Fast Variational Mode-Seeking

Bo Thiesson
Microsoft Research
thiesson@microsoft.com

Abstract

Mode-seeking algorithms (e.g., mean-shift)
constitute a class of powerful non-parametric
clustering methods, but they are slow. We
present VMS, a dual-tree based variational
EM framework for mode-seeking that greatly
accelerates performance. VMS has a number
of pleasing properties: it generalizes across
different mode-seeking algorithms, it does
not have typical homoscedasticity constraints
on kernel bandwidths, and it is the first
truly sub-quadratic acceleration method that
maintains provable convergence for a well-
defined objective function. Experimental re-
sults demonstrate acceleration benefits over
competing methods and show that VMS is
particularly desirable for data sets of massive
size, where a coarser approximation is needed
to improve the computational efficiency.

1 Introduction

Clustering is a common task in data analysis and
has been successfully applied for knowledge discov-
ery across many application areas. In this paper, we
discuss mode-seeking clustering algorithms, which is
a class of algorithms that define clusters via an iter-
ative process that associates each data point with a
local mode in an underlying kernel density function.
Mean-shift [9, 3, 4] is arguably the best known of the
mode-seeking algorithms.

Compared to parametric clustering methods, such as
mixture modeling, mode-seeking algorithms have a
number of pleasing properties: 1) no limitations are
imposed on the geometric shape of clusters, 2) explicit
a priori knowledge about the number of clusters is not
required, but is more loosely controlled via a kernel-
bandwidth parameter, and 3) they are more robust to
outliers. On the other hand, mode-seeking algorithms
also have acknowledged shortcomings. In particular,

Appearing in Proceedings of the 15" International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2012, La Palma, Canary Islands. Volume 22 of JMLR:
W&CP 22. Copyright 2012 by the authors.

1230

Jingu Kim
Georgia Institute of Technology
jingu@cc.gatech.edu

their time complexities are at least quadratic in sam-
ple size, making them computationally impractical for
data sets of significant size.

Several approximation schemes have over the years
been proposed to address the scalability problem for,
in particular, the mean-shift algorithm (e.g., [20, 21,
10, 1, 5]). Many of these approximation schemes offer
guaranteed error bounds on each iterative mean-shift
update or on computationally demanding parts of the
update, but none of them offer guaranteed convergence
due to the lack of a well-defined objective function.
Although convergence is highly likely for a tight ap-
proximation bound, convergence becomes more of an
issue if a coarser approximation is needed for improved
computational efficiency.

We introduce the first approximation scheme for mean-
shift that is truly sub-quadratic in sample size while
at the same time enjoying provable convergence for
a well-defined objective function at any level of ap-
proximation. In addition, without depending on tun-
ing parameters (beyond the desired level of approxi-
mation), our approach offers a very tight control over
the approximation error, resulting in it generally be-
ing faster than its competitors at reaching a solution
of same quality, as we demonstrate in Section 6. We
target relatively low dimensionality (up to ten), where
mean-shift clustering has proven most successful.

Furthermore, it is a demonstrated fact (see,e.g.,[6, 10])
that when the feature space differs significantly across
data, a global bandwidth parameter used across all
kernels will introduce problems for the mean-shift al-
gorithm. In areas where data are sparse, a small band-
width will not allow data points to move, creating indi-
vidual clusters for each of them. On the other hand, in
dense data areas, a larger bandwidth may cause data
points to converge incorrectly to modes of otherwise
separate clusters. In contrast to some strong competi-
tors, our approach allows different local bandwidths at
individual kernels, hence also enabling the acceleration
of the so-called adaptive mean-shift [6].

The elegant interpretation of mean-shift as a (general-
ized) EM algorithm in [1] provides important ground-
work for our acceleration method. This interpretation
splits a mean-shift update into explicit E- and M-steps.
The E-step is the computationally expensive part re-
sponsible for the quadratic complexity. We alleviate

Fast Variational Mode-Seeking

this computational burden by a variational approxi-
mation relying on two partition trees: one for data
that are shifted towards local density modes and one
for kernels that define the underlying density function.
As in a standard dual-tree framework [12], we maintain
certain statistics in the nodes of these trees, allowing
us to efficiently compute the variational distribution
in the E-step. It is key to the efficient variational ap-
proximation that these statistics factor into separate
kernel and data parts. To simplify the presentation,
we use Gaussian kernels for demonstration in this pa-
per, although any kernel from the exponential family
of distributions will satisfy the separation property.

Finally, we demonstrate that alternative mode-seeking
algorithms, such as medoid-shift [16] and quick-shift
[19], can also be represented in the (generalized) EM
view of mode-seeking. In this view, they all share the
same E-step and only differ in their respective M-steps.
By targeting the computational burden of the E-step,
our variational mode-seeking framework can therefore
be used across all of these algorithms. To avoid dis-
tracting from the general idea behind the variational
mode-seeking framework, we will focus on the mean-
shift algorithm in the main paper and refer the reader
to the supplementary Appendix A for specific algorith-
mic details on the mode-seeking alternatives.

2 Related acceleration work

There has been much work on accelerating mode-
seeking algorithms. Most of this work explores dif-
ferent ways of reducing the number of terms involved
in the weighted kernel sums that define the update for
a data point (see, e.g., the sums over m involved in
the mean-shift update (4) or (6)). There are two ba-
sic principles behind these approaches: One is to argue
that most of the contribution to a sum comes from ker-
nels located within a neighborhood of the data point
and therefore ignore the contribution from kernels fur-
ther away. Another is to pre-compute statistics that
can be used to approximate parts of a weighted kernel
sum across the update for many different data points.

The work in [20] falls into the second category and
is arguably the most similar to our approach. Both
approaches involve a dual-tree framework [12], where
separate space partitioning trees (e.g., a kd-tree [8] or
ball-tree [2]) are constructed for, respectively, the data
and the kernels. By recursing on the nodes in the two
trees, smaller parts of the data and kernels are selected
together, which tightens the approximation. The stop-
ping criterion that [20] provides for the recursion is
based on an error bound tailored to a mean-shift up-
date and further restricted to homoscedastic kernels.
Our approach does not have these restrictions and dif-
fers further in the following two ways: 1) The approx-
imation at data and kernels nodes is based on a vari-
ational approach that is better suited for approxima-
tions at higher levels in the trees. 2) We recast a shift

1231

update into a log-likelihood optimization problem and
provide a provably convergent approach that tightens
a lower bound of the log-likelihood as we recurse in the
trees. It allows us to control the recursive expansion of
the trees in a tighter way than [20], which becomes im-
portant because the computational efficiency (in both
approaches) is jeopardized if the recursive expansion
continues to a very granular level.

In [21, 15], a very successful acceleration of mean-shift
draws efficiency from both of the above mentioned
basic principles, but it is restricted to homoscedastic
Gaussian kernels by applying an improved fast Gauss
transform (IFGT) to efficiently evaluate (weighted)
sums in the mean-shift update. The IFGT approach
first partitions the kernels using a k-center flat clus-
tering algorithm (e.g. [7]) and caches statistic for each
cluster based on a truncated set of decaying basis func-
tions. The weighted sums involved in the mean-shift
update for each data point can now be efficiently com-
puted by collecting the contribution from kernels in
neighboring clusters, using the cached statistics.

