
Structured Output Learning with High Order Loss Functions

Appendix — Structured Output
Learning with High Order Loss
Functions

We include the following:

• Detailed derivation of PASCAL factor messages.

• Detailed derivation of not-monotonic factor mes-
sages negative example LBC messages.

• Detailed derivation of modified convexity factor
messages for positive example LBC messages.

• Detailed description of the synthetic data experi-
ment.

• Additional results showing test outputs on differ-
ent classes of object.

• Illustration of typical failure modes of PASCAL-
trained model.

7 PASCAL Loss Factor

Our goal is to compute outgoing messages from a fac-
tor representing the PASCAL loss,

∆PASCAL
y∗ (y) =

∑
i y∗i (1− yi)−

∑
i y∗i∑

i y∗i +
∑

i yi(1− y∗i )
. (9)

As in the main text, let N+ =
∑

i y∗i , N0 =∑
i:y∗i =1(1 − yi), and N1 =

∑
i:y∗i =0 yi be the num-

ber of ground truth pixels, false negatives, and false
positives, respectively. We can rewrite the loss as
∆PASCAL

y∗ (y) = N0−N+

N++N1
.

Consider computing a single message,

m∆→i(yi)=max
y−i



∆(yi, y−i)+
∑

i′ $=i

mi′→∆(yi′)



 (10)

= max
y−i



N0 −N+

N+ + N1
+

∑

i′ $=i

mi′→∆(yi′)



 . (11)

We can transform the sum of incoming messages to
similarly be functions of N0 and N1. First, split the
incoming messages into those coming from pixels that
are labeled 0 in the ground truth and those that are
labeled 1 in the ground truth:
∑

i′ $=i

mi′→∆(yi′) =
∑

i′ $=i:y∗
i′=0

mi′→∆(yi′) +
∑

i′ $=i:y∗
i′=1

mi′→∆(yi′)

(12)

= s−i
1 (N1) + s−i

0 (N0) + κ, (13)

where s−i
0 (N0) is constructed by sorting the incoming

message differences

mi′→∆(0)−mi′→∆(1) (14)

for {i′|i′ "= i, y∗i′ = 0} in descending order, then taking
a cumulative sum of the sorted values, and s−i

1 (N1)
is constructed by sorting the incoming message differ-
ences

mi′→∆(1)−mi′→∆(0) (15)

for {i′|i′ "= i, y∗i′ = 1} in descending order, then tak-
ing a cumulative sum of the sorted values. By taking
message differences, we have added a constant κ, but
we have not changed the optimum location or relative
values of assignments.

Finally, we must account for the contribution of yi to
N0 and N1. There are three possibilities:

• When computing messages for m∆→i(0) and y∗i =
1, optimize

f(N0, N1) =
N0 −N+ + 1

N+ + N1
+ s−i

0 (N0) + s−i
1 (N1).

(16)

• When computing messages for m∆→i(1) and y∗i =
0, optimize

f(N0, N1) =
N0 −N+

N+ + N1 + 1
+ s−i

0 (N0) + s−i
1 (N1).

(17)

• Otherwise, optimize

f(N0, N1) =
N0 −N+

N+ + N1
+ s−i

0 (N0) + s−i
1 (N1).

(18)

Finally, note that the all s−i
1 function values needed

can be computed using a single sort of all incoming
messages from variables where y∗i = 0. That is, a
separate sort is not needed for each i. Let the cumu-
lative sum of a sorted array of message differences be
s1. When evaluating s−i

1 (c), check whether m∆→i(1)−
m∆→i(0) is greater than the cth largest message dif-
ference. If it is, compute s−i

1 (c) = s1(c)− (m∆→i(1)−
m∆→i(0))+(m∆→r(c+1)(1)−m∆→r(c+1)(0)) where r(c)
gives the index of the cth largest message difference.
s−i
0 can be computed analogously.

As stated in the main body, the empirical runtime for
computing all outgoing messages from this factor is
O(N log N) or O(log N) amortized per message. Run-
times for computing all outgoing messages from the
factor are as follows: 10k pixels: .03s, 100k pixels: .32s,
1M pixels: 3.3s, 10M pixels: 34.5s.



