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Abstract

This article describes posterior maximization
for topic models, identifying computational
and conceptual gains from inference under
a non-standard parametrization. We then
show that fitted parameters can be used as
the basis for a novel approach to marginal
likelihood estimation, via block-diagonal ap-
proximation to the information matrix, that
facilitates choosing the number of latent top-
ics. This likelihood-based model selection is
complemented with a goodness-of-fit analysis
built around estimated residual dispersion.
Examples are provided to illustrate model se-
lection as well as to compare our estimation
against standard alternative techniques.

1 Introduction

A topic model represents multivariate count data as
multinomial observations parameterized by a weighted
sum of latent topics. With each observation xi ∈
{x1 . . .xn} a vector of counts in p categories, given
total count mi =

∑p
j=1 xij , the K-topic model has

xi ∼ MN(ωi1θ1 + . . .+ ωiKθK ,mi) (1)

where topics θk = [θk1 · · · θkp]′ and weights ωi are
probability vectors. The topic label is due to appli-
cation of the model in (1) to the field of text anal-
ysis. In this context, each xi is a vector of counts
for terms (words or phrases) in a document with total
term-count mi, and each topic θk is a vector of prob-
abilities over words. Documents are thus character-
ized through a mixed-membership weighting of topic
factors and, with K far smaller than p, each ωi is a
reduced dimension summary for xi.
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Section 2 surveys the wide use of topic models and em-
phasizes some aspects of current technology that show
room for improvement. Section 2.1 describes how com-
mon large-data estimation for topics is based on max-
imization of an approximation to the marginal likeli-
hood, p(X|Θ). This involves very high-dimensional
latent variable augmentation, which complicates and
raises the cost of computation, and independence as-
sumptions in approximation that can potentially bias
estimation. Moreover, Section 2.2 reviews the very
limited literature on topic selection, arguing the need
of new methodology for choosing K.

The two major objectives of this article are thus to fa-
cilitate an efficient alternative for estimation of topic
models, and to provide a default method for model
selection. In the first case, Section 3 develops a
framework for joint posterior maximization over both
topics and weights: given the parameterization de-
scribed in 3.1, we outline a block-relaxation algorithm
in 3.2 that augments expectation-maximization with
quadratic programming for each ωi. Section 4 then
presents two possible metrics for model choice: 4.1
describes marginal data likelihood estimation through
block-diagonal approximation to the information ma-
trix, while 4.2 proposes estimation for residual disper-
sion. We provide simulation and data examples in Sec-
tion 5 to support and illustrate our methods, and close
with a short discussion in Section 6.

2 Background

The original text-motivated topic model is due to Hof-
mann (1999), who describes its mixed-membership
likelihood as a probability model for the latent seman-
tic indexing of Deerwester et al. (1990). Blei et al.
(2003) then introduce the contemporary Bayesian for-
mulation of topic models as latent Dirichlet alloca-
tion (LDA) by adding conditionally conjugate Dirich-
let priors for topics and weights. This basic model has
proven hugely popular, and extensions include hierar-
chical formulations to account for an unknown num-
ber of topics (Teh et al., 2006, using Dirichlet pro-
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cesses), topics that change in time (Blei and Lafferty,
2006) or whose expression is correlated (Blei and Laf-
ferty, 2007), and topics driven by sentiment (Blei and
McAuliffe, 2010). Equivalent likelihood models, un-
der both classical and Bayesian formulation, have also
been independently developed in genetics for analysis
of population admixtures (e.g., Pritchard et al., 2000).

2.1 Estimation Techniques

This article, as in most text-mining applications, fo-
cuses on a Bayesian specification of the model in (1)
with independent priors for each θk and ωi, yielding
a posterior distribution proportional to

p(Θ,Ω,X) =

n∏

i=1

MN(xi; Θωi,mi)p(ωi)

K∏

k=1

p(θk).

(2)
Posterior approximations rely on augmentation with
topic membership for individual terms: assume term
l from document i has been drawn with probability
given by topic θzil , where membership zil is sampled
from the K available according to ωi, and write zi as
the mi-length indicator vector for each document i and
Z = {z1, . . . , zn} as the full latent parameter matrix.