In [10], mean-shift is combined with local sensitive
hashing (LSH) [11]. The approach falls into the first
category of acceleration principles by using LSH to find
the neighborhood of kernels that contribute the most
to a shift update for a given data point. LSH involves
a computationally intensive tuning phase, and on that
account, [20] reports significantly better performance
at higher accuracy for both of the above dual-tree and
IFGT based approaches on standard image segmen-
tation tasks and comparable results on higher dimen-
sional experiments (d = 16).

Relating to the variational aspect of our approach,
Carreira-Perpifidn [1] provides the interpretation of
mean-shift as an EM algorithm and touches on a vari-
ational view, known as sparse EM [14]. This interpre-
tation of mean-shift partially applies the second accel-
eration principle by infrequently using all kernels in an
update and otherwise performing updates based on a
partial set only. However, due to the (infrequent) use
of all kernels in an update, the computational complex-
ity is still quadratic in sample size, and is therefore not
appropriate for very large data sets.

Finally, among other more heuristic acceleration ap-
proaches, down-sampling [5] is a popular pragmatic
way of reducing the computational complexity. This
approach is obviously orthogonal to the above acceler-
ation principles and can be used in combination.

3 Mode-seeking Clustering

Let us start by defining the normalized kernel function

1

p(xlﬂvz) = TK(DZ($7M))ﬂ (1)
b

where z € R?, K is the kernel profile, D is a squared

distance metric depending on the kernel location p €

Bo Thiesson, Jingu Kim

R¢ and positive definite bandwidth matrix ¥ € R¢ x
R?, and Z is a normalization constant depending on
3 only. For a standard Gaussian kernel, the profile
K(z) = e~ 27 is defined with the squared Mahalanobis
distance 2 = Dx(z,pu) = (v — p)T2 Yz — p) and
normalization Zs, = |273%|2 .

Given M data points g = {1, ..., pun} C R we can
express the kernel-density estimate as the M compo-
nent mixture model

M
p(x) =) p(m)p(z|m) =

m=1

M Z I‘Mm, m ()

where p(m) = ﬁ and for later notational convenience
p(z|m) = p(x|thm, Xm). Notice how we allow kernels
with different bandwidth matrices, giving us a het-
eroscedastic density estimator. It simplifies to a ho-
moscedastic density estimator if 3, = X for all m.

Mode-seeking clustering embraces a class of different
methods, which all are characterized by iteratively
moving data points upward towards the modes in
the kernel density estimate p(z). During this mode-
Seeking process, each data point moves along a trajec-
tory z!, t > 0, starting from 20 = p,,. (Notice that
we index moving data by n and the fixed data—i.e. ker-
nel locations—by m.) Clusters are finally defined as the
data that have converged to the same mode.

Mean shift, as first introduced in [9] and later for-
malized in [3], is arguably the best known among
the mode-seeking algorithms, and many others have
later contributed to theoretical aspects hereof. Let
K'(2) = dK(). Iterating the mean-shift update

attl = argmaxZDg (#, im) 7K' (Ds,, (7, ptm))

z€ER4

(3)
will, for kernels with monotonically decreasing and
convex profile, guarantee convergence to a mode of
p(z) [6]. The representational form in (3) is due to
Sheikh et al. [16]. Setting the first derivative to zero
and solving for x will result in the well-known update
for heteroscedastic kernels from [6], which for standard
Gaussian kernels can be expressed as

et = (3, p(ah m)Sl) TS, pah [m) S e (4)
= (3, p(mlat) St TS, p(mlat) S0 i (5)

The last equality follows by recalling that p(m

_ 1

) = 3t
CALORE
Mptar)- This

representation of the mean-shift update has also been
discussed in [1] and later becomes important for the
intuition behind our variational approach. For ho-
moscedastic kernels, updates (4) and (5) simplify as

R o TEE W L ATSNC

The complexity of the mean-shift algorithm is O(M?).

and using Bayes’ theorem p(m|z) =

1232

4 Variational Mode-seeking

The general idea behind the variational mode-seeking
framework is to replace the posteriors used in the
mode-seeking update formula (see (5) and (6)) with
variational approximates that have low computational
cost and at the same time provide a good approxima-
tion. We accomplish this task by applying a varia-
tional view on mode-seeking inspired by the EM inter-
pretation of mean-shift in [1].

A trick behind the EM interpretation is to reverse the
typical maximum likelihood estimation for the mixture
in (2) in the sense that we optimize with respect to an
observation x instead of the parameters in the distri-
bution. We will call this view the reverse likelihood
view. In our framework, we handle all the data points
x! = {zt,... 2%, } simultaneously and therefore con-
sider the joint reverse log-likelihood

M
= logp(x,) = Z log Z
n=1

Let us introduce variational (conditional) probabilities
g(m|n), n,m € {1,..., M}, where g denotes the joint
variational distribution that factorizes with respect to
each q(-|n), i.e. ¢ =[], ¢(-|n). By applying Jensen’s
inequality, we can lower bound the reverse likelihood:

p(xn|m).

L(x) = Zlogz m|n q(nibﬁ:;m)
> 3 Y atm s XTI ()

(
= ZZ(] (m|n)logp(zx,)
- m|n)lo 7q(m|n)

2 2 almin)log oS

= ZKL

F(z,q),

n)lp(-zn)] (8)

(1>

where K L[||-] denotes the Kullback-Leibler divergence
between two distributions.

For a well-behaved (upper bounded) L(x), the varia-
tional generalization [14] of the EM algorithm can be
used to maximize a lower bound by alternating the
following two steps, i.e. coordinate ascent, on F(x,q)
until guaranteed convergence:

E-step: ¢'t! = arg max F(z', q) (9)
qeQ

M-step: 't = argmax F(z, ¢'t"), (10)
reEX

where Q and X’ denote, respectively, the family of vari-
ational distributions for ¢ and the space for x.

Importantly, we have flexibility to restrict the sets
Q and X over which the maximization problems are

Fast Variational Mode-Seeking

solved. Restricting Q and X has two different pur-
poses. The restrictions on Q alleviate the computa-
tional burden of the E-step across the mode-seeking
algorithms, whereas restrictions on X determine the
choice of the mode-seeking algorithm that we apply.

Regarding the choice of Q, let us consider the E-step
with a decomposition of F(x!,q) as in (8). Since only
the KL-divergence term depends on ¢, it follows that if
Q is not constrained in any way, the E-step optimiza-
tion produces g(m|n) = p(m]zt); that is, the varia-
tional probabilities ¢(-|-) are the same as the posterior
membership probabilities p(-|-) used in the update for-
mula for the mode-seeking algorithm. In Section 5.2,
we show how to design a restricted family Q in a princi-
pled way that allows us to tie the dual-tree framework
into a variational approximation and thereby achieve
a very efficient algorithm for solving the E-step.

Variational mean shift is achieved by not impos-
ing any constraints on X. Taking the derivative for
the expression of F(z,¢' ™) in (7) and setting to zero
will for heteroscedastic Gaussian kernels result in the
following M-step optimization

S (mI0) S5 .

