
Lifted Variable Elimination with Arbitrary Constraints

Nima Taghipour Daan Fierens Jesse Davis Hendrik Blockeel
KU Leuven

Department of Computer Science
Celestijnenlaan 200A, 3001 Heverlee, Belgium

Abstract

Lifted probabilistic inference algorithms ex-
ploit regularities in the structure of graphical
models to perform inference more efficiently.
More specifically, they identify groups of in-
terchangeable variables and perform infer-
ence once for each group, as opposed to once
for each variable. The groups are defined by
means of constraints, so the flexibility of the
grouping is determined by the expressivity of
the constraint language. Existing approaches
for exact lifted inference rely on (in)equality
constraints. We show how inference meth-
ods can be generalized to work with arbi-
trary constraints. This allows them to cap-
ture a broader range of symmetries, leading
to more opportunities for lifting. We empir-
ically demonstrate that this improves infer-
ence efficiency with orders of magnitude, al-
lowing exact inference in cases where until
now only approximate inference was feasible.

1 Introduction

Statistical relational learning (SRL) [1, 2] focuses on
combining first-order logic with probabilistic graphi-
cal models, which permits algorithms to reason about
complex, uncertain, structured domains. A major
challenge in this area is how to efficiently perform in-
ference. First-order logic can reason on the level of
logical variables: one can derive P (X) from Q(X)
without knowing what X is. Many approaches to
SRL, however, transform their knowledge into a propo-
sitional graphical model before performing inference.
By doing so, they lose the capacity to reason on the

Appearing in Proceedings of the 15th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2012, La Palma, Canary Islands. Volume XX of JMLR:
W&CP XX. Copyright 2012 by the authors.

level of logical variables: standard inference methods
for graphical models can reason only on the “ground”
level, repeating the same inference steps for each dif-
ferent instance x of X, instead of once for all x’s.

Addressing this problem, Poole [3] introduced the con-
cept of lifted inference for graphical models. The
idea is to group together indistinguishable objects,
and perform the inference operations once for each
group instead of once for each object. Multiple dif-
ferent algorithms have been proposed, but techniques
generally focus on lifting either variable elimination
(e.g., [3, 4, 5, 6]) or belief propagation (e.g., [7, 8]).

A group of indistinguishable objects is typically de-
fined by means of a constraint that an object must
fulfill in order to belong to that group. The type of
constraints that are allowed, and the way in which they
are handled, directly influence the granularity of the
grouping, and hence, the efficiency of the subsequent
lifted inference [9]. Until now, all approaches based on
variable elimination use a specific class of constraints,
namely, pairwise (in)equalities. This is the bare min-
imum required to be able to perform lifted inference.
However, as we will show, it unnecessarily limits the
symmetries the model can capture and exploit.

In this paper, we propose a system that can handle
arbitrary constraints. The main contribution is the
definition of operators for lifted inference that work
correctly for any constraint language. Additionally,
we propose a concrete mechanism for representing ar-
bitrary constraints, and briefly discuss how the oper-
ators can be implemented with this particular mecha-
nism. The new system performs lifted inference with a
much coarser granularity than its predecessors. Due to
this, it outperforms existing systems by several orders
of magnitude, and solves inference problems that un-
til now could only be solved by approximate inference
methods.

1194

Lifted Variable Elimination with Arbitrary Constraints

2 Representation

We assume familiarity with set and relational algebra
(union ∪, intersection ∩, set difference \, selection σC ,
projection πX , attribute renaming ρ, join ./) ([10]).

The term “variable” can refer to a logical or a random
variable. For clarity, we refer to logical variables as
logvars and to random variables as randvars. Variables
are denoted with uppercase letters and their values
begin with lowercase letters.

Logical variables are typed and have a finite domain,
which for a logvar X is denoted D(X). A term is a
logvar X or a constant x ∈ D(X). An n-ary predicate
P is a mapping from n-tuples of constants onto a range
range(P). An atom is of the form P (t1, t2, . . . , tn),
where the ti are terms. A ground atom P (x1, . . . , xn)
is an atom that contains only constants. We also write
P (x), where x is the tuple (x1, . . . , xn). Each ground
atom is associated with one randvar, which can take
any value in range(P).

Given a set of logvars X = {X1, X2, . . . , Xn}, a con-
straint CX on X is a relation on X, i.e., a subset of
D(X) = ×iD(Xi). A constraint may be defined ex-
tensionally, by listing the tuples that satisfy it, or in-
tensionally, by means of some logical condition. We
may write C for CX when the logvars X are apparent
from the context. A constraint satisfied by only one
tuple is called singleton.

A parametrized randvar (PRV) V is a pair (a,C),
where a = P (X1, . . . , Xn) is a non-ground atom and
C is a constraint on logvars X = {X1, . . . , Xn}.
Each PRV V = (a,C) represents the set of randvars
{P (x)|x ∈ C}. We denote the set of randvars repre-
sented by V as RV (V).

Example 1. The PRV V = (Smokes(X), C),
with C = {x1, . . . , xn}, represents n randvars
{Smokes(x1), . . . Smokes(xn)}.

A factor f = (Af , φf) defines a potential function
φf : ×ni=1range(Ai) → R+ on a set of randvars Af
= {Ai}ni=1. An undirected model is a set of factors
F representing a probability distribution PF on rand-
vars A =

⋃
f∈F Af , where PF (a) is proportional to

ωF (a) =
∏
f∈F φf (af). ωF is the weighting function.