Gibbs sampling for this specification is described in the
original genetic admixture paper by Pritchard et al.
(2000) and by some in machine learning (e.g., Griffiths
and Styvers, 2004). Many software packages adapt
Gibbs to large-data settings by using a single poste-
rior draw of Z for parameter estimation. This only
requires running the Markov chain until it has reached
its stationary distribution, instead of the full conver-
gence assumed in mean estimation, but the estimates
are not optimal or consistent in any rigorous sense.

It is more common in practice to see variational
posterior approximations (Wainwright and Jordan,
2008), wherein some tractable distribution is fit to
minimize its distance from the unknown true poste-
rior. For example, consider the conditional posterior
p(Ω,Z | Θ,X) and variational distribution q(Ω,Z) =∏n
i=1 [Dir(ωi; si)

∏mi

l=1 MN(zil; ril)]. Kullback-Leibler
divergence between these densities is

−
∫

log
p(Ω,Z | Θ,X)

q(Ω,Z)
dQ(Ω,Z) (3)

= log p(X | Θ)

− {Eq [log p(Ω,Z,X | Θ)]− Eq [log q(Ω,Z)]} ,

which is minimized by maximizing the lower bound
on marginal likelihood for Θ, Eq [log p(Ω,Z,X | Θ)]−
Eq [log q(Ω,Z)], as a function of q’s tuning parameters.
Since ωi ⊥⊥ ωl for i 6= l conditional on Θ, q’s main
relaxation is assumed independence of Z.

The objective in (3) is proposed in the original
LDA paper by Blei et al. (2003).1 The most com-
mon approach to estimation (e.g., Blei and Lafferty,
2007; Grimmer, 2010, and examples in Blei et al.
2003) is then to maximize Eq [log p(Ω,Z,X | Θ)] given
q(Ω,Z) ≈ p(Ω,Z | Θ,X). This mean-field estimation

can be motivated as fitting Θ̂ to maximize the im-
plied lower bound on p(X | Θ) from (3), and thus
provides approximate marginal maximum likelihood
estimation. The procedure is customarily identified
with its implementation as a variational EM (VEM)
algorithm, which iteratively alternates between con-
ditional minimization of (3) and maximization of the
bound on p(X | Θ).

A second strategy, full variational Bayes, constructs a
joint distribution through multiplication of q(Ω,Z) by

q(Θ) =
∏K
k=1 Dir(θk | uk) and minimizes KL diver-

gence against the full posterior. However, since cross-
topic posterior correlation cor(θkj , θhj) does not dis-
appear asymptotically2, the independence assumption
of q(Θ) risks inconsistency for Θ̂ and unstable finite
sample results (e.g., Teh et al., 2006).

Our proposed approach is distinct from the above in
seeking joint MAP solution for both Θ and Ω (i.e.,
that which maximizes (2)), thus altogether avoiding
posterior approximation. The estimation methodol-
ogy of Section 3 is more closely connected to maxi-
mum likelihood estimation (MLE) techniques from the
non-Bayesian literature on topic models: the EM al-
gorithm, as used extensively for genetics admixture
estimation (e.g., Tang et al., 2006) and in Hoffman’s
1999 text-analysis work, and quadratic programming
as applied by Alexander et al. (2009) in a fast block-
relaxation routine. We borrow from both strategies.

Comparison between MAP and VEM estimation is
simple: the former finds jointly optimal profile esti-
mates for Θ and Ω, while the latter yields inference
for Θ that is approximately integrated over uncer-
tainty about Ω and Z. There are clear advantages
to integrating over nuisance parameters (e.g., Berger
et al., 1999), but marginalization comes at the ex-
pense of introducing a very high dimensional latent
parameter (Z) and its posterior approximation. This
leads to algorithms that are not scaleable in document
length, potentially with higher variance estimation or
unknown bias. We will find that, given care in param-
eterization, exact joint parameter estimation can be
superior to approximate marginal inference.

1Teh et al. (2006) describe alternative approximation
for the marginal indicator posterior, p(Z | X); this avoids
conditioning on Θ, but keeps independence assumptions
over Z that will be even less accurate than they are in the
conditional posterior.

