller than Sp−1
2 and the parameter space will

include many non-sparse vectors. In the case q = 0,
Assumption 2.1 simplifies because we may take α = 1
and only require that

1 ≤ R̄0 ≤ e−1(p − 1) .

In the high-dimensional case that we are interested,
where p > n, the condition that

1 ≤ R̄q ≤ e−1κqσqp(1−α′)/2 ,

for some α′ ∈ [0, 1], is sufficient to ensure that (5)
holds for q ∈ (0, 1]. Alternatively, if we let α = 1−q/2
then (5) is satisfied for q ∈ (0, 1] if

1 ≤ κ2σ2
(
(p − 1)/n

)
log
(
(p − 1)/R̄

2
2−q
q

)
.

The relationship between n, p, Rq and σ2 described in
Assumption 2.1 indicates a regime in which the infer-
ence is neither impossible nor trivially easy. We can
now state our first main result.

Theorem 2.1 (Lower Bound for Sparse PCA). Let
q ∈ [0, 1]. If Assumption 2.1 holds, then there exists
a universal constant c > 0 depending only on q, such
that every estimator θ̂1 satisfies

max
P∈Mq(λ1,λ2,R̄q,α,κ)

EP ‖θ̂1θ̂T
1 − θ1θ

T
1 ‖F

≥ c min



1 , R̄

1
2
q

[
σ2

n
log
(
(p − 1)/R̄

2
2−q
q

)] 1
2 − q

4



 .

Our proof of Theorem 2.1 is given in Section 3.1. It fol-
lows the usual nonparametric lower bound framework.
The main challenge is to construct a rich packing set
in Sp−1

2 ∩ Bp
q(Rq). (See Lemma 3.1.2.) We note that a

similar construction has been independently developed
and applied in similar a context by Paul and Johnstone
[19].

Our upper bound result is based on analyzing the solu-
tion to the $q-constrained maximization problem (4),
which is a special case of empirical risk minimization.
In order to bound the empirical process, we assume
the data vector has sub-Gaussian tails, which is nicely
described by the Orlicz ψα-norm.

Definition 2.1. For a random variable Y ∈ R, the
Orlicz ψα-norm is defined for α ≥ 1 as

‖Y ‖ψα = inf{c > 0 : E exp(|Y/c|α) ≤ 2} .

Random variables with finite ψα-norm correspond to
those whose tails are bounded by exp(−Cxα).

The case α = 2 is important because it corresponds
to random variables with sub-Gaussian tails. For ex-
ample, if Y ∼ N (0, σ2) then ‖Y ‖ψ2 ≤ Cσ for some
positive constant C. See [24, Chapter 2.2] for a com-
plete introduction.

Assumption 2.2. There exist i.i.d. random vectors
Z1, . . . , Zn ∈ Rp such that EZi = 0, EZiZ

T
i = Ip,

Xi = µ + Σ1/2Zi and sup
x∈Sp−1

2

‖〈Zi, x〉‖ψ2
≤ K ,

where µ ∈ Rp and K > 0 is a constant.
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Assumption 2.2 holds for a variety of distributions, in-
cluding the multivariate Gaussian (with K2 = 8/3)
and those of bounded random vectors. Under this as-
sumption, we have the following theorem.

Theorem 2.2 (Upper Bound for Sparse PCA). Let

θ̂1 be the "q constrained PCA estimate in eq. (4) with
ρq = Rq, and let

ε = ‖θ̂1θ̂T
1 − θ1θ

T
1 ‖F and σ̃ = λ1/(λ1 − λ2) .

If the distribution of (X1, . . . , Xn) belongs to
Mq(λ1, λ2, R̄q, α, κ) and satisfies Assumptions 2.1 and
2.2, then there exists a constant c > 0 depending only
on K such that the following hold:

1. If q ∈ (0, 1), then

Eε2 ≤ c min



1 , R2

q

[
σ̃2

n
log p

]1− q
2



 .

2. If q = 1, then

Eε2 ≤ c min



1 , R1

[
σ̃2

n
log
(
p/R2

1

)] 1
2



 .

3. If q = 0, then

[Eε]2 ≤ c min

{
1 , R0

σ̃2

n
log
(
p/R0

)}
.