A parametric factor or parfactor has the form g =
(L,CX,A, φ), with L ⊆ X a set of logvars, CX a
constraint, A = {Ai}ni=1 an ordered set of atoms
parametrized with X, and φ a potential function on
A. A factor φ(A′) is a grounding of a parfactor φ(A)
if A′ can be obtained by instantiating X with some
x ∈ C. The set of groundings of a parfactor g is de-
noted gr(g). A parfactor g defines a weighting function

ωg on randvars RV (g) =
⋃
Ai∈ARV ((Ai, C)), such

that ωg =
∏
f∈gr(g) ωf . For a set of parfactors G,

ωG =
∏
g∈G ωg.

Example 2. Parfactor g =
({X}, CX , Smokes(X), φ) with C = {(x1), . . . , (xn)}
represents the set of factors gr(g) =
{φ(Smokes(x1)), . . . , φ(Smokes(xn))}.

Counting formulas. Milch et al. [5] introduced the
idea of counting formulas and we now describe how
to incorporate them in our formalism. A counting
formula has the form #Xi

[P (X)], where Xi ∈ X is
called the counted logvar. A parametrized counting
randvar (PCRV) is a pair (#Xi [P (X)], C). For each
instantiation of X \ {Xi}, it creates a separate count-
ing randvar (CRV). The value of this CRV is a his-
togram, and it depends deterministically on the values
of P (X). More precisely, given a valuation for P (X), it
counts how many different values of Xi occur for each
r ∈ range(P). The result is a histogram of the form
{(r1, n1), (r2, n2), . . . , (rk, nk)}, with ri ∈ range(P)
and ni the corresponding count. Note that the range
of a CRV, i.e., the set of all possible histograms it can
take as a value, is determined by k = |range(P)| and∑k
i=1 ni.

Example 3. V = (#Y [Friend(X,Y)], C) represents
a set of randvars, one for each x ∈ πX(C), indi-
cating the number of people who are (not) friends
with person x. If C = D(X) × D(Y) with D(X) =
D(Y) = {ann, bob, carl}, we might for instance have
#Y [Friend(ann, Y)] = {(true, 1), (false, 2)} (Ann is
friends with 1 person and not with 2 persons).

Counting randvars do not replace any other randvars.
They are simply a means of representing potential
functions more compactly by exploiting their internal
structure. The set of random variables represented
by a counting formula is still RV (#Xi [P (X)], C) =
RV (P (X), C). By definition in a parfactor g, L does
not contain the counted logvars. When A contains
a counting formula, factors of gr(g) contain a corre-
sponding counting randvar, whose state in each possi-
ble world is determined by the state of the randvars it
counts.

3 C-FOVE

The method that we introduce in this paper performs
lifted variable elimination in undirected models, spec-
ified using the above representation. For reasons of
comprehensibility and conciseness, we first briefly ex-
plain the state of the art in this area, which is the
C-FOVE system [5]. In the next section, we explain

1195

Nima Taghipour, Daan Fierens, Jesse Davis, Hendrik Blockeel

how our method differs from C-FOVE, and which ad-
vantages this implies.

Variable elimination (VE) is an exact inference tech-
nique that computes the marginal probability distri-
bution for one particular randvar by visiting all other
randvars in some order, called the elimination order.
For each considered randvar V , it first applies multipli-
cation (multiplying all the factors containing V into a
single factor) and then applies summing-out (summing
out V from that single factor). Similarly, first-order
variable elimination (FOVE) computes the marginal
probability distribution for one particular randvar (one
grounding of a PRV) by repeatedly applying certain
operators. Two of these, lifted multiplication and lifted
summing-out, are lifted counterparts of VE’s opera-
tors, but it also has additional operators, including
counting conversion that introduces counting rand-
vars, and several constraint manipulation operators.

When none of the lifted operators can be applied, C-
FOVE resorts to propositionalization: it completely
grounds the P(C)RVs and parfactors and performs in-
ference on the ground level. This is a worst-case sce-
nario; the more often it can be avoided, the better.

Lifted summing-out is, in a sense, the most impor-
tant operator: this is where randvars or PRVs are
eliminated, preferably in a lifted manner. But lifted
summing-out can only be applied to parfactors that
satisfy certain preconditions. The goal of all other op-
erators, then, is to manipulate the parfactors into a
form that satisfies these preconditions. In this sense,
all operators except lifted summing-out can be seen
as enabling operators. The outer level of the C-FOVE
algorithm is therefore as follows. GC-FOVE tries to
eliminate all (non-query) PRVs in a particular or-
der. When a particular PRV needs to be eliminated,
C-FOVE checks whether the preconditions for lifted
summing-out hold. If not, C-FOVE applies one or
more enabling operators until the preconditions are
satisfied, then applies lifted summing-out.

The operators for multiplication, elimination, and
counting conversion, as defined in C-FOVE, do not es-
sentially change in our framework, so we do not discuss
them in detail. The original descriptions are found
in Milch et al. [5], and our reformulation of the op-
erators and their exact preconditions in terms of re-
lational algebra are provided in the online appendix
of this paper [11]. What does change, are the con-
straint manipulation operators. These are the key op-
erators in lifted inference, as they dictate which ob-
jects are grouped together. More flexibility in the
grouping implies more and better opportunities to ap-
ply the lifted multiplication, elimination, and counting
conversion operators. C-FOVE uses only (in)equality

constraints; e.g., it can represent PRVs Friend(X,Y),
Friend(ann, Y), (Friend(X,Y), X 6= ann), but not
(Friend(X,Y), (X,Y) ∈ {(ann, bob), (bob, carl)}). By
developing constraint manipulation operators that can
handle arbitrary constraints, we can obtain dramati-
cal improvements in the symmetries we can capture.
The following section explains how our operators dif-
fer from C-FOVE’s, and how these differences affect
efficiency.