2See the information matrix in 4.1.
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2.2 Choosing the Number of Topics

To learn the number of topics from data, the literature
makes use of three general tools: cross-validation, non-
parametric mixture priors, and marginal likelihood.
See Airoldi et al. (2010) for a short survey and compar-
ison. Cross-validation (CV) is by far the most common
choice (e.g. Grimmer, 2010; Grün and Hornik, 2011).
Unfortunately, due to the repeated model-fitting re-
quired for out-of-sample prediction, CV is not a large-
scale method. It also lacks easy interpretability in
terms of statistical evidence, or even in terms of sam-
ple error (Hastie et al., 2009, 7.12). For a model-based
alternative, Teh et al. (2006) write LDA as a Hierar-
chical Dirichlet process with each document’s weight-
ing over topics a probability vector of infinite length.
This removes the need to choose K, but estimation
can be sensitive to the level of finite truncation for
these prior processes and will always require inference
about high-dimensional term-topic memberships. Fi-
nally, the standard Bayesian solution is to maximize
the marginal model posterior. However, marginal like-
lihood estimation in topic models has thus far been
limited to very rough approximation, such as the av-
erage of MCMC draws in (Griffiths and Styvers, 2004).

3 Parameter Estimation

Prior choice for latent topics can be contentious (Wal-
lach et al., 2009) and concrete guidance is lacking in
the literature. We consider simple independent priors,
but estimation updates based on conditional indepen-
dence make it straightforward to adapt for more com-
plex schemes. Our default specification follows from a
general preference for simplicity. Given K topics,

ωi
iid∼ Dir(1/K), i = 1 . . . n, (4)

θk
iid∼ Dir(αk1, . . . , αkp), k = 1 . . .K.

The single Dirichlet concentration parameter of 1/K
for each ω encourages sparsity in document weights
by placing prior density at the edges of the parameter
space. This specification is also appropriate for model
selection: weight of prior evidence is constant for all
values of K, and as K moves to infinity Dir(1/K) ap-
proaches the Dirichlet process (Neal, 2000). Topic pri-
ors are left generic in (4) to encourage flexibility but
we default to the low concentration αkj = 1/(Kp).

3.1 Natural Exponential Family
Parameterization

To improve estimation stability and efficiency, we pro-
pose to solve for MAP estimates of Ω and Θ not in the
original simplex space, but rather after transform into

their natural exponential family (NEF) parameteriza-
tion. For example, in the case of Ω we seek the MAP
estimate for Φ = {ϕ1, . . . ,ϕn}, where for a given ω,

ωk =
exp[ϕk−1]

∑K−1
h=0 exp[ϕh]

, with the fixed element ϕ0 = 0.

(5)
Hence, ignoring ϕi0 in estimation, each ϕi is an un-
restricted vector of length K − 1. Since ∂ωk/∂ϕh =
1k=hωk − ωkωh, the Jacobian for this transformation
is Diag[ω] − ωω′ and has determinant |Diag[ω]|(1 −
ω′Diag[ω]ω) =

∏K−1
k=1 ωk(1−∑K−1

h=1 ωh). Hence, view-
ing each ωi as a function of ϕi, the conditional poste-
rior for each individual document given Θ becomes

p(ωi(ϕi) | xi) (6)

∝ MN(xi; Θωi,mi)
K−1∏

k=1

ω
1/K
k

(
1−

K−1∑

h=1

ωh

)1/K

,

and the NEF conditional MAP is equivalent to solu-
tion for ω under a Dir(1/K + 1) prior. Similarly, our
estimate for each θk corresponds to the simplex MAP
under a Dir(αk + 1) prior.3

The NEF transformation leads to conditional posterior
functions that are everywhere concave, thus guarantee-
ing a single conditional MAP solution for each ωi given
Θ. This introduces stability into our block relaxation
algorithm of 3.2: without moving to NEF space, the
prior in (4) with 1/K < 1 could lead to ill-defined max-
imization problems at each iteration. Conditional pos-
terior concavity also implies non-boundary estimates
for Ω, despite our use of sparsity encouraging priors,
that facilitate Laplace approximation in Section 4.1.