= (e (mn) 25
(11)

Notice that this expression is equivalent to the mean-
shift update in (5) except that the variational prob-
abilities g(m|n) replace the posterior probabilities
p(m|x,). When Q is also unrestricted, the variational
EM framework for mean-shift is equivalent to the in-
terpretation in [1] as standard EM.

-1

5 Dual-tree based variational
acceleration

The class of variational distributions Q is the key
component that significantly affects computational ef-
ficiency in our variational mode-seeking framework.
The restrictions on Q are designed to simplify the
process of solving the E-step in (9) while maintain-
ing K L[q(:|n)||p(-|xy)] as small as possible. Efficiency
is achieved by starting from a very restricted Q and
then gradually loosening the restrictions until a desired
accuracy is obtained for the E-step.

Algorithm 1 shows the main flow of an update itera-
tion in variational mode-seeking. The actual M-step
(in Line 11) is the only difference between variational
mean-shift and the alternatives in the Appendix A.
Details for the algorithm are provided in the following
subsections—indicated by comments—and the algorithm
should for now just be considered as a point of refer-
ence to return to, as the basic concepts are introduced.

5.1 Partition trees

We maintain two partition trees: one for the data
points ® = {z1,...,2}, which are shifted towards
the modes, and one for the kernels, which we for

1233

Algorithm 1: VARIATIONAL MODE-SEEKING (one iteration)

1: Build kernel & data partition trees //Sec. 5.1
2: Set sufficient statistics in the trees //Sec. 5.4
3: Initial B-sTEP //Sec. 5.3 (Algo. 2)
4: E-step //Sec. 5.4 (Algo. 3)
5. F=Eq(14), Fob = F //Sec. 5.4
6: repeat
7: Refining B-STEP //Sec. 5.3
8: E-sTEP
9: F' =F F=Eq (14)
10: until (F - F')/(F — Fp) < €
11: M-stepP //Sec. 5.5

convenience will identify by just their fixed locations
p={p1,...,uar}. We will refer to these two trees as,
respectively, the data partition tree and the kernel par-
tition tree. The goal behind the partition trees is to
be able to reason about the effect of a group of ker-
nels (represented by a node in the kernel tree) on a
group of data (represented by a node in the data tree)
without having to access individual data or kernel el-
ements repeatedly. This is achieved by pre-computing
and storing sufficient statistics with every node in a
tree, as discussed further in Sections 5.4 and 5.5.

Any hierarchical decomposition of data (kernels) that
ensures some degree of similarity between data (ker-
nels) in a node is suitable for a partition tree. We
exemplify our work by using ball trees, constructed
in O(M log M) expected time via the anchor method
[13]. It should be noted that during this construction,
all distance computations use the same distance met-
ric. This assumption is appropriate for constructing
the data partition tree, because data simply specify
a location in a given space. However, in contrast to
data, each kernel in addition imposes its own distance
metric, which in principle should be accounted for dur-
ing the construction. For homoscedastic kernels, all
distance metrics are the same and therefore not an is-
sue. For heteroscedastic kernels, it suffices to ignore
the heteroscedasticity, because only a rough hierarchi-
cal clustering is needed at this stage of our approach
— heteroscedasticity will be accounted for later in the
mode-seeking clustering process.

The data partition tree is reconstructed for every iter-
ation in the mean-shift clustering process, because the
data shift. In contrast, the underlying kernel density
is fixed and the kernel partition tree will therefore not
change during the clustering process.

5.2 The Block-constrained Variational
Distribution

Let us now describe how the data and kernel
partition trees tie into the wvariational approxima-
tion by enabling us to define what we call block-
constraints on the variational distribution. Let P =
{(A1,B1),...,(Ap, Bp)} define a mutually exclusive
partition of the product space of data and kernels,
where A, is a group of the data and B, is a group
of the kernels, corresponding to nodes in the two re-

Bo Thiesson, Jingu Kim

spective trees. The idea behind this partition is to
group data and kernels together for which kernels are
unable to differentiate between the data in any signif-
icant way. We denote (A4,, Bp) as a block and, hence,
the partition as a block partition.

Our variational distribution ¢ will for all the data in a
block assign the same variational membership proba-
bility for all the kernels in the block. That is,

g(m|n) = q(Bp|A,) for all (n,m) € (4, B,), (12)
where (n,m) € (A,,B,) is a convenient notation for

(@, (| o, Zm)) € (Ap, Bp). Figure 1a) shows a block
partition where, e.g., ¢(3|5)=¢(3]6)=q(4]5)=q(4]6).

{9-g'p -£}
@,

{9-g'v' 2 TH)

=4
(=
(]

[t}

==
=
M
e}

b

Figure 1: a) A block partition (table) for data partition
tree (top) and kernel partition tree (left). b) MPT
representation of the block partition.

The variational distributions ¢(-|n) are standard prob-
ability distributions and must therefore satisfy the
sum-to-one constraint » ., ¢(m|n) = 1. By integrating
the sum-to-one constraints into the block constraints
in (12) we obtain the following M constraints

Zp:neAp |Bplg(Bp|Ap) =1foralln e {1,...,M}.
(13)
Notice that the constraint associated with data point
n involves exactly those ¢(B,|A,) for which n € A4,
in the block partition. In Figure 1a), the variational
probabilities involved in the n’th constraint are there-
fore those ¢(Bp|A,) encountered at blocks in the col-
umn under data leaf n in the block partition table. For
example, for the data partition leaf with data point
n = 1, the corresponding constraint is ¢(1|1)+q(2|1H+
2¢(3—4]|1-2)42¢(5—6|1-2) =1, where g(m1—ma|n1—na)
denotes the probability assigned to the block with ker-

nels my through msy and data points n; through ns.

The constraints in (13) complicates the E-step opti-
mization of g, because they are intertwined in the sense
that some variational probabilities involved in one con-
straint may also appear as a part of another constraint.
Fortunately, this complication can be alleviated, be-
cause it is possible to represent the block constraints
in the form of a so-called marked partition tree, MPT
[18]. A MPT is similar to the data partition tree, but

1234

with an additional encoding of which data groups re-
late to which kernel groups in the block partition: For
each (A4,,Bp) € P, a tree node corresponding to A, is
marked with B,. As an illustration, Figure 1b) shows
the MPT corresponding to the partition in Figure 1a).
It should be noted that our representation of the MPT
is slightly different from the one defined in [18]. Our
MPT allows a group of kernels (mixture components
in [18]) in a block to be marked together instead of
insisting on individual marks for each of the kernels in
the block. (E.g., the marks B, € {3—4,5—6} instead of
the marks B, €{3,4,5,6} for A, = 1-2 in Figure 1b).)
This difference improves computational efficiency.

By construction, each path from a leaf n to the root
in the MPT has the important property that it marks
all B, for which n € A, and (4,,B,) € P. The MPT
therefore defines all the constraints in (13). However,
the MPT has the additional benefit of representing the
constraints in an explicit tree structure, which enables
the efficient estimation of ¢ in the E-step to be de-
scribed in Section 5.4.