4 Our Approach: GC-FOVE

The lifted inference operators only apply to groups
where the objects are interchangeable. This section
describes the operators that ensure that this condi-
tion holds, i.e., the operators that manipulate the con-
straints that define the groupings.

The key factor in the efficiency of lifted inference is the
granularity of the groupings: coarser groupings lead to
more operations being performed on the lifted level,
and hence more efficient inference. We demonstrate
that C-FOVE’s constraint language, namely conjunc-
tion of pairwise (in)equalities, leads to unnecessarily
partitioning the objects into overly fine groups. We
solve this problem by allowing arbitrary constraints,
which leads to much coarser groupings and more ef-
ficient inference. We call our approach GC-FOVE
(generalized C-FOVE).

We focus on explaining the operators necessary for ma-
nipulating arbitrary constraints and how they differ
from C-FOVE’s. The online appendix [11] contains
their implementation in terms of relational algebra.

4.1 Splitting and Shattering

In order to multiply two parfactors, they must be
shattered against each other. Two parfactors, g1 =
(L1, C1,A1, φ1) and g2 = (L2, C2,A2, φ2), are shat-
tered against each other if any pairing of PRVs in
these parfactors is ‘proper’, i.e., ∀(A1, A2) ∈ A1×A2 :
RV (A1, C1) andRV (A2, C2) are either identical or dis-
joint. Shattering is the process that establishes this
condition by modifying the parfactors. We first ex-
plain our approach to shattering, and then compare it
to C-FOVE’s approach.

Our approach. To shatter, we first check for every
pair of PRVs V1 = (A1, C1) and V2 = (A2, C2) whether
they are proper or not. If the pair is not proper, this
means that these PRVs partially overlap. This overlap
is eliminated in two phases. First, we split the involved
constraints. Given constraints C1 and C2 on the same
logvars, splitting on their overlap yields the partitions
P1 = {C1∩C2, C1 \C2} of C1, and P2 = {C1∩C2, C2 \
C1} of C2. Second, the parfactors g1 and g2 are split

1196

Lifted Variable Elimination with Arbitrary Constraints

based on the partitionings P1 and P2 respectively. Let
us illustrate this with an example.

Consider two parfactors g1 with A1 =
N(X,Y), R(X,Y, Z) and C1 = {{xi}50i=1 ×
{yi}50i=1 × {zi}5i=1}, and g2 with A2 = N(X,Y)
and C2 = {{x2i}25i=1×{yi}50i=1}. First, we compare the
PRVs (N(X,Y), πX,Y (C1)) and (N(X,Y), πX,Y (C2)).
These PRVs partially overlap, so shattering is neces-
sary. To shatter, we first split the relevant constraints
(namely P1 = πX,Y (C1) and P2 = πX,Y (C2)) on their
overlap. Note that P1 equals {{xi}50i=1 × {yi}50i=1}
and P2 is simply C2. Splitting on overlap first
partitions P1 into two sets, namely the common
part (i.e., the shared or overlapping constraints),
P com1 = P1 ∩ P2 = P2, and the remaining (‘excluded’)
part, P excl1 = P1 \ P2 = {{x2i−1}25i=1 × {yi}50i=1}.
Next, C1 is split into Ccom1 = σX,Y ∈P com

1
(C1), and

Cexcl1 = C1 \ Ccom1 . On the other hand, C2 does not
need to be split because P2 = P2 ∩ P1. After splitting
the constraints, we split the parfactors themselves.
Parfactor g1 is split into two parfactors gcom1 and
gexcl1 with arguments identical to g1, except for the
constraints Ccom1 = {{x2i}25i=1×{yi}50i=1×{zi}5i=1} and
Cexcl1 = {{x2i−1}25i=1 × {yi}50i=1 × {zi}5i=1}. Parfactor
g2 remains unmodified as its constraint was not split.

In general, our shattering procedure splits any two
PRVs that are partially overlapping into at most two
partitions each. Similarly, the involved parfactors are
split into at most two partitions each. Next, we show
how this contrasts with C-FOVE’s approach.

C-FOVE’s approach. C-FOVE’s approach to shat-
tering is equivalent to performing a series of splits as
used in our approach. C-FOVE operates per logvar, so
consider the case where a pair of PRVs V1 = (A1, C1)
and V2 = (A2, C2) have only one logvar, X, in com-
mon. Then we have CcomX = πX(C1) ∩ πX(C2) and
Cex1X = πX(C1) \ πX(C2). C-FOVE will then split the
constraint C1 into the partition CcomX ∪⋃xi∈Cex1

X
{(xi)},

and does the same for C2. Each element of Cex1X is
split off into its own separate partition. Once the con-
straints are split, the parfactors g1 and g2 are split ac-
cordingly. The result is that g1 is split into |Cex1X |+ 1
different parfactors. This is an unnecessarily fine par-
tition that greatly reduces the degree of lifting that
can still take place (in the limit, splitting into |gr(g)|
factors boils down to inference at the propositional
level). The effect of splitting is even worse when the
PRVs have more than one logvar in common. This
contrasts with our approach, which always splits into
at most two parfactors, yielding much coarser parti-
tions than C-FOVE and hence leaving more opportu-
nities for lifting. The improvement is due to the fact
that we allow arbitrary constraints, whereas C-FOVE
allows only pairwise (in)equalities, forcing it to split

each element off separately.