Daniel Tarlow, Richard S. Zemel

8 Local Border Convexity Loss Factor

Recall from the main text that the local border con-
vexity (LBC) loss is defined as,

∆LBC
y∗ (y) =

∑

i∈F∪B
1{yi "= y∗i } +

∑

(q,...,p)∈Q

g(yq, . . . , yp), (19)

where g(y1, . . . , ym) = 0 if yi ≥ yj for all i < j and α
otherwise.

To use this loss within a loss-augmented MAP routine,
we just need to show how to compute outgoing mes-
sages from factors representing the g functions. The
other terms are low order and can be added to single-
ton potentials as is standard. Thus, we would like to
compute

mg→i(yi) = max
y−i



g(yi, y−i) +
∑

i′ $=i

mi′→g(yi′)



 . (20)

We can compute all messages at once with a linear
time dynamic programming algorithm. The variables
in the scope of g form an ordered set, so we use the
convention that the “start” (or “left-most”) variable
is the one that neighbors a foreground pixel, and the
“end” or (“right-most”) variable is the one that neigh-
bors a background pixel.

Begin by constructing six arrays to cache the following
values. There are three from the “left” and three from
the “right”:

• L1(i), which stores the maximum value of an as-
signment to variables 1 to i where all variables in
the range are on.

• L2(i), which stores the maximum value of an as-
signment to variables 1 to i where at least one
variable in the range has been off.

• L3(i), which stores the maximum value of an as-
signment to variables 1 to i where at least one
variable in the range has been off, and at least
one variable after the off variable(s) has been on.

• R1(i), which stores the value of an assignment to
variables i to m where all variables in the range
are off.

• R2(i), which stores the value of an assignment to
variables i to m where at least one variable in the
range has been on.

• R3(i), which stores the value of an assignment to
variables i to m where at least one variable in the
range has been on, and at least one variable before
(i.e., with smaller index) the on variable has been
off.

These arrays can be populated in linear passes like is
standard in many dynamic programming algorithms.
For notational convenience, also define maximums over
the arrays in each direction:

L∗(i) = max (L1(i), L2(i)) (21)
R∗(i) = max (R1(i), R2(i)) (22)

From these arrays, we can easily compute each outgo-
ing message. For a message i with value 0 mg→i(0),
there are three options:

A = L∗(i− 1) + R2(i + 1) (23)
B = L3(i− 1) + R∗(i + 1) (24)
C = L∗(i− 1) + R∗(i + 1)− α, (25)

then the final message is

mg→i(0) = max (A, B,C) . (26)

For a message i with value 1 mg→i(1), there are also
three options:

D = L∗(i− 1) + R3(i + 1) (27)
E = L2(i− 1) + R∗(i + 1) (28)
F = L∗(i− 1) + R∗(i + 1)− α, (29)

then the final message is

mg→i(1) = max (D,E, F ) . (30)

The runtime for computing all outgoing messages is
O(N), or O(1) amortized time per message.

9 One-sided Convexity Factor

In the 0-loss constrained MAP inference, we need to
enforce the local border convexity constraint—that la-
belings along paths extending outward from the fore-
ground region are monotonic and decreasing. Here we
show how to compute outgoing messages from a factor
that enforces this hard constraint. This is straightfor-
ward, because there are only m+1 legal joint settings
of variables of the form 1k0m−k.

Using the same “left” and “right” convention of the
previous section, compute six arrays in a linear pass:

• L1(i), which stores the value of setting the first i
variables on.

• L2(i), which stores the maximum value of an as-
signment to the first i variables where the joint
assignment follows the pattern 1k0i−k.

• R1(i), which stores the value of an assignment to
variables i to m where all variables in the range
are off.



Structured Output Learning with High Order Loss Functions

• R2(i), which stores the value of an assignment to
variables i to m where the joint assignment follows
the pattern 1k0m−i−k.

The messages can then be computed:

mg→i(0) = L1(i− 1) + max (R1(i + 1), R2(i + 1))
(31)

mg→i(1) = max (L1(i− 1), L2(i− 1)) + R1(i + 1).
(32)

The total computation time to compute all outgoing
messages from a factor is O(N) i.e., O(1) amortized
per message.