3.2 Joint Posterior Maximization

We now detail joint MAP estimation for Ω and Θ
under NEF parameterization. First, note that it
is straightforward to build an EM algorithm around
missing data arguments. In the MLE literature (e.g.,
Hofmann, 1999; Tang et al., 2006) authors use the
full set of latent phrase-memberships (Z) to obtain
a mixture model specification. However, a lower di-
mensional strategy is based on only latent topic totals,
such that each document i = 1 . . . n is expanded

Xi ∼ MNp(θ1, ti1) + · · ·+ MNp(θK , tiK), (7)

where Ti ∼ MNK(ωi,mi), with T1 . . .Tn treated as

missing-data. Given current estimates Θ̂ and Ω̂, stan-
dard EM calculations lead to approximate likelihood

3NEF parameterization thus removes the “-1 offset”
for MAP estimation critiqued by Asuncion et al. (2009)
wherein they note that different topic model algorithms
can be made to provide similar fits through prior-tuning.
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bounds of MN
(
X̂k;θk, t̂k

)
, with

x̂kj =
n∑

i=1

xij
θ̂kjω̂ik∑K
h=1 θ̂hjω̂ih

, t̂k =

p∑

j=1

x̂kj , k = 1 . . .K.

(8)
Updates for NEF topic MAPs under our model are
then θkj = (x̂kj + αkj)/[t̂k +

∑p
j=1 αkj ].

EM algorithms – even the low dimensional version in
(8) – are slow to converge under large-p vocabularies.
We advocate finding exact solutions for Ω | Θ at each
iteration, as this can speed-up convergence by several
orders of magnitude. Factorization of the conditional
posterior makes for fast parallel updates that, similar
to the algorithm of Alexander et al. (2009), solve in-
dependently for each ωi through sequential quadratic
programming.4 We also add first-order quasi-Newton
acceleration for full-set updates (Lange, 2010).

Suppressing i, each document’s conditional log poste-
rior is proportional to

l(ω) =

p∑

j=1

xj log (ω1θ1j + . . .+ ωKθKj)+

K∑

k=1

log(ωk)

K
,

(9)
subject to the constraints 1′ω = 1 and ωk > 0 for
k = 1 . . .K. Gradient and curvature are then

gk =

p∑

j=1

xjθkj

θ′jω
+

1

Kωk
(10)

hkh = −
p∑

j=1

xjθkjθhj

(θ′jω)2
− 1[k=h]

1

Kω2
k

and Taylor approximation around current estimate ω̂
yields the linear system

[
−h 1
1′ 0

] [
∆
λ

]
=

[
g
0

]
(11)

where ∆k = (ωk−ω̂k) and λ is the Lagrange multiplier
for the equality constraint. This provides the basis for
an active set strategy (Luenberger and Ye, 2008, 12.3):
given ∆ solving (11), take maximum δ ∈ (0, 1) such
that δ∆k < −ω̂k ∀k, and set ω = ω̂+δ∆. If δ < 1 and
ωk lies at boundary of the feasible region (i.e., some
tolerance from zero), we activate that constraint by
removing ∆k and solving the simpler system.

Note from (10) that our log posterior in (9) is concave,
thus guaranteeing a unique solution at every iteration.
This would not be true but for the fact that we are

4Alexander et al. also use this approach to update
Θ | Ω in a similar model, but we have found in our appli-
cations that any advantage over EM for Θ is out-weighed
by computational expense in the high-dimensional pivoting
required by constraints

∑p
j=1 θkj = 1.

actually solving for conditional MAP ϕ, rather than
ω. While the full joint posterior for transformed Θ
and Ω obviously remains multi-modal (most authors
use multiple starts to avoid minor modes; we initialize
with a build from 2, . . . ,K topics by repeatedly fitting
an extra topic to the residuals), the NEF parameteri-
zation introduces helpful stability at each iteration.