4.2 Expansion of Counting Formulas

When manipulating parfactors with counting formu-
las, shattering must be combined with the operation
of expansion. When shattering splits one group of
randvars RV (V) into a partition {Vi}mi=1, any count-
ing randvar γ that counts the values of RV (V) needs
to be expanded, i.e., replaced by the group of counting
randvars {γi}mi=1, where each γi counts the values of
randvars in RV (Vi). As we show below, expansion of
a counting formula also requires modifying the poten-
tial function and its dimensions/size. We show that
expansion based on arbitrary constraints yields poten-
tial functions that can be exponentially smaller than
the potentials obtained from expansion with C-FOVE.

Our approach. For ease of exposition, we explain
our approach with an example. Suppose that we
need to shatter the following two parfactors, g1 =
({}, C1,#X [S(X)], φ1) and g2 = ({X}, C2, S(X), φ2),
with C1 = {(x1), . . . , (x100)} and C2 = {(x1, . . . , x5)}.
Splitting partitions C1 into Ccom1 = C1 ∩ C2 and
Cexcl1 = C1 \ C2. This results in a partitioning
of the randvars involved in the parfactors. Con-
cretely, the original group of randvars in parfac-
tor g1, {S(x1), . . . S(x100)}, is partitioned into two
groups, Vcom1 = (S(X), Ccom1) = {S(x1), . . . S(x5)}
and Vexcl1 = (S(X), Cexcl1) = {S(x6), . . . S(x100)}.
In order to preserve the semantics of the origi-
nal counting formula, we now need two separate
counting formulas, one for the group Vcom1 and one
for Vexcl1 . In other words, we replace the orginal
counting formula that counted over 100 randvars
by a combination of two counting formulas that
count over 5 and 95 randvars respectively. We also
need to replace the original potential φ1(#X [S(X)])
by φ∗1(#Xcom

[S(Xcom)],#Xexcl
[S(Xexcl)]), where φ∗1()

is defined such that it depends only on the sum
of the two new counting randvars #Xcom [S(Xcom)]
and #Xexcl

[S(Xexcl]). The end effect is that
the parfactor g1 is replaced by the new parfac-
tor ({}, C∗1 , 〈#Xcom

[S(Xcom)],#Xexcl
[S(Xexcl)]〉, φ∗1),

where C∗1 = Ccom1 × Cexcl1 . This concludes the shat-
tering and expansion.

C-FOVE’s approach. C-FOVE uses expansion
based on substitution [5]. Suppose that during
shattering we again partition the constraint C1 into
{Ccom1 ,Cexcl1 }. C-FOVE then splits off all the ele-
ments of Cexcl from C, by adding each of these el-
ements as a separate argument of the parfactor and
the involved potential function. In the above example,
this results in a potential function φ∗1() with 96 argu-
ments, namely the counting randvar #Xcom

[S(Xcom)]
(that counts over 5 randvars) and the 95 randvars

1197

Nima Taghipour, Daan Fierens, Jesse Davis, Hendrik Blockeel

S(x6), . . . S(x100). Clearly this causes an extreme blow
up in the size (number of entries) of the potential func-
tion, which does not happen using our approach. In
general, C-FOVE’s expansion yields a potential func-
tion of size O(rk) × O((n − k)r), where n = |C1| is
the number of randvars counted over before expan-
sion, k = |Cexcl1 |, and r is the range of the con-
sidered randvars (e.g., the range of S(.)). In con-
trast, our expansion yields a potential function of size
O(kr)×O((n−k)r). In the likely scenario that r � k,
this is exponentially smaller than C-FOVE’s poten-
tial function. Given that this potential function will
later be used for multiplication or elimination, it is
clear that our approach can yield large efficiency gains
over C-FOVE. Again, this is due to our use of arbi-
trary constraints, as opposed to C-FOVE’s pairwise
(in)equalities.

4.3 Count Normalization

All the lifted operations of elimination, multiplica-
tion, and counting conversion require that a count-
normalization property holds in the constraints. For
instance, in lifted elimination this property is a pre-
condition to ensure that parfactors receive the correct
exponentiation after elimination. To be precise, for
any constraint CX, with Y ⊂ X and Z = X − Y,
we call Y count-normalized w.r.t. Z if and only if
∃n : ∀z ∈ πZ(CX) : |πY(σZ=z(CX))| = n. When
this normalization property does not hold, it can be
achieved by normalizing the involved parfactor, which
amounts to splitting the parfactor into partitions in
which the property does hold.