The proof of Theorem 2.2 is given in Section 3.2. The
different bounds for q = 0, q = 1, and q ∈ (0, 1) are due
to the different tools available for controlling empirical
processes in "q balls. Comparing with Theorem 2.1,
when q = 0, the lower and upper bounds agree up to
a factor

√
λ2/λ1. In the cases of p = 1 and p ∈ (0, 1),

a lower bound in the squared error can be obtained
by using the fact EY 2 ≥ (EY )2. Therefore, over the
class of distributions in Mq(λ1, λ2, R̄q, α, κ) satisfying
Assumptions 2.1 and 2.2, the upper and lower bound
agree in terms of (p, n) for all q ∈ (0, 1), and are sharp
in (p, n, Rq) for q ∈ {0, 1}.

3 Proofs of Main Results

We use the following notation in the proofs. For ma-
trices A and B whose dimensions are compatible, we
define 〈A, B〉 = Tr(AT B). Then the Frobenius norm
is ‖A‖2

F = 〈A, A〉. The Kullback-Leibler (KL) diver-
gence between two probability measures P1, P2 is de-
noted by D(P1‖P2).

3.1 Proof of the Lower Bound (Theorem 2.1)

Our main tool for proving the minimax lower bound is
the generalized Fano Method [9]. The following version
is from [26, Lemma 3].

Lemma 3.1.1 (Generalized Fano method). Let N ≥ 1
be an integer and θ1, . . . , θN ⊂ Θ index a collection of
probability measures Pθi on a measurable space (X , A).
Let d be a pseudometric on Θ and suppose that for all
i )= j

d(θi, θj) ≥ αN

and
D(Pθi‖Pθj ) ≤ βN .

Then every A-measurable estimator θ̂ satisfies

max
i

Eθid(θ̂, θi) ≥ αN

2

(
1 − βN + log 2

log N

)
.

The method works by converting the problem from
estimation to testing by discretizing the parameter
space, and then applying Fano’s Inequality to the test-
ing problem. (The βN term that appears above is an
upper bound on the mutual information.)

To be successful, we must find a sufficiently large finite
subset of the parameter space such that the points in
the subset are αN -separated under the loss, yet nearly
indistinguishable under the KL divergence of the corre-
sponding probability measures. We will use the subset
given by the following lemma.

Lemma 3.1.2 (Local packing set). Let R̄q = Rq −1 ≥
1 and p ≥ 5. There exists a finite subset Θε ⊂ Sp−1

2 ∩
Bp

q(Rq) and an absolute constant c > 0 such that every
distinct pair θ1, θ2 ∈ Θε satisfies

ε/
√

2 < ‖θ1 − θ2‖2 ≤
√

2ε ,

and

log|Θε| ≥ c

(
R̄q

εq

) 2
2−q

[
log(p − 1) − log

(
R̄q

εq

) 2
2−q

]

for all q ∈ [0, 1] and ε ∈ (0, 1].

Fix ε ∈ (0, 1] and let Θε denote the set given by
Lemma 3.1.2. With Lemma A.1.2 we have

ε2/2 ≤ ‖θ1θT
1 − θ2θ

T
2 ‖2

F ≤ 4ε2 (7)

for all distinct pairs θ1, θ2 ∈ Θε. For each θ ∈ Θε, let

Σθ = (λ1 − λ2)θθ
T + λ2Ip .

Clearly, Σθ has eigenvalues λ1 > λ2 = · · · = λp. Then
Σθ satisfies eq. (3). Let Pθ denote the n-fold prod-
uct of the N (0, Σθ) probability measure. We use the
following lemma to help bound the KL divergence.
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Lemma 3.1.3. For i = 1, 2, let xi ∈ Sp−1
2 , λ1 > λ2 >

0,
Σi = (λ1 − λ2)xix

T
i + λ2Ip ,

and Pi be the n-fold product of the N (0, Σi) probability
measure. Then

D(P1‖P2) =
n

2σ2
‖x1x

T
1 − x2x

T
2 ‖2

F ,

where σ2 = λ1λ2/(λ1 − λ2)
2.

Applying this lemma with eq. (7) gives

D(Pθ1‖Pθ2) =
n

2σ2
‖θ1θT

1 − θ2θ
T
2 ‖2

F ≤ 2nε2

σ2
.

Thus, we have found a subset of the parameter space
that conforms to the requirements of Lemma 3.1.1, and
so

max
θ∈Θε

Eθ‖θ̂θ̂T − θθ‖F ≥ ε

2
√

2

(
1 − 2nε2/σ2 + log 2

log|Θε|

)

for all ε ∈ (0, 1]. The final step is to choose ε of the
correct order. If we can find ε so that

2nε2/σ2

log|Θε|
≤ 1

4
(8)

and
log|Θε| ≥ 4 log 2 , (9)

then we may conclude that

max
θ∈Θε

Eθ‖θ̂θ̂T − θθ‖F ≥ ε

4
√

2
.