4 Model Selection

In this section, we propose two techniques for inferring
the number of topics. The first approach, in 4.1, is an
efficient approximation for the fully Bayesian proce-
dure of marginal posterior maximization. The second
approach, in 4.2, consists of a basic analysis of resid-
uals. Both methods require almost no computation
beyond the parameter estimation of Section 3.

4.1 Marginal Likelihood Maximization

Bayesian model selection is founded on the marginal
data likelihood (see Kass and Raftery, 1995), and in
the absence of a null hypothesis scenario or an infor-
mative model prior, we wish to find K to maximize
p(X | K) =

∫
p(Θ,Ω,X | K)dP(Θ,Ω). It should

be possible to find a maximizing argument simply by
evaluating p(X | K) over possible values. However, as
is often the case, the integral is intractable for topic
models and must be approximated.

One powerful approach is Laplace’s method (Tierney
and Kadane, 1986) wherein, assuming that the pos-
terior is highly peaked around its mode, the joint
parameter-data likelihood is replaced with a close-
matching and easily integrated Gaussian density. In
particular, quadratic expansion of log[p(X,Φ,Θ)] is
exponentiated to yield the approximate posterior,
N([Φ,Θ]; [Φ̂, Θ̂],H), where [Φ̂, Θ̂] is the joint MAP
and H is the log posterior Hessian evaluated at this
point. After scaling by K! to account for label switch-
ing, these approximations have proven effective for
general mixtures (e.g. Roeder and Wasserman, 1997).

As one of many advantages of NEF parameterization
(Mackay, 1998), we avoid boundary solutions where
Laplace’s approximation would be invalid. The inte-
gral target is also lower dimensional, although we leave
Θ in simplex representation due to a denser and harder
to approximate Hessian after NEF transform. Hence,

p(X | K) ≈ p
(
X, Θ̂, Ω̂

)
| −H|− 1

2 (2π)
d
2K! (12)

where d = Kp + (K − 1)n is model dimension and
p(X, Θ̂, Ω̂) =

∏n
i=1 MN(xi; Θ̂ω̂i,mi)Dir(ω̂i; 1/K+1)∏K

k=1 Dir(θ̂k;αk + 1). In practice, to account for
weight sparsity, we replace d with Kp+ dΩ where dΩ
is the number of ωik greater than 1/1000.

1187



M. A. Taddy

After parameter estimation, the only additional com-
putational burden of (12) is finding the determinant
of negative H. Unfortunately, given the large p and
n of text analysis, this burden will usually be signif-
icant and unaffordable. Determinant approximation
for marginal likelihoods is not uncommon; for exam-
ple, Bayes information criterion (BIC) can be moti-
vated by setting | −H| ≈ nd|i|, with i the information
matrix for a single observation. Although BIC conver-
gence results do not apply under d that depends on n,
efficient computation is possible through a more subtle
approximation based on block-diagonal factorization.

Writing L = log [p(X,Θ,Ω)], diagonal blocks of H are

HΘ =
∂2L

∂Θ2 = Diag

[
∂2L

∂θ2•1
· · · ∂

2L

∂θ2•p

]

HΦ =
∂2L

∂Φ2 = Diag

[
∂2L

∂ϕ2
1

· · · ∂
2L

∂ϕ2
n

]
(13)

where θ•j = [θ1j · · · θKj ] is the jth row of Θ. Here,

∂2L

∂θkj∂θhj
=

n∑

i=1

xij
ωikωih
q2ij

+ 1k=h
αjk
θ2kj

,

while for each individual document’s ϕi,

∂2L

∂ϕik∂ϕih
= 1[k=h]ωk − ωikωih

−
p∑

j=1

xij

[
1[k=h]ωik

θkj − qij
qij

+ ωikωih

(
1− θkjθhj

q2ij

)]

with qij =
∑K
k=1 ωikθkj . Finally, the sparse off-

diagonal blocks of H have elements

∂2L

∂θjk∂ϕih
= −xij

[
ωikωih
q2ij

θhj −
ωih
qij
1[k=h]

]

wherever xij 6= 0, and zero otherwise. Ignoring these
cross curvature terms, an approximate determinant is
available as the product of determinants for each di-
agonal block in (13). That is, our marginal likelihood
estimate is as in equation (12), but with replacement

|−H| ≈
∣∣∣∣
−HΘ 0

0 −HΦ

∣∣∣∣ =

p∏

j=1

∣∣∣∣∣−
∂2L

∂θ2•j

∣∣∣∣∣
n∏

i=1

∣∣∣∣−
∂2L

∂ϕ2
i

∣∣∣∣ .