Our approach. Suppose that logvars Y need to be
count-normalized w.r.t. logvars Z in a constraint C.
Normalization operates on the projected constraint
C ′ = πY,Z(C). Normalization partitions C ′ into
maximally coarse groups {C ′1, . . . C ′m} such that for
every group Ci it holds that all tuples t in that
group have the same count |πY(σZ=πZ(t)(C

′))|.
Intuitively, this count is the number of instantiations
of logvars Y that are related to one instantiation
of logvars Z. As an example, consider the par-
factor g with A = (Prof(P), Supervises(P, S))
and constraint C = {(p1, s1), (p1, s2), (p2, s2),
(p2, s3), (p3, s5), (p4, s3), (p4, s4), (p5, s6)}. Lifted
elimination of Supervises(P, S) requires logvar S
(student) to be count-normalized with respect to
logvar P (professor). Intuitively, we need to partition
the professors into groups such that all professors
in the same group supervise the same number of
students. In our example, C needs to be parti-
tioned into two, namely C1 = σP∈{p3,p5}(C) =
{(p3, s5), (p5, s6)} (tuples involving professors
with 1 student) and C2 = σP∈{p1,p2,p4}(C) =

{(p1, s1), (p1, s2), (p2, s2), (p2, s3), (p4, s3), (p4, s4)}
(professors with 2 students). Next, the parfactor g is
split accordingly into two parfactors g1 and g2 with
constraints C1 and C2. These parfactors are now
ready for lifted elimination of Supervises(P, S).

C-FOVE’s approach. C-FOVE requires a stronger
normalization property to hold. Concretely, for ev-
ery pair of logvars X and Y it requires either (1)
πX,Y (C) = πX(C)×πY (C) or (2) πX(C) = πY (C) and
πX,Y (C) = (πX(C)×πY (C))\{〈xi, xi〉 : xi ∈ πX(C)}.
To enforce this stronger property, C-FOVE requires
finer partitions than our approach does. In our ex-
ample, C-FOVE would require the constraint C to be
split into 5 groups {Ci}5i=1 with Ci = σP∈{pi}(C), i.e.,
there is one group per professor. Again, the reason for
this (overly) fine partitioning is that the coarser par-
titioning used in our approach cannot be represented
using C-FOVE’s constraint language.

4.4 Absorption: Handling Evidence

Evidence or observations of the states of randvars can
make probabilistic inference more efficient since ob-
served randvars do not need to be summed out. Fur-
thermore, observations can introduce extra indepen-
dencies in the probabilistic model, which can be ex-
ploited. In lifted probabilistic inference, there is also
an undesired effect that observations can break the in-
terchangeability of some randvars. It is crucial to han-
dle observations in a manner that preserves as much
interchangeability as possible, as this allows for more
operations to take place on the lifted level. In order to
effectively handle observations in a lifted manner, we
introduce the novel operator of lifted absorption.

Our approach. We first explain how absorption
works in the propositional setting. Given a factor
f = (A, φ) and an observation Ai = ai about a
randvar occurring in f (i.e., Ai ∈ A), absorption re-
places the factor f with a new factor f ′ = (A′, φ′),
where A′ = A\Ai and φ′(a1, . . . , ai−1, ai+1, . . . , am) =
φ(a1, . . . , ai−1, ai, ai+1, . . . , am). This reduces the size
of the factor and might induce extra independencies
in the model, which is always beneficial. If n rand-
vars (built from the same predicate) have the same ob-
served value, we can perform absorption on the lifted
level by treating these n randvars as one interchange-
able group. To better understand lifted absorption,
consider a parfactor g with A = (P (X), Q(X,Y))
and constraint C = {(x1, y1), . . . , (x1, y50)}. Assume
that evidence atoms Q(x1, y1) to Q(x1, y10) all have
the value true. First, g needs to be split into two,
namely g1 with C1 = {(x1, x1), . . . , (x1, x10)} (the par-
factor about which we have evidence) and g2 with
C2 = {(x1, y11), . . . , (x1, y50)} (no evidence). Next, we
absorb the evidence about Q() into parfactor g1. Note

1198

Lifted Variable Elimination with Arbitrary Constraints

that performing absorption on the ground level results
in ten identical factors φ′(p(x1)) (note that the logvar
Y disappears in the absorption). Hence, lifted absorp-
tion (i.e., absorption into parfactor g1) boils down to
first instantiating Q() in φ, yielding a reduced poten-
tial φ′, and then exponentiating this potential with
power 10. This explains the principle of lifted ab-
sorption for parfactors that have no counting formulas.
Technicalities, including how to handle counting for-
mulas, are in the online appendix [11].

C-FOVE’s approach. C-FOVE handles evidence in
a quite different way. C-FOVE introduces an addi-
tional so-called evidence factor for each ground ob-
servation A = a. This evidence factor assigns poten-
tial 1 to the observed value a and 0 to all other val-
ues. Including these factors in the probabilistic model
effectively conditions the model on the observations.
During inference, these evidence factors are used for
multiplication and elimination, like any other factors.
Our approach is more efficient in two ways. First, ab-
sorption boils down to instantiating a randvar in a
factor, which means that this randvar no longer needs
to be summed out. Hence, in our approach evidence
reduces the number of elimination and multiplication
operations needed, while in C-FOVE’s approach evi-
dence increases the number of operations. Second, we
perform absorption on the lifted level, once for each
group of randvars built from the same predicate and
with the same observed value. In C-FOVE, introduc-
ing a separate evidence factor for each ground observa-
tion leads to splitting: if we have n randvars with the
same observed value, there will be n partitions, one
for each ground randvar. Hence C-FOVE will perform
(at least) n multiplications and eliminations on these
randvars, while we deal with them in a single lifted
absorption operation. The splitting done by C-FOVE
is clearly unnecessary. Additionally, it may cause fur-
ther splitting as C-FOVE continues, further reducing
the opportunities for lifting. We show in Section 6
that this can make inference with C-FOVE impossible
in the presence of evidence.