5.3 The B-step — Initial & Refining

The important question is now how to choose a good
block partition and hence the constraints we impose
on Q. It is important, because the number of blocks
in the partition determines the complexity for an iter-
ation in the variational mode-seeking algorithm. We
cannot get below the expected O(M log M) required
to build a partition tree, but if we are not careful the
partition could have many more blocks. Worst case is
M? blocks, which happens if the partition strategy is
completely ignorant to any grouping of data or kernels.

Lines 3-10 in Algorithm 1 address the question of re-
stricting Q. An initial B-step restricts Q by construct-
ing the coarsest block-partition, such that any node in
the data partition tree does not overlap with any node
in the kernel partition tree. The space that a node
occupies is here defined by its center and a radius, de-
termined as the distance Dyx(+,) to the node element
furthest away from the center. (We still ignore het-
eroscedasticity by using the average 3 in these distance
computations.) If nodes overlap, it is highly likely that
different kernels in a kernel node will have very differ-
ent affect on data in a data node, and they should
therefore not be blocked together. A generic recursive
structure for finding an initial partition is sketched in
Algorithm 2 and starts from the roots of the two trees.
Here, Ich(A) and rch(A) are graph properties denoting
the left and right child for node A, and cena, rada,
and mkd, are the attributed center, radius, and set of
MPT-marks that decorate the node.

Let L denote the number of refinable blocks in the
initial partition. That is, blocks containing more than
one data or kernel element. Given the initial block par-
tition, refining B-steps now further refine the L most
promising blocks at each step. A block is considered

Fast Variational Mode-Seeking

Algorithm 2: RECBLOCK(A, B): Initial B-step

if NOOVERLAP(A, B) then
Append B to mkda
else if LEAF(A) and LEAF(B) then
Append B to mkda
else
if rada > radp then
RECBLOCK(Ich(A), B), RECBLOCK(rch(A), B)
else
RECBLOCK(A, lch(B)), RECBLOCK(A, rch(B))
end if
end if

//Block (A, B) in MPT

//Block (A, B) in MPT

more promising for a refinement if it has a larger value
of K(Dpin(A, B)) — K(Dpaxz(A, B)), where

Dpin(A, B)=Dsx(cena,ceng)—rada—radp
Doz (A, B)=Ds(cena,ceng)+rada+radp

are the minimum and maximum possible distances be-
tween elements in the two nodes.

Importantly, any refinement enlarges the family of
variational distributions by loosening some of the con-
straints imposed by the block partition structure. A
refinement will therefore always result in a tightened
lower bound for the log-likelihood. We can measure
the improvement by evaluating F(x, ¢) and stop refin-
ing when the relative improvement is less than a small
threshold € (Line 10 of Algorithm 1). An efficient eval-
uation of F(x, q) basically runs an E-step to obtain ¢
and then uses (14) to efficiently evaluate F(x,q) from
sufficient statistics stored in the MPT — as described
in detail in the next section.

5.4 The Efficient E-step

With the representation of block constraints on the
variational distribution, as in (12), the decomposition
of F(x,q) in (7) reduces to

Flz.q) = Y |A]1Bpla(BylAy) (14)

p=1

x [—log q(By|Ap) + H(By) + G(By|Ap)]
where, for p(m) = 1/M,

H(B,) = \Bl,,\ Z logp(m) = —log M
meB,

G(Byl4y) = MJW Z Z log p(zn|m).

n€A, meB,

Notice that the block-specific G(B|A) is the only part
of F(x,q) that depends on specific data and kernels.

We integrate the constraints in (13) into the maximiza-
tion of F(x, ¢) with respect to ¢ by use of the Lagrange
multiplier method. Introducing the Lagrange multipli-
ers A = (\1,...,A\y), we construct the Lagrangian

Z |Bpla(Bp|A4p)—1

pnEA,

M
F(@,q,\) = F(@,a)+Y A
n=1

1235

By setting 0F (x, ¢, A)/0q(Bp|Ap) = 0 and solving for
q(Bp|Ap), we obtain

= exp(ﬁ Z An— 1)

xexp (H(Bp) + G(By|4,)),(15)

‘IA(BP|AP)

where the A subscript in gx(Bp|A,) indicates that this
solution is still a function of A.

A closed-form solution to the constrained optimization
problem can now be found by inserting gx(B,|4,) into
the constraints in (13) and then exploit the tree struc-
ture of these constraints, as represented by the MPT,
to gradually solve for A. Following, by inserting this A
back into (15), we finally obtain the optimal value for
the variational probabilities ¢(By|A4,), p=1,...,P.

The way X is resolved relates to a solution in [18, Ap-
pendix] for a similar problem, where the basic struc-
ture of ¢y is the same as in (15) and constraints have
also been organized into a MPT. An important differ-
ence is that the G(Bp|A,) in our ¢ expression, besides
data statistics, also includes statistics for kernel pa-
rameters. We will refer to Appendix B for a detailed
derivation of this solution, but will account for the
derivation of the G(B,|A,) statistics in detail below.
To ease implementation, we also include a detailed al-
gorithmic procedure for finding the solution in Algo-
rithm 3. The complexity of the E-step is O(P), where
P is the number of blocks in the block partition.

Algorithm 3: E-step
Define: 5
C(A) = X pemra, i exp (G(B|A))

Dicna
K(A) = [ren(a) 1og (52252) o+ Kioncay + Krenca

//G(B|A)=Eq.(16)

D(A) = C(A) exp (F4+) + Dicnca)

//Collect-up
for all data nodes A € M PT; traversed bottom-up do
if LEAF(A) then
Ka=0,Ca=C(A), Dy =Cay
else
Ka=K(A), Ca =C(A), Da = D(A)
end if
end for

//Distribute-down
for all data nodes A € M PT; traversed top-down do
if RooT(A) then
Aa =1— log(DA)
else if not LEAF(A) then
Aleh(A) = Aa
Arcn(a) = Aa +10g(Dicn(a)) — 1og(Dren(a))
end i
for all kernel nodes B € mkda do

K
a(BIA) = exp (A4 — 1+ 18 + G(BIA)) &
end for
end for

Sufficient statistics. It is key to the computa-
tional efficiency of the variational E-step that sufficient
statistics for G(B,|A,) factorize into data-specific and
kernel-specific statistics and in this way avoids the
computation of statistics on the product space of data

Bo Thiesson, Jingu Kim

and kernels. These statistics can therefore be pre-
computed separately and stored at the nodes in the
respective partition trees prior to the actual mode-
seeking process. For heteroscedastic Gaussian kernels

G(BP|AP) WI‘BM Z Z Ing(xn“/anm)
ne€A, meB,
mGB
T
tratEr 2 D @n =) S0 (=)]
neA, meB,
=c— 1 [<log|Sn[>p, +<uh S0 wm>B, (16)

+Tr (<S> anal>a) — 2<pl S >p<w,>a)

where ¢ = —%dlog 27, d is dimensionality, <->4 and
<->p, denote averages over n € A, and m € By,
respectively, and Tr(-) denotes the trace of a matrix.
Importantly, we see that the sufficient statistics in (16)
factorize into data-specific and kernel-specific parts.