10 Synthetic Experiment

We created data on a 20 x 20 grid of locations.
For each of 200 training cases, we assigned three
special points, A = (iA, jA), B = (iB , jB),
and C = (iC , jC) to a random location on
the grid. With each location (i, j), we associ-
ated a six dimensional feature vector, φ(i, j) =
(fA(i, j), fB(i, j), fC(i, j), gA(i, j), gB(i, j), gC(i, j)).
Each feature gives a noisy measurement of the
location of the special point it is associated with
e.g., fA gives a noisy detection of A’s location.
Features take value 0 at all except for two locations–
a true location and a distractor location–which
are determined as follows: for X ∈ {A, B,C},
fX(X) ∼ Uniform(0, 1

α ) gives a response at the true
location, fX(Y ) ∼ Uniform(0, 1) gives a response at
distractor location Y which is drawn uniformly from
the set of all locations. gX(X) ∼ Uniform(0, .5

α ) gives
an on-average weaker response at the true location,
and gX(Z) ∼ Uniform(0, 1) is a local distractor: Z
is chosen uniformly at random from the 5x5 grid
centered at the true location.

Given weights wA, wB , wC , the model predicts the lo-
cation of special point X as arg maxij wT

Xφ(i, j). We
experimented with training according to two loss func-
tions. First, the low order per-pixel loss gives loss of
1
3 for each incorrect prediction. Second, we trained
the model to optimize a high-order order-based loss,
which cares only about the relative locations of the
three points along the two dimensions. A loss of 1

6 is
incurred for each error in relative orderings. To find
violated constraints under the high order loss, we use
a modified version of the order-based potentials de-
scribed in [4]. We used 200 images for training, 200
for validation (for choosing regularization constant C),
and 500 for test.

Figure Fig. 6 shows the results. The optimal strategy
to optimize the high order loss is to rely more heavily

!!!!!!!!!!Train
Evaluate Pixel Error Order Error

α = .5
Pixel-loss 7.1% 3.2%

Order-loss 10.1% 1.4%
α = 1

Pixel-loss 26.9% 9.7%
Order-loss 28.2% 5.2%

α = 2
Pixel-loss 84.3% 44.9%

Order-loss 67.5% 15.8%

Figure 6: Synthetic results. Error on Pixel-based error
or Order-based error for different values of α and train
time loss functions.

on the weaker but more local feature, while the optimal
strategy to optimize the low order loss is to rely on the
stronger but non-local noisy feature. The model learns
appropriately under both loss functions. Interestingly,
when the noise becomes very high (α = 2), the pixel-
loss-trained model is worse on both measures. In this
case, for all settings of C we tried, the low-order loss
uses all of its slack and pushes weights to zero, learning
nothing. In this case, since the order-based loss is
easier, it learns, and is able to outperform the low
order loss according to both metrics.

11 Additional Qualitative Results

See Figures 2-5 for more results on Cow and for re-
sults on Aeroplane, Car, and Dog, respectively. Fig-
ure 6 shows failure modes for the PASCAL loss using
examples from all of the object classes.



Daniel Tarlow, Richard S. Zemel

Image Pixel Loss PASCAL Loss

Figure 7: More test results on Cow dataset. Methods
from left to right: (Left) Raw image. (Middle) Pixel
Loss. (Right) PASCAL Loss. Image Pixel Loss PASCAL Loss

Figure 8: Test results on Aeroplane dataset. Methods
from left to right: (Left) Raw image. (Middle) Pixel
Loss. (Right) PASCAL Loss.



Structured Output Learning with High Order Loss Functions

Image Pixel Loss PASCAL Loss

Figure 9: Test results on Car dataset. Methods from
left to right: (Left) Raw image. (Middle) Pixel Loss.
(Right) PASCAL Loss. Image Pixel Loss PASCAL Loss

Figure 10: Test results on Dog dataset. Methods from
left to right: (Left) Raw image. (Middle) Pixel Loss.
(Right) PASCAL Loss.



Daniel Tarlow, Richard S. Zemel

Image Pixel Loss PASCAL Loss

Figure 11: Typical failures of PASCAL loss-trained
models. On difficult images, the PASCAL loss-trained
model tends to label too many pixels as foreground.
Errors are sometimes exaggerated when edge informa-
tion in the image is weak, as in the second dog exam-
ple. Methods from left to right: (Left) Raw image.
(Middle) Pixel Loss. (Right) PASCAL Loss.