5 Representing and Manipulating
Arbitrary Constraints

We have shown that using arbitrary constraints in-
stead of only pairwise (in)equalities can potentially
yield large efficiency gains by allowing more oppor-
tunities for lifting. The question remains how we can
represent these arbitrary constraints. In principle, we
could represent them extensionally, as lists of tuples.
This obviously allows any constraint to be represented,
but is clearly inefficient when we have many logvars.
Instead, we employ a constraint tree (as also used in

� � � � �

{x1, x2, x3} {x5, . . . , x20}{x4, x5}

{y1, . . . , y10} {y11, y12} {y1, . . . , y20} {y1, y2} {y3, . . . , y10}

X

Y Y Y

Z Z Z Z Z

{z1, . . . , z5} {z1, . . . , z10} {z4, z5} {z1, . . . , z8} {z10, z15}

Figure 1: A constraint tree representing a constraint
on logvars X,Y, Z.

First Order Bayesball [12]). Hence, the operators cur-
rently defined in terms of relational algebra must be
translated to operations on the constraint trees. Be-
low, we very briefly explain how this is done.

A constraint tree on logvars X is a tree in which
each internal (non-leaf) node is labeled with a log-
var X ∈ X, each leaf is labeled with a terminal la-
bel >, and each edge e = (Xi, Xj) is labeled with
a (sub-)domain D(e) ⊆ D(Xi) (see Figure 1 for an
example). We use ordered trees, where all nodes
in the same level of the tree (with same distance
from the root) are labeled with the same logvar, and
there is a one-to-one correspondence between the log-
vars and the levels. Each path from the root to a
leaf through edges (e1, . . . , e|X|) represents the tuples
in the Cartesian product ×iD(ei). For example, in
Figure 1, the left most path represents the tuples
{x1, x2, x3} × {y1, . . . , y10} × {z1, . . . , z5}. The con-
straint represented by the tree is the union of tuples
represented by each root-to-leaf path.

We perform constraint processing on the constraint
trees. Given a constraint (in terms of the set of tuples
that satisfy it), we construct the corresponding tree
in a bottom-up manner by merging compatible edges
(similar to the hypercube algorithm [13]). Different
logvar orders can result in trees of different sizes. A
tree can be re-ordered by interchanging nodes in two
adjacent levels of the tree and applying the possible
merges at those levels. We employ re-ordering to sim-
plify the various constraint handling operations. For
projection of a constraint, we move the projected log-
vars to the top of the tree and discard the parts be-
low these logvars. For splitting, we perform a pairwise
comparison of the two involved constraint trees. First
we re-order each tree such that the logvars involved in
the split are at the top of the trees. Then we process
the trees top-down by comparing the edges leaving the
root in the two trees and partitioning their domains

1199

Nima Taghipour, Daan Fierens, Jesse Davis, Hendrik Blockeel

500 1000 1500 2000
Domain Size

1

10

100

Ti
m

e(
s)

1

10

100

GC-FOVE
C-FOVE

Figure 2: Performance on workshop attributes, for in-
creasing domain sizes (evidence: 20%). Y-axis (run-
time) is in log scale.

based on their overlap. We recursively repeat this for
their children until we reach the last logvar involved in
the split. For count normalization, we also first apply
this re-ordering. Then we partition the tree based on
the number of tuples of counted logvars in each branch.
For counting this number, we only need to consider the
size of the domains associated with the edges.

Constraint trees are close to the hypercube represen-
tation used in lifted belief propagation [13]. However,
for a given constraint, the constraint tree is typically
more compact than using hypercubes. The constraint
tree of Figure 1 corresponds to a set of five hyper-
cubes. The first hypercube (derived from the left-most
root-to-leaf path) represents the tuples {x1, x2, x3} ×
{y1, . . . , y10}×{z1, . . . , z5}, the second hypercube rep-
resents {x1, x2, x3} × {y11, y12} × {z1, . . . , z10}, etc.
The hypercube representation does not exploit that
the first and second hypercube, for instance, share the
part {x1, x2, x3}. In the constraint tree, this is explicit,
making the constraint tree more compact.

6 Experiments

Arbitrary constraints can capture more symmetries in
the data, which potentially offers the ability to per-
form more operations at a lifted level. However, this
comes at a cost, as manipulating arbitrary constraints
is more computationally demanding. We hypothesize
that the ability to perform fewer computations by cap-
turing more symmetries will far outweigh this cost in
typical inference tasks. In this section we validate this
hypothesis empirically.

We compare our approach GC-FOVE to C-FOVE.
We use the version of C-FOVE extended with gen-
eral parfactor multiplication [14].1 For implementing
GC-FOVE, we started from the publicly available C-

1This allows C-FOVE to handle some tasks in an en-

0 20 40 60 80 100
Percentage of Evidence

0.1

1

10

100

1000

Tim
e(

s)

GC-FOVE
C-FOVE

Figure 3: Performance on social network, for varying
amounts of evidence (domain size: 1000). Y-axis (run-
time) is in log scale.