For the homoscedastic kernels, G(Bp|A,) simplifies to

1 _
G(BplAy) = c— 5 [log |Z| + Tr(S~" <ph pm>g,)

+Tr(E7 <wpal>a) — 2<pl >p, S <wy>a,)

5.5 The Efficient M-step

The M-step shifts each data point z!, according to an
optimization, specific to each mode-seeking algorithm.
(See Appendix A for alternatives to mean-shift.)

Mean-shift. Recall that after the E-step, the nodes
in the MPT contain the computed ¢'*1(B,|A4,), and
that ¢"*1(m|A,) = ¢'T1(B,|Ap) for all m € B,. Using
the variational update formula in (11) the update for
heteroscedastic kernels can therefore be expressed as

-1

xfj_l = Z |Bp‘qt+1(Bp|Ap)<Er_nl>Bp
pnEA,

X Z |Bp‘qt+1(Bl)‘Ap)<E;zl,u7n>Bp-

pnEA,

For homoscedastic kernels, this expression simplifies to

gl = Z |Byla" (Bl Ap) <Nm>BP,

pned, Zp:néAp |Bp‘qt+1(Bp‘Ap)
We can compute the above updates efficiently, because
the statistics <E,’n,1,um>3p, <E;11>Bp, and <pt,,>p,, have
already been pre-computed and stored in the kernel
partition tree prior to the mode seeking. Conceptu-
ally, one can imagine the M-step as following the path
from leaf n to the root in the MPT, while computing
the update for each zf,. A more efficient implemen-
tation will traverse the MPT top-down, avoiding re-
calculations of the shared terms for the updates. This
traversal has complexity O(P).

1236

6 Experiments

The first group of experiments compare our variational
mode-seeking (VMS) acceleration with the standard
(STD) un-accelerated approach, the dual-tree (DT)
acceleration from [20], and the IFGT acceleration from
[21] with parameter tuning as in [15]. We compare
performance on the mean-shift algorithm since this
is the only algorithm for which all three acceleration
methods are defined. Still, comparisons are compli-
cated by the fact that they all have non-comparable
types of error bounds, and both the acceleration and
cluster quality is affected by choices made for each
method’s bound. To enable meaningful comparisons
among VMS, DT, and IFGT, we therefore fix the qual-
ity of a mean-shift update while measuring accelera-
tion. This is done by running VMS to a certain value
of its error bound and then calibrate the bounds for
the alternative methods to obtain an update of same
quality as VMS. Here, quality is measured by the ap-
prozimation error defined as the average Euclidian dis-
tance to the STD update for each data point. In these
first experiments, we report results for one update step
and not at final convergence in order not to compound
with other factors (e.g., different number of update
steps before convergence).

We generated synthetic data with varying sample size
and dimensionality. The data were in all cases drawn
randomly from 100 random-shaped Gaussians with
random location in the unit-hypercube, and truncated
to the unit-hypercube. In all experiments, we use a
homoscedastic spherical Gaussian kernels with band-
width set as the average distance to the k’th nearest
neighbor for each data point, where k is a fraction of
the sample size. We varied one of four experimental de-
fault settings at a time: sample size M = 40, 000, num-
ber of dimensions d = 2, number of nearest neighbors
k = M /1000, and the approximation level ¢ = 0.01.

Table 1 shows the results. Entries with an X’ de-
note that the algorithm exhausted RAM, hence cor-
rupting timing results by page swapping, and entries
with an ’oo’ denote that experiments were slower than
STD and therefore stopped. First of all, we see that
VMS significantly improves the computational effi-
ciency over STD in all experiments while keeping the
approximation error very low (<1073). As expected,
sample size has a positive effect on the speedup, with a
computational complexity for VMS dramatically lower
than O (M 2) and almost (but not quite) approaching
O (Mlog M). The dimensionality has a negative ef-
fect on the speedup, but still at dimension 10 we see
a moderate speedup for 40,000 samples. Surprisingly,
and in sharp contrast to the DT algorithm, the kernel
bandwidth (determined by k) did not affect the per-
formance of VMS. We discovered the reason by inves-
tigating the detailed experiment logs: The variational
approximation that VMS uses to handle kernels and
data that are blocked together is much better than

Fast Variational Mode-Seeking

Table 1: Running time (in seconds) and approximation
error for synthetic experiments.

100 Gaussians, d =2, k = M /1000, ¢ =0.01
Algo /M | 5,000 | 10,000 | 20,000 | 40,000 | 80,000
STD 146 590 2165 8433 35590
IFGT 00 0 486 738 1520
DT 8 29 99 366 1381
VMS 7 19 61 145 313
Error 6E-5 2E-4 4E-4 5E-4 4E-4
100 Gaussians, M = 40,000, k = M /1000, ¢ =0.01
Algo / d 2 4 6 8 10
STD 8433 8501 8972 10221 10186
IFGT 738 0o 0o o] o]
DT 336 2350 4726 5196 6815
VMS 145 1199 1761 2010 2276
Error 5E-4 8E-4 7TE-4 5E-4 4E-4
100 Gaussians, M = 40,000, d =2, ¢ =0.01
Algo / k 4 40 400 4000 8000
STD 8567 8433 8457 8677 8672
IFGT 00 738 101 34 16
DT 90 366 2120 X X
VMS 57 145 118 122 125
Error 3E-5 5E-4 8E-4 1E-3 9E-4
100 Gaussians, M = 40,000, d =2, k = M /1000

Algo [€ 0.1 0.01 0.001

STD 8433 8433 8433

IFGT 512 738 1002

DT 339 366 631

VMS 49 145 642

Error 1E-3 5E-4 8E-5

the approximation in DT. Starting from a very course
block partition, MPT only needs a few refining B-steps
(<10 for our 2-d experiments, but increasing with di-
mensionality) to achieve a good approximation, which
is not the case for DT. Since the block granularity
dominates the complexity in the dual-tree based al-
gorithms, VMS does much better. Finally, the table
shows that VMS is better than the competing approx-
imation algorithms, except for extremely high band-
width kernels, where IFGT is best—still VMS does very
well in that situation. Finally, lowering e will favor DT
at the cost of speedup over STD. However, our exper-
iments are run for relatively small data sets, because
of the necessity to run STD for error bound alignment
across methods. Data sets of massive size will demand
a coarser approximation (with higher €), which we can
see will highly favor VMS.

In the second group of experiments, we compared the
acceleration methods on image segmentation tasks.
We used the first ten images from the Berkeley seg-
mentation data set [17] transformed to the CIE LUV
color space and normalized to the unit cube. Al-
though the target of our VMS method is data sets
of much larger size, we reduced all images to 85 x 128
(or 128 x 85) pixels, again to enable the error bound
alignment necessary for comparisons between the ac-
celeration methods (in reasonable time). We used the
same default settings as in the synthetic experiments,
and ran mean-shift to convergence (with error bounds
calibrated according to the first update step). Fig-
ure 2 shows the speedup factor for DT and VMS over
STD (IFGT is slower) and the approximation error af-
ter the first update and at convergence. We see that
VMS is faster in all cases and with a lower error in

1237

all but two cases. Figure 3 offers a visual examina-
tion of the segmentation results for one of the average
performing images—without any post-processing of the
final clusters. The color segmentation for STD seems
well approximated by both acceleration methods.