For a constant C ∈ (0, 1) to be chosen later, let

ε2 = min





1, C2−qR̄q


σ

2

n
log

p − 1

R̄
2

2−q
q




1− q
2





. (10)

We consider each of the two cases in the above
min{· · · } separately.

Case 1: Suppose that

1 ≤ C2−qR̄q


σ

2

n
log

p − 1

R̄
2

2−q
q




1− q
2

. (11)

Then ε2 = 1 and by rearranging (11)

n

C2σ2
≤ R̄

2
2−q
q

[
log(p − 1) − log R̄

2
2−q
q

]
.

So by Lemma 3.1.2,

log|Θε| ≥ cR̄
2

2−q
q

[
log(p − 1) − log R̄

2
2−q
q

]
≥ cn

C2σ2
.

If we choose C2 ≤ c/16, then

2nε2/σ2

log|Θε|
≤ 4C2

c
≤ 1

4
.

To lower bound

log|Θε| ≥ cR̄
2

2−q
q

[
log(p − 1) − log R̄

2
2−q
q

]
,

observe that the function x '→ x log[(p − 1)/x] is in-
creasing on [1, (p−1)/e], and, by Assumption 2.1, this

interval contains R̄
2/(2−q)
q . If p is large enough so that

p − 1 ≥ exp{(4/c) log 2}, then

log|Θε| ≥ c log(p − 1) ≥ 4 log 2 .

Thus, eqs. (8) and (9) are satisfied, and we conclude
that

max
θ∈Θε

Eθ‖θ̂θ̂T − θθ‖F ≥ ε

4
√

2
,

as long as C2 ≤ c/16 and p − 1 ≥ exp{(4/c) log 2}.

Case 2: Now let us suppose that

1 > C2−qR̄q


σ

2

n
log

p − 1

R̄
2

2−q
q




1− q
2

. (12)

Then

(
R̄q

εq

) 2
2−q

=
R̄q

Cq


σ

2

n
log

p − 1

R̄
2

2−q
q




− q
2

, (13)

and it is straightforward to check that Assumption 2.1
implies that if Cq ≥ κq, then there is α ∈ (0, 1], de-
pending only on q, such that

(
1

εq

) 2
2−q

≤


p − 1

R̄
2

2−q
q




1−α

. (14)

So by Lemma 3.1.2,

log|Θε|

≥ c

(
R̄q

εq

) 2
2−q


log

p − 1

R̄
2

2−q
q

− log

(
1

εq

) 2
2−q




≥ cα
R̄q

Cq


σ

2

n
log

p − 1

R̄
2

2−q
q




− q
2

log

p − 1

R̄
2

2−q
q


 , (15)

where the last inequality is obtained by plugging in
(13) and (14).

If we choose C2 ≤ cα/16, then combining (10) and
(15), we have

4nε2

σ2

log|Θε|
≤ 4C2

cα
≤ 1

4
(16)
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and eq. (8) is satisfied. On the other hand, by (12)
and the fact that R̄q ≥ 1, we have

C−q


σ

2

n
log

p − 1

R̄
2

2−q
q




− q
2

≥ 1 ,

and hence (15) becomes

log|Θε| ≥ cαR̄q


log

p − 1

R̄
2

2−q
q


 . (17)

The function x #→ x log[(p − 1)/x2/(2−q)] is increasing
on [1, (p − 1)1−q/2/e] and, by Assumption 2.1, 1 ≤
R̄q ≤ (p − 1)1−q/2/e. If p − 1 ≥ exp{[4/(cα)] log 2},
then

log|Θε| ≥ cα log(p − 1) ≥ 4 log 2

and eq. (9) is satisfied. So we can conclude that

max
θ∈Θε

Eθ‖θ̂θ̂T − θθ‖F ≥ ε

4
√

2
,

as long as C2 ≤ cα/16 and p−1 ≥ exp{[4/(cα)] log 2}.

Cases 1 and 2 together: Looking back at cases 1
and 2, we see that because α ≤ 1, the conditions that
κ2 ≤ C2 ≤ cα/16 and p − 1 ≥ exp{[4/(cα)] log 2} are
sufficient to ensure that

max
θ∈Θε

Eθ‖θ̂θ̂T − θθ‖F

≥ c′ min





1, R̄
1
2
q


σ

2

n
log

p − 1

R̄
2

2−q
q




1
2 − q

4





,

for a constant c′ > 0 depending only on q. !