0 20 40 60 80 100

1

2

3

4

5

6

Ti
m
e(
s)

GC-FOVE
C-FOVE

0 20 40 60 80 100
Percentage of Evidence

0

0.1

0.2

0.3

0.4

0.5

Ti
m

e(
s)

GC-FOVE
C-FOVE

Figure 4: Performance on Yeast (top) and WebKB
(bottom), for varying amounts of evidence. C-FOVE
is intractable for any percentage of evidence except
zero.

FOVE code [16], so the implementations are maxi-
mally comparable.2 To quantify the impact of arbi-
trary constraints, we study the effect of two factors on
the runtime of C-FOVE and GC-FOVE: the domain
size (number of entities) and the proportion of rand-
vars with observed values (amount of evidence). The
evidence consists of observations on properties of indi-
vidual entities, i.e., unary atoms. In all experiments,
the undirected model has parfactors whose constraints
are all representable by C-FOVE. Thus, GC-FOVE
has no initial advantage, which makes the comparison
conservative. All relevant information not included be-
low (details on the models, additional plots, etc.) is in
the online appendix [11].

Synthetic data. We use three standard bench-
marks from the lifted inference literature: workshop

tirely lifted way, where otherwise it would have to resort
to grounding, e.g. on the social network domain [15].

2Implementation of GC-FOVE available from
http://dtai.cs.kuleuven.be/ml/systems/gc-fove.

1200

Lifted Variable Elimination with Arbitrary Constraints

attributes [5], competing workshops [5] and social net-
work [15].

In the first set of experiments, we measure the effect
of domain size on runtime. We vary the domain size
from 50 to 2000 objects, holding the proportion of ob-
served randvars constant at 20%. Figure 2 shows the
results for the workshop attributes model. GC-FOVE
outperforms C-FOVE as it better preserves the sym-
metries present in the model. GC-FOVE can treat all
interchangeable elements, observed or not, as a single
unit. The gain is more pronounced for larger domains
because the number of partitions induced by C-FOVE
grows linearly with the domain size and it has a costly
elimination operation for each partition.

In the second set of experiments, we measure the effect
of the proportion of observed randvars among unary
atoms (binary atoms are unobserved). We fix the do-
main size and vary the percentage of observed randvars
from 0% to 100% (observed randvars are assigned ran-
dom values). Figure 3 shows the performance on the
social network model. Without evidence, GC-FOVE
is comparable to C-FOVE. This is the best scenario
for C-FOVE as (i) the initial model only contains
(in)equality constraints and (ii) there is no evidence, so
no symmetries are broken when the inference operators
are applied. In this case, the only difference in runtime
between the two algorithms is the overhead associated
with constraint processing, which is almost negligible.
As the proportion of observations increases and the
symmetries among the objects are broken, GC-FOVE
achieves a much coarser grouping than C-FOVE. Fur-
thermore, GC-FOVE’s lifted absorption operator al-
lows it to eliminate the evidence through instantia-
tion and in a lifted fashion. The effect is striking:
GC-FOVE consistently finishes in under 200 seconds,
whereas C-FOVE cannot handle evidence proportions
larger than 1%, as it runs out of memory.

Real-world data. We also used two real-world
datasets: WebKB [17] and Yeast [18]. WebKB con-
tains data about more than 1200 webpages, including
their class (e.g., ‘course page’) and textual content (set
of words), and the hyperlinks between the pages. The
models consist of multiple parfactors, stating for in-
stance how the classes of two linked pages depend on
each other. The inference task that we consider is re-
lated to link prediction. Here, the class information
is observed for a subset of all pages and the task is to
compute the probability of having a hyperlink between
pairs of pages. The Yeast dataset contains data about
more than 7800 yeast genes, their functions and loca-
tions, and the interactions between these genes. The
model and task are similar to those in WebKB (gene
functions correspond to page classes, gene-to-gene in-
teractions to hyperlinks). We use one class/function

predicate in the model for each run, and average the
runtime over multiple runs for each class/function.

We varied the percentage of observed classes from 0%
to 100%. On both datasets, C-FOVE failed to run
for any non-zero percentage of observations. Its fail-
ure is primarily due to the large number of observa-
tions, which often forces it to resort to perform in-
ference at the ground level for a large number of ob-
jects. GC-FOVE, on the other hand, always runs
successfully, in a few seconds. Figure 4 shows the
performance of GC-FOVE with varying percentage
of observed classes/functions. As on the synthetic
data, GC-FOVE’s performance improves with increas-
ing number of observations, as this allows more rand-
vars to be eliminated through absorption, instead of
the more expensive operations of multiplication and
summation.

These experiments confirm our hypothesis that in
many typical settings the higher cost of constraint pro-
cessing caused by using arbitrary constraints is more
than compensated for by the additional symmetries
that can be exploited.

7 Conclusions

Constraints play a crucial role in lifted probabilistic
inference as they determine the degree of lifting that
takes place. Surprisingly, most lifted inference algo-
rithms use the same class of constraints based on pair-
wise (in)equalities [3, 4, 5, 15, 19, 20] (the main excep-
tion is the work on approximate inference using lifted
belief propagation [8]). In this paper we have shown
that this class of constraints is overly restrictive. We
proposed using arbitrary constraints, which can cap-
ture more symmetries among the objects and allow for
more operations to occur on a lifted level. We defined
the relevant constraint handling operations (e.g., split-
ting, shattering and normalization) in terms of arbi-
trary constraints and implemented them for perform-
ing lifted variable elimination. We made use of con-
straint trees to efficiently represent and manipulate the
constraints. We empirically evaluated our system on
several domains. Our approach resulted in up to three
orders of magnitude improvement in runtime. Fur-
thermore, GC-FOVE can solve several tasks that are
intractable for C-FOVE.