Speedup

Error
®m DT-one = VMS-one ® DT-final m vMS-final

159029 20008 155060 286092 100075 61060 46076 301007 26031 232038

Figure 2: Speedup (top) and error (bottom) for image
experiments. Labels at bottom are image identifiers.
The bars are in order DT, VMS after one iteration and
DT, VMS at final convergence.

Figure 3: Image 100075. Original image followed by
STD, DT, and VMS color segmentations.

In a final group of experiments, we demonstrate that
VMS can, in fact, handle heteroscedastic kernels, as
opposed to the two competing acceleration methods.
(The importance of this property is already demon-
strated in [6, 10].) We used the same setup as in the
previous image experiments, except that each kernel
now has an individual bandwidth set as the distance to
its k’th nearest neighbor. Being constrained on space,
we only summarize the results here. Compared to
VMS with homoscedastic kernels, VMS learned with
heteroscedastic kernels on average improved the ap-
proximation error to a heteroscedastic STD update by
almost 50%, at the small cost of being 5% slower.

7 Conclusion and future work

We have presented VMS, a fast dual-tree based varia-
tional EM view on mode-seeking. The variational EM
view targets the E-step only, thereby allowing gener-
ality across different mode-seeking algorithms. By ap-
plying a dual-tree data structure we obtain speed while
the variational approximation maintains the quality of
results. VMS works well across a wide range of band-
widths and is the fastest existing way (we know of) to
accelerate large-sample mode-seeking for lower band-
widths. In future work, we plan to further explore ker-
nelization of the distance measure in hope of extending
VMS to manifold learning in higher dimensions.

Bo Thiesson, Jingu Kim

Acknowledgment

We thank Dongryeol Lee for helpful discussions on the
error bound for the dual-tree acceleration from [20].
The work of Jingu Kim was done during an internship
at Microsoft Research.

References

[1] M. A. Carreira-Perpindn. Gaussian mean-shift is
an EM algorithm. IEEFE Trans. Pattern Anal. and
Mach. Intell., 29(5):767-776, 2007.

[2] E. Chavez, G. Navarro, R. Baeza-Yates, and J. L.
Marroqun. Proximity searching in metric spaces.
ACM Computing Surveys, 33:273-321, 2001.

[3] Y. Cheng. Mean shift, mode seeking, and clus-
tering. IEEFE Trans. Pattern Anal. Mach. Intell.,
17:790-799, 1995.

[4] D. Comaniciu and P. Meer. Mean shift analysis
and applications. In Proc. Int’l Conf. Computer
Vision, volume 2, pages 1197-1203, 1999.

[6] D. Comaniciu and P. Meer. Mean shift: A
robust approach toward feature space analysis.
IEEE Trans. Pattern Anal. and Mach. Intell.,
24(5):603-619, 2002.

[6] D. Comaniciu, V. Ramesh, and P. Meer. The
variable bandwidth mean shift and data-driven
scale selection. In Proc. 8th IEEE Int’l Conf. on
Computer Vision, pages 438-445, 2001.

[7] T. Feder and D. Greene. Optimal algorithms for
approximate clustering. In ACM Symp. Theory
of Computing,, pages 434—444, 1988.

[8] J. H. Friedman, J. L. Bentley, and R. A. Finkel.
An algorithm for finding best matches in logarith-
mic expected time. ACM Trans. Math. Softw.,
3:209-226, September 1977.

[9] K. Fukunaga and L. Hostetler. The estimation of
the gradient of a density function, with applica-

tions in pattern recognition. IEEFE Trans. Inform.
Theory, 21:32-40, 1975.

[10] B. Georgescu, I. Shimshoni, and P. Meer. Mean
shift based clustering in high dimensions: A tex-
ture classification example. In Proc. 9th IEEE
Int’l Conf. Computer Vision, pages 456—463,
2003.

[11] A. Gionis, P. Indyk, and R. Motwani. Similarity
search in high dimensions via hashing. In Very
Large Data Bases, pages 518-529, 1999.

[12] A. Gray and A. Moore. N-body problems in sta-
tistical learning. In Neural Inf. Process. Syst. 13.
MIT Press, 2001.

1238

[13]

[14]

[15]

[16]

[17]

[19]

A. W. Moore. The anchors hierarchy: Using the
triangle inequality to survive high dimensional
data. In Proc. 16th Conf. Uncertainty in Arti-
ficial Intell., pages 397-405, 2000.

R. Neal and G. E. Hinton. A view of the EM
algorithm that justifies incremental, sparse, and
other variants. In Learning in Graphical Models,
pages 355368, 1998.

V. C. Raykar, C. Yang, R. Duraiswami, and
N. Gumerov. Fast computation of sums of Gaus-
sians in high dimensions. Technical Report CS-
TR~4767, University of Maryland, 2005.

Y. A. Sheikh, E. A. Khan, and T. Kanade. Mode-
seeking by medoidshifts. In Proc. 11th IEEFE Int’l
Conf. Computer Vision, 2007.

The Berkeley Segmentation Dataset and Bench-
mark. http://www.eecs.berkeley.edu/Research/
Projects/CS/vision/bsds/.

B. Thiesson and C. Wang. Fast large-scale mix-
ture modeling with component-specific data par-
titions. In Neural Inform. Process. Syst. 22. MIT
Press, 2010.

A. Vedaldi and S. Soatto. Quick shift and ker-
nel methods for mode seeking. In Proc. FEuropean
Conf. Computer Vision, pages 705—718. Springer,
2008.

P. Wang, D. Lee, A. Gray, and J. Rehg. Fast mean
shift with accurate and stable convergence. In
Proc. 11th Int’l Conf. Artificial Intell. and Statis-
tics, volume 2, pages 604—611, 2007.

C. Yang, R. Duraiswami, N. A. Gumerov, and
L. S. Davis. Improved fast gauss transform and
efficient kernel density estimation. In Int’l Conf.
Comp. Vision, pages 464-471, 2003.

Fast Variational Mode-Seeking

Appendix A—SUPPLEMENTARY
MATERIAL

We demonstrate that alternative mode-seeking al-
gorithms that include medoid-shift [16] and quick-
shift [19] can also be accelerated by our variational
mode seeking approach. A key understanding is that
medoid-shift and quick-shift can be viewed as gener-
alized EM algorithms. In this view, they share the
same E-step with mean-shift and only differ in their
respective M-steps. The computationally demanding
part is the E-step, and it can be accelerated by the
dual-tree based variational approximation described in
Section 5. We hence can achieve variational medoid-
shift and variational quick-shift by employing the dual-
tree based E-step and making corresponding changes
to their M-steps.

A.1 Medoid-shift and quick-shift

Let us first introduce the basic forms of medoid-shift
and quick-shift. In contrast to mean-shift, medoid-
shift and quick-shift constrain the update to be one of
the original data points.