(14)
This is fast and easy to calculate, and we show in Sec-
tion 5 that it performs well in finite sample examples.
Asymptotic results for block diagonal determinant ap-
proximations are available in Ipsen and Lee (2011),
including convergence rates and higher-order expan-
sions. From the statistician’s perspective, very sparse
off-diagonal blocks contain only terms related to co-
variance between shared topic vectors and an individ-
ual document’s weights, and we expect that as n→∞
the influence of these elements will disappear.

4.2 Residuals and Dispersion

Another strategy is to consider the simple connection
between number of topics and model fit: given theoret-
ical multinomial dispersion of σ2 = 1, and conditional
on the topic-model data generating process of (1), any
fitted overdispersion σ̂2 > 1 indicates a true K that is
larger than the number of estimated topics.

Conditional on estimated probabilities q̂i = Θ̂ω̂i,
each document’s fitted phrase counts are x̂ij = q̂ijmi.
Dispersion σ2 can be derived from the relationship
E
[
(xij − x̂ij)2

]
≈ σ2miq̂ij(1− q̂ij) and estimated fol-

lowing Haberman (1973) as the mean of squared ad-
justed residuals (xij − x̂ij)/sij , where s2ij = miq̂ij(1−
q̂ij). Sample dispersion is then σ̂2 = D/ν, where

D =
∑

{i,j: xij>0}

x2ij − 2xij x̂ij

miq̂ij(1− q̂ij)
+

n∑

i=1

p∑

j=1

mi
q̂ij

1− q̂ij
(15)

and ν is an estimate for its degrees of freedom. We
use ν = N̂ −d, with N̂ the number of x̂ij greater than
1/100. D also has approximate χ2

ν distribution under
the hypothesis that σ2 = 1, and a test of this against
alternative σ2 > 1 provides a very rough measure for
evidence in favor of a larger number of topics.

5 Examples

Our methods are all implemented in the textir pack-
age for R. For comparison, we also consider R-package
implementations of VEM (topicmodels 0.1-1, Grün and
Hornik, 2011) and collapsed Gibbs sampling (lda 1.3.1,
Chang, 2011). Although in each case efficiency could
be improved through techniques such as parallel pro-
cessing or thresholding for sparsity (e.g., see the
SparseLDA of Yao et al., 2009), we seek to present
a baseline comparison of basic algorithms. The pri-
ors of Section 3 are used throughout, and times are
reported for computation on a 3.2 GHz Mac Pro.

The original topicmodels code measures convergence on
proportional change in the log posterior bound, leading
to observed absolute log posterior change of 50-100 at
termination under tolerance of 10−4. Such premature
convergence leads to very poor results, and the code
(rlda.c line 412) was altered to match textir in tracking
absolute change. Both routines then stop on a toler-
ance of 0.1. Gibbs samplers were run 5000 iterations,
and lda provides a single posterior draw for estimation.

5.1 Simulation Study

We consider data simulated from a ten-topic model
with p = 1000 dimensional topics θk ∼ Dir(1/10), k =
1, . . . , 10, where each of n = 500 documents are gener-
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(a) (b)

Figure 1: From simulation under various values of M , the expected document size, plot (a) shows average log
Bayes factors for K = 5-15 against the null one-topic model, and (b) shows estimated dispersion for K = 9-11.

(a) (b)

Figure 2: Topic estimation given K = 10 via MAP, VEM, and Gibbs procedures for data with M = 200. In
(a), elements of each Θ used in simulation are graphed against the corresponding estimates, and (b) shows the
distributions for log MSE of these estimates and for algorithm computation time.

ated with weights ωi ∼ Dir(1/10) and phrase counts
xi ∼ MN(Θωi,mi) given mi ∼ Po(M). This yields
topics and topic weights that are dominated by a sub-
set of relatively large probability, and we have set sam-
ple size at half vocabulary dimension to reflect the
common p >> n setting of text analysis. Expected
size, M , varies to illustrate the effect of increased in-
formation in 5 sets of 50 runs for M from 100 to 1600.