Acknowledgements

Nima Taghipour is supported by GOA/08/008 ‘Prob-
abilistic Logic Learning’. Daan Fierens is a post-
doctoral fellow of the Research Foundation-Flanders
(FWO-Vlaanderen).

1201

Nima Taghipour, Daan Fierens, Jesse Davis, Hendrik Blockeel

References

[1] Luc De Raedt, Paolo Frasconi, Kristian Kerst-
ing, and Stephen Muggleton, editors. Probabilistic
inductive logic programming: theory and applica-
tions. Springer-Verlag, Berlin, Heidelberg, 2008.

[2] Lise Getoor and Ben Taskar, editors. An Intro-
duction to Statistical Relational Learning. MIT
Press, 2007.

[3] David Poole. First-order probabilistic inference.
In Proceedings of the 18th International Joint
Conference on Artificial Intelligence (IJCAI03),
pages 985–991, 2003.

[4] Rodrigo de Salvo Braz, Eyal Amir, and Dan Roth.
Lifted first-order probabilistic inference. In Pro-
ceedings of the 19th International Joint Confer-
ence on Artificial Intelligence (IJCAI05), pages
1319–1325, 2005.

[5] Brian Milch, Luke S. Zettlemoyer, Kristian Kerst-
ing, Michael Haimes, and Leslie Pack Kaelbling.
Lifted probabilistic inference with counting for-
mulas. In Proceedings of the 23rd AAAI Confer-
ence on Artificial Intelligence (AAAI08), pages
1062–1608, 2008.

[6] Jaesik Choi, David Hill, and Eyal Amir. Lifted
inference for relational continuous models. In
UAI’10: Proceedings of the Twenty-Sixth Con-
ference on Uncertainty in Artificial Intelligence,
pages 126–134, Corvallis, Oregon, USA, 2010.
AUAI Press.

[7] Kristian Kersting, Babak Ahmadi, and Sriraam
Natarajan. Counting belief propagation. In
J. Bilmes A. Ng, editor, Proceedings of the 25th
Conference on Uncertainty in Artificial Intelli-
gence (UAI–09), Montreal, Canada, June 18–21
2009.

[8] Parag Singla and Pedro Domingos. Lifted first-
order belief propagation. In Proceedings of the
23rd AAAI Conference on Artificial Intelligence
(AAAI08), pages 1094–1099, 2008.

[9] Jacek Kisynski and David Poole. Constraint pro-
cessing in lifted probabilistic inference. In Pro-
ceedings of the 25th Conference on Uncertainty
in Artificial Intelligence (UAI09), 2009.

[10] Raghu Ramakrishnan and Johannes Gehrke.
Database management systems (3. ed.). McGraw-
Hill, 2003.

[11] Nima Taghipour, Daan Fierens, Jesse Davis,
and Hendrik Blockeel. Lifted variable elim-
ination with arbitrary constraints. 2011.
http://dtai.cs.kuleuven.be/ml/systems/gc-fove.

[12] Wannes Meert, Nima Taghipour, and Hendrik
Blockeel. First-order bayes-ball. In José L.

Balcázar, Francesco Bonchi, Aristides Gionis, and
Michèle Sebag, editors, ECML/PKDD (2), vol-
ume 6322 of Lecture Notes in Computer Science,
pages 369–384. Springer, 2010.

[13] Parag Singla, Aniruddh Nath, and Pedro Domin-
gos. Approximate Lifted Belief Propagation. In
AAAI Workshop on Statistical Relation AI, pages
92–97, 2010.

[14] Rodrigo De Salvo Braz. Lifted first-order prob-
abilistic inference. PhD thesis, Department
of Computer Science, University of Illinois at
Urbana-Champaign, 2007.

[15] Abhay Jha, Vibhav Gogate, Alexandra Meliou,
and Dan Suciu. Lifted inference seen from the
other side : The tractable features. In J. Lafferty,
C. K. I. Williams, J. Shawe-Taylor, R.S. Zemel,
and A. Culotta, editors, Advances in Neural In-
formation Processing Systems 23, pages 973–981.
2010.

[16] Brian Milch. BLOG, 2008.
http://people.csail.mit.edu/milch/blog/.

[17] Mark Craven and Sean Slattery. Relational learn-
ing with statistical predicate invention: Bet-
ter models for hypertext. Machine Learning,
43(1/2):97–119, 1997.

[18] Jesse Davis, Elizabeth S. Burnside, Ines de Cas-
tro Dutra, David Page, and Vitor Santos Costa.
An integrated approach to learning bayesian net-
works of rules. In Proceedings of 16th European
Conference on Machine Learning, pages 84–95,
2005.

[19] Jacek Kisynski and David Poole. Lifted aggrega-
tion in directed first-order probabilistic models. In
Proceedings of the 21th International Joint Con-
ference on Artificial Intelligence (IJCAI09), 2009.

[20] Guy Van den Broeck, Nima Taghipour, Wannes
Meert, Jesse Davis, and Luc De Raedt. Lifted
probabilistic inference by first-order knowledge
compilation. In Toby Walsh, editor, Interna-
tional Joint Conference on Artificial Intelligence,
Barcelona, Spain, 16-22 July 2011, July 2011.

1202