3.2 Proof of the Upper Bound (Theorem 2.2)

We begin with a lemma that bounds the curvature of
the matrix functional 〈Σ, bbT 〉.
Lemma 3.2.1. Let θ ∈ Sp−1

2 . If Σ + 0 has a unique
largest eigenvalue λ1 with corresponding eigenvector
θ1, then

1

2
(λ1 − λ2)‖θθT − θ1θ

T
1 ‖2

F ≤ 〈Σ, θ1θ
T
1 − θθT 〉 .

Now consider θ̂1, the 'q-constrained sparse PCA esti-

mator of θ1. Let ε = ‖θ̂1θ̂T
1 −θ1θT

1 ‖F . Since θ1 ∈ Sp−1
2 ,

it follows from Lemma 3.2.1 that

(λ1 − λ2)ε
2/2 ≤ 〈Σ, θ1θ

T
1 − θ̂1θ̂

T
1 〉

= 〈S, θ1θ
T
1 〉 − 〈Σ, θ̂1θ̂

T
1 〉 − 〈S − Σ, θ1θ

T
1 〉

≤ 〈S − Σ, θ̂1θ̂
T
1 〉 − 〈S − Σ, θ1θ

T
1 〉

= 〈S − Σ, θ̂1θ̂
T
1 − θ1θ

T
1 〉 . (18)

We consider the cases q ∈ (0, 1), q = 1, and q = 0
separately.

3.2.1 Case 1: q ∈ (0, 1)

By applying Hölder’s Inequality to the right side of
eq. (18) and rearranging, we have

ε2/2 ≤ ‖vec(S − Σ)‖∞
λ1 − λ2

‖vec(θ1θ
T
1 − θ̂1θ̂

T
1 )‖1 , (19)

where vec(A) denotes the 1 × p2 matrix obtained by
stacking the columns of a p×p matrix A. Since θ1 and
θ̂1 both belong to Bp

q(Rq),

‖vec(θ1θ
T
1 − θ̂1θ̂

T
1 )‖q

q ≤ ‖vec(θ1θ
T
1 )‖q

q + ‖vec(θ̂1θ̂
T
1 )‖q

q

≤ 2R2
q .

Let t > 0. We can use a standard truncation argument
[see, e.g., 20, Lemma 5] to show that

‖vec(θ1θ
T
1 − θ̂1θ̂

T
1 )‖1

≤
√

2Rq‖vec(θ1θ
T
1 − θ̂1θ̂

T
1 )‖2t

−q/2 + 2R2
qt

1−q

=
√

2Rq‖θ1θT
1 − θ̂1θ̂

T
1 ‖F t−q/2 + 2R2

qt
1−q

=
√

2Rqεt
−q/2 + 2R2

qt
1−q .

Letting t = ‖vec(S −Σ)‖∞/(λ1 −λ2) and joining with
eq. (19) gives us

ε2/2 ≤
√

2t1−q/2Rqε+ 2t2−qR2
q .

If we define m implicitly so that ε = m
√

2t1−q/2Rq,
then the preceding inequality reduces to m2/2 ≤ m+1.
If m ≥ 3, then this is violated. So we must have m < 3
and hence

ε ≤ 3
√

2t1−q/2Rq = 3
√

2Rq

(‖vec(S − Σ)‖∞
λ1 − λ2

)1−q/2

.

(20)

Combining the above discussion with the sub-Gaussian
assumption, the next lemma allows us to bound
‖vec(S − Σ)‖∞.

Lemma 3.2.2. If Assumption 2.2 holds and Σ satis-
fies (2), then there is an absolute constant c > 0 such
that

∥∥‖vec(S − Σ)‖∞
∥∥
ψ1

≤ cK2λ1 max

{√
log p

n
,
log p

n

}
.