Medoid-shift. Instead of maximizing the expression
in (3), medoid-shift [16] constrains the maximization
to original data points. That is, z!, moves to the
weighted medoid given by

TEM

1
it = arg maXZ Dy, (x, Mm)TK/ (Ds,, (@l tm)) -

(17)
For Gaussian kernels, the medoid-shift update simpli-
fies as
ant = argmin}, Dy, (@, um)p(),m)
rEM

= argemianDzm(%Hm)p(mm;)a (18)
zep

where p(m) = 7 and the Bayes’ theorem p(m|z!,) =

p(al|m)
Mp(at)

trajectories x%, t > 0 are constrained to pass through
points in p, the updates in medoid-shift need to be
computed only once for each initial 22, n=1,..., M.
(Recall that 29 € p.) This first step links each data
point to its medoid-shift update, and a trajectory to a
mode can therefore be found by following these links
until 257 =zt . Medoid-shift finally repeats this pro-
cess on the identified modes until no further changes
occurs in the set of modes.

are used to obtain the last equality. Since the

The complexity of the medoid-shift algorithm can be
as high as O(M?d + M3) for simple implementations.
However, in [19], it is shown that medoid-shift can
reach a complexity as low as O(M?) when the under-
lying distance is Euclidean.

Quick-shift. The quick-shift algorithm [19] simply
updates each z¥ with the nearest neighbor in p for

1239

which there is an increment in the kernel-density esti-
mate.

Similarly to medoid-shift, once the first shift update
is computed, the following shifts are automatically de-
fined for all trajectories, and convergence for each tra-
jectory is guaranteed at a point for which ! = zf.
Different from other mode-seeking algorithms, quick-
shift connects the trajectories of all the points into a
single tree, and hence defines a single mode. Break-
ing branches between points with a distance greater
than a certain threshold recovers multiple modes in
the kernel-density estimate. The complexity of the
quick-shift algorithm is O(M?) [19)].

A.2 Variational medoid-shift and Variational
quick-shift

The EM view explained in Section 4 enables a con-
ceptual separation of the E-step and the M-step of a
mode-seeking algorithm. Continuing the discussion in
Section 4, this view can further be given a variational
interpretation represented as the E-step in (9) and the
M-step in (10). The E-step is generic across the mode-
seeking algorithms, whereas the M-step differs by ap-
plying different (generalized) maximization strategies,
with the set X restricted in different ways.

Variational medoid-shift. Variational medoid-shift
is achieved by restricting X to contain only the original
set of data points at the M-step maximization. That
is, ¥ = p = {p1,...,un}. Given a representation
of F(z,q'™!) as in (7), the maximization under this
restriction can now be expressed as

x;“‘l = arg max qut+1(m|n) log p(x|m) + C,

rEM

where C' =Y | q(m|n)logq1(’1(nnr7)l) is independent of .
For Gaussian kernels, this update simplifies as
!t =argmin 35, ¢ (mln) Dy, (2,). (19)
TEWR
When Q is unconstrained, ¢(m|n) = p(m|xl), and we
can see that (19) in this case reduces to the standard
expression for medoid-shift in (18).
Variational quick-shift. Variational quick-shift is
achieved by updating each 2 with the nearest neigh-
bor in p that increases the lower bound F(z,,q) in-
stead of the kernel density estimate L£(x,).

Note that an increase in F(z,,q) guarantees an in-
crease in L(z,,), which is the objective for selecting a
nearest neighbor in the original quick-shift. Although
likely, the implication is not guaranteed the other way
around, and therefore the original quick-shift is not
strictly the same as our variational quick-shift, but in
spirit the two algorithms are similar.

A.3 Dual-tree based acceleration

Since variational versions of mean-shift, medoid-shift,
and quick-shift share the same E-step, the dual-tree

Bo Thiesson, Jingu Kim

based acceleration of the E-step presented in Section 5
is immediately applicable to the variational versions of
all three methods. That is, Lines 1-10 in Algorithm 1
remain the same in the dual-tree accelerated medoid-
shift and quick-shift. The last Line 11, which is the
M-step, can now be efficiently performed utilizing the
dual-tree structure as follows.

Note that before arriving at Line 11, partition trees
have been constructed, and a final block partition has
been determined together with the construction of a
corresponding marked partitioning tree (MPT). Fur-
thermore, sufficient statistics are stored at each node
in the MPT and ¢"*(B,|4,) has been calculated for
all (A,,B,) € P.

Dual-tree accelerated medoid-shift For het-
eroscedastic kernels, efficient computation of the up-
date in (19) utilizes the following equality

S g (mn) Ds,, (. 1)

= Z | Bylg"™ (Byl4,) (<NmE;L1Nz;L>Bp
pnEA,

+Tr(<S, >, 22”) —2<pl B> 1)

For homoscedastic kernels, the equality simplifies as

S ¢ (mln) D, (@, o)

m

= Z |Bp|qt+1(Bp|Ap) (T’r(271</’['7”lu£7/>8p
pnEA,

+Tr(E ea™) — 2<pl >p £).

The precomputed sufficient statistics <pm X' 1l >p,,

<Et>p, <ph Snt>p,, <tmpin>B,, and <pl>p that
have been stored in the kernel partition tree prior to
the mode-seeking can now be used to efficiently evalu-
ate above quantities. Further efficiency can be gained
by using the MPT to approximate the search of the
weighted medoid for a data point x, by only investi-
gating candidates covered by an internal node above
T, in the MPT.

Dual-tree accelerated quick-shift The efficient
computation of the M-step update for quick-shift is
achieved by realizing that for a single observation z,,,
the expression for the lower bound in (14) simplifies as

Flan,q) = Z [Bpla(BplAp)
p:acneAP
x [~ log Q(Bp|Ap) + H(Bp) + G(Bp|xn)])
where

G(Bp‘mn) = |B}p\ Z logp(mn|m),

meDB),

and p : x, € A, are all the blocks from the block
partition that can be encountered on the path in the
MPT from the root to the leaf that represents x,,.

1240

Furthermore, following the same type of algebraic
manipulations as in (16), we see that G(B|z,) can
be evaluated efficiently from pre-computed sufficient
statistics, as used in the E-step. For heteroscedastic
kernels

G(BP|$’”4) = ‘Blp| Z logp(xn|um72m)
meDB,

=c— 3 [<log|S[>p, + <u£2,‘nl,um>3p
+Tr(<S) >, wpal) — 2<pl S0 > 0]

which for homoscedastic kernels simplifies to

1
G(Bylim) = c—3 [log || + Tr(E~" <ui ptm>n,)
+Tr(E twpal) — 2<pl >p, 2 e,

We can therefore efficiently calculate F(x,,q) for all
., by traversing the MPT top-down while avoiding re-
calculation of shared terms for the different z,,. The
final nearest neighbor search can now for each x,, be ef-
ficiently conducted by considering the leaf in the MPT
that represents x,, and then backtrack through the tree
until a data point with a larger value of F is found.
During this backtracking, knowledge about the center
and radius of a node can be used to disregard some
parts of the tree, where a closer candidate to the cur-
rent best candidate cannot be found.

Appendix B—SUPPLEMENTARY
MATERIAL

This Appendix contains a detailed description of how
the Algorithm 3 resolves the constrained optimization
problem in the variational E-step.