Applying Lemma 3.2.2 to eq. (20) gives

‖ε2/(2−q)‖ψ1

≤ cR2/(2−q)
q

∥∥‖vec(S − Σ)‖∞
∥∥
ψ1

λ1 − λ2

≤ cK2R2/(2−q)
q σ̃max

{√
log p

n
,
log p

n

}
.
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The fact that E|X|m ≤ (m!)m‖X‖m
ψ1

for m ≥ 1 [see
24, Chapter 2.2] implies the following bound:

Eε2 ≤ cKR2
q σ̃

2−q max

{√
log p

n
,
log p

n

}2−q

=: M ,

Combining this with the trivial bound ε ≤ 2, yields

Eε2 ≤ min(2,M) . (21)

If log p > n, then Eε2 ≤ 2. Otherwise, we need only
consider the square root term inside max{} in the def-
inition of M. Thus,

Eε2 ≤ c min



1 , R2

q

[
σ̃2

n
log p

]1− q
2



 .

for an appropriate constant c > 0, depending only on
K. This completes the proof for the case q ∈ (0, 1).

3.2.2 Case 2: q = 1

θ1 and θ̂1 both belong to Bp
1(R1). So applying the

triangle inequality to the right side of eq. (18) yields

(λ1 − λ2)ε
2/2 ≤ 〈S − Σ, θ̂1θ̂

T
1 − θ1θ

T
1 〉

≤ |θ̂T
1 (S − Σ)θ̂1| + |θT

1 (S − Σ)θ1|
≤ 2 sup

b∈Sp−1
2 ∩Bp

1(R1)

|bT (S − Σ)b| .

The next lemma provides a bound for the supremum.

Lemma 3.2.3. If Assumption 2.2 holds and Σ satis-
fies (2), then there is an absolute constant c > 0 such
that

E sup
b∈Sp−1

2 ∩Bp
1(R1)

|bT (S − Σ)b|

≤ cλ1K
2 max

{
R1

√
log(p/R2

1)

n
, R2

1

log(p/R2
1)

n

}

for all R2
1 ∈ [1, p/e].

Assumption 2.1 guarantees that R2
1 ∈ [1, p/e]. Thus,

we can apply Lemma 3.2.3 and an argument similar to
that used with (21) to complete the proof for the case
q = 1.

3.2.3 Case 3: q = 0

We continue from eq. (18). Since θ̂1 and θ1 belong
to Bp

0(R0), their difference belongs to Bp
0(2R0). Let

Π denote the diagonal matrix whose diagonal entries
are 1 wherever θ̂1 or θ1 are nonzero, and 0 elsewhere.
Then Π has at most 2R0 nonzero diagonal entries, and

Πθ̂1 = θ̂1 and Πθ1 = θ1. So by the Von Neumann trace
inequality and Lemma A.1.1,

(λ1 − λ2)ε
2/2 ≤ |〈S − Σ, Π(θ̂1θ̂

T
1 − θ1θ

T
1 )Π〉|

= |〈Π(S − Σ)Π, θ̂1θ̂
T
1 − θ1θ

T
1 〉|

≤ ‖Π(S − Σ)Π‖2‖θ̂1θ̂T
1 − θ1θ

T
1 ‖S1

= ‖Π(S − Σ)Π‖2

√
2ε

≤ sup
b∈Sp−1

2 ∩Bp
0(2R0)

|bT (S − Σ)b|
√

2ε ,

where ‖ · ‖S1 denotes the sum of the singular values.
Divide both sides by ε, rearrange terms, and then take
the expectation to get

Eε ≤ c

λ1 − λ2
E sup

b∈Sp−1
2 ∩Bp

0(2R0)

|bT (S − Σ)b| .

Lemma 3.2.4. If Assumption 2.2 holds and Σ satis-
fies (2), then there is an absolute constant c > 0 such
that

E sup
b∈Sp−1

2 ∩Bp
0(d)

|bT (S − Σ)b|

≤ cK2λ1 max
{√

(d/n) log(p/d), (d/n) log(p/d)
}

for all integers d ∈ [1, p/2).

Taking d = 2R0 and applying an argument similar to
that used with (21) completes the proof of the q = 0
case. !

4 Conclusion and Further Extensions

We have presented upper and lower bounds on the
minimax estimation error for sparse PCA over %q balls.
The bounds are sharp in (p, n), and they show that %q
constraints on the leading eigenvector make estima-
tion possible in high-dimensions even when the num-
ber of variables greatly exceeds the sample size. Al-
though we have specialized to the case k = 1 (for the
leading eigenvector), our methods and arguments can
be extended to the multi-dimensional subspace case
(k > 1). One nuance in that case is that there are
different ways to generalize the notion of %q sparsity
to multiple eigenvectors. A potential difficulty there
is that if there is multiplicity in the eigenvalues or if
eigenvalues coalesce, then the eigenvectors need not be
unique (up to sign). So care must be taken to handle
this possibility.
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