Let us first summarize some notations. Let A be a
node in the MPT. The left and right child of A are
denoted by Ich(A) and rch(A), respectively. For two
nodes A and A’, where A is an ancestor of A’, there
exists a unique path in the MPT that connects A and
A’ found by iteratively traversing children. Let us de-
note this path by A — A’ and the set of nodes that
participate in this path by {A — A’}. Let lvs(A) be
the set of all leaf descendants of A. If A is a leaf node,
lvs(A) = {A}. The left-most leaf among the descen-
dants of A is special, and we denote this leaf by lI(A).
If A is a leaf node, ll(A) = A. An important observa-
tion is that all nodes on the path from a node to its
left-most leaf share the same left-most leaf. That is,
(V) =1l(A) for all V e {A = lI(A)}.

Let mkda represent the set of kernel nodes that are
marked on the data node A in the MPT. Hence, B €
mkd, if and only if (A, B) € P. For each (A, B) € P,
there is an associated variational probability ¢(B|A).
We now define g4 to be the weighted sum of all these
probability values at node A, as follows

wa= Y |Bla(BlA), (20)

Bemkda

Fast Variational Mode-Seeking

and further define

JA— AT = Z qv -

VE{AA'}

With these definitions in place, consider an arbitrary
leaf node L and the root node R of the MPT. The sum-
to-one constraint from (13) associated with L can now
be written in the following simple way

drosr = 1. (21)

Similarly, for a non-leaf node A, one of its child nodes
A’, and a leaf descendant L of A’, the sum-to-one con-
straint can be written as

qr—aA +qa—r =1 (22)

The representations in (21) and (22) are very useful in
deriving the details of the dual-tree based E-step.

The goal of the E-step is to find probability assign-
ments q(B|A) for all (A,B) € P that will optimize
F(z,q) under |lvs(R)| sum-to-one constraints in the
form of (21). Algorithm 3 implements the Lagrange
multiplier method for this task. In this solution, a
collect-up phase first traverses the MPT bottom-up,
level by level, and gradually reduces the |lvs(R)| con-
straints to a single equation involving only Aj(gy, the
Lagrange multiplier for the constraint associated with
the left-most leaf in the MPT. After solving this equa-
tion, a distribute-down phase now traverses the MPT
top-down, level by level, and gradually resolves the re-
maining Lagrange multipliers A\r,, L € lvs(R), by back-
substitution of previously resolved ;. The resolved
Lagrange multipliers can then be used to find the de-
sired variational probability assignments ¢(B|A). The
details for the collect-up and distribute-down phases
are described next.

B.1 Collect-up

In (15) of the main text, we have shown that the op-
timal variational probability satisfies

1
q(B|A) = exp I%l\ Z Ap—1 MexpG(B|A).

Lelvs(A)
(23)
Recall, also, that Algorithm 3 keeps track of three at-
tribute values for each node A in the MPT, namely

D,
Ka = [rch(A)|log (”’(“”)

rch(A)
+Kicnay + Krenay (24)
_ | B
Ca = Y 7 P G(Bl4) (25)
Bemkda
K
Dy = Caexp <A;|x> + Dicn(a) (26)

which are computed recursively as the MPT is tra-
versed bottom-up. At the leaf nodes, these three at-
tributes are initialized as K4 =0, Dy = Cy.

We claim the following proposition.

Proposition 1. After the collect-up phase of Algo-
rithm 3, for any node A of the MPT, the Lagrange
multipliers satisfy

Z AL = Al Aigay + Ka. (27)
Lelvs(A)

In addition, the optimal variational probability satisfy,
for any node A,

qa = Caexp ()\u(A) + %“ - 1) - (28)

Proof. Our proof is by induction. As a base case, sup-
pose A is a leaf node. Then, because lvs(A) = {4},
|A] =1, and K4 = 0, (27) trivially holds. Substitut-
ing (23) into (20) with lvs(A) = {A} and |4| =1, (28)
also holds.

Now, suppose A is a non-leaf node and that (27) and
(28) hold for all the descendants of A. Using induction
hypothesis (27),

Z AL = Z AL+ Z AL

Lelvs(A) Lelvs(leh(A)) Lelvs(rch(A))
= |lch(A)| Miien(a)) + Kicn(a)
+ [reh(A)| Nugrencay) + Kren(ay-(29)

Let A" denote a child node of A. Using the induction
hypothesis (28),

qA’ > 11(AY)

= Z qv

VE{A (AN}

= 2

K
exp ()\”(V) — 1) Cy exp <V>
Ve{A'=lI(A)}

5, ool

Ve{A (AN}
=exp ()‘ll(A’) - 1) DA/. (30)
The second equality follows from the fact that I[(V) =

(A" forall V e {A" — lI(A")}, and the third equality
is based on (26).

The sum-to-one constraints in (22) imply that

=exp ()‘ll(A/) — 1)

qR—A T Qich(A)—ll(Ich(A))
= qrR—A 1 Gren(A)sii(ren(A)) = 1,

and therefore

qich(A)—=li(Ich(A)) = Qrch(A)—ll(rch(A))- (31)

Bo Thiesson, Jingu Kim

Consider the two children lch(A) and rch(A) for the
node A and substitute the expression in (30) for these
two nodes into (31). In this case

exp (Augen(a)) — 1) Dicn(a)
= exp (Augrenay) — 1) Drencays
which leads to

Dicnay > . (32)

Aui(reh(A)) =Au(ien(4)) 1108 <Drch(A)

Substitute (32) into (29), and we have

Z AL = ([leh(A)| + [reh(A)]) Auen(ay) + Ka
Lelvs(A)

= |A[Nya) + K a, (33)
where [l(lch(A)) = ll(A) and (24) are used. We have

now shown (27). Finally, using (23), (33), and the
definition (20),

qaa

= Y |Bla(Bl4)

Bemkda

B
= Z |—]\/l|expG(B|A)exp ﬁ Z Ap—1

Bemkda Lelvs(A)

| B
= Z 53 exp G(BJ|A) exp (/\”(A) + % - 1)

Bemkda
= Cyexp ()\ll(A) + \ITTA\ — 1) ,
which proves (28). O

B.2 Distribute-down

The root node R in the MPT starts the distribute-
down phase. Using the fact that after the collect-up
phase the property (28) of Proposition 1 holds for any
nodes in the MPT, we can repeat the derivation in (30)
for R to obtain

qr—ur) = exp (Ayr) — 1) D = 1,

where the last equality is due to the the sum-to-one
constraint (21). Solving this equation for A\;(r) gives
us

)\ll(R) = 1- log DR.

Since ll(Ich(A)) = li(A), traversing the MPT top-
down will, for the left child of a node A, imply

Ali(leh(A)) = Al(A)
and using (32), we can for the right child compute

Dicha
Aii(reh(A)) = Au(a) + log (D ' ,h((A)) .

1242

As each node A is visited, we can now compute the
optimal variational probabilities ¢(B|A) for each B €
mkd4. Using (23) and (27),

K
exp <>\ll(A) + ﬁ -1+ G(B|A)> ﬁ

q(BlA) =
Finally, to ease notation in the main paper, notice that
Algorithm 3 uses a node attribute denoted by A4 to
keep track of the actual value of)\;(4) during the dis-
tribute down phase.