To investigate model selection, we fit K = 5 . . . 15 top-
ics to each simulated corpus. Figure 1 graphs results.
Marginal likelihood estimates are in 1.a as log Bayes
factors, calculated over the null model ofK = 1. Apart
from the low information M = 100, mean p(X | K) is
maximized at the true model of K = 10; this was very
consistant across individual simulations, with K = 10

chosen invariably for M ≥ 200. Even at M = 100,
where K = 8 was the most commonly chosen model,
the likelihood is relatively flat before quickly dropping
for K > 10. In 1.b, the sample dispersion distribution
is shown for K = 9, 10, 11 at each size specification. Of
primary interest, σ̂2 is almost always larger than one
for K < 10 and less than one for K ≥ 10. This pat-
tern persists for un-plotted K, and separation across
models increases with M . Estimated dispersion does
appear to be biased low by roughly 1-6% depending
on size, illustrating the difficulty of choosing effective
degrees of freedom. As a result, our χ2 test of a more-
topics-than-K alternative leads to p-values of p = 0
for K < 10 and p = 1 for K ≥ 10.

We then consider MAP, VEM, and Gibbs estimation
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Figure 3: Model selection metrics for each dataset over a range of possible K. In each case, the plotted points
are log Bayes factor in multiples of 104 and the dashed line is estimated dispersion.

Figure 4: Out-of-sample performance for 50 repetitions training on 80% of data and validating on the left-out
20%, with predictive

∑
ij xij log(θ′•jωi) in multiples of 103 and computation time in minutes.

for the true K = 10 model with 50 datasets simulated
at M = 200. To account for label-switching, estimated
topics were matched with true topics by pairing the Θ
columns of least sum squared difference. Results are
shown in Figure 2. The plots in 2.a show largely accu-
rate estimation for both VEM and MAP procedures,
but with near-zero θ occasionally fit at large θ̂ and
vice versa. This occurs when some vocabulary prob-
abilities are swapped in estimation across topics, an
event that is not surprising under the weak identifi-
cation of our high-dimensional latent variable model.
It appears in 2.b that MAP does have slightly lower
MSE, even though VEM takes at least 2-3 times longer
to converge. Finally, as would be expected of estimates
based on a single draw from a short MCMC run, Gibbs
MSE are far larger than for either alternative.

5.2 Data Analysis

The data sets we consider are detailed in Taddy (2012)
and included as examples in textir. We8there consists
of counts for 2804 bigrams in 6175 online restaurant
reviews, and Congress109 was compiled by Gentzkow

and Shapiro (2010) from the 109th US Congress as 529
legislators’ usage counts for each of 1000 bigrams and
trigrams pre-selected for partisanship.

Model selection results are in Figure 3. The marginal
likelihood surfaces, again expressed as Bayes factors,
are maximized at K = 20 for the we8there data and at
K = 12 for congress109. Interestingly, dispersion esti-
mates remain larger than one for these chosen models,
and we do not approach σ̂2 = 1 even for K up to
200. This indicates alternative sources of overdisper-
sion beyond topic-clustering, such as correlation be-
tween counts across phrases in a given document.

Working with the likelihood maximizing topic mod-
els, we then compare estimators by repeatedly fitting
Θ̂ on a random 80% of data and calculating pre-
dictive probability over the left-out 20%. In each
case, new document phrase probabilities were calcu-
lated as Θ̂ωi using the conditional MAP for ωi under
a Dir(1/K) prior. Figure 4 presents results. As in
simulation, the MAP algorithm appears to dominate
VEM: predictive probability is higher for MAP in the
we8there example and near identical across methods
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1. dropout.prevention.program, american.force.radio, national.endowment.art, head.start, flood.insurance.program (0.12)

2. near.earth.object, republic.cypru, winning.war.iraq, bless.america, troop.bring.home (0.12)

3. near.retirement.age, commonly.prescribed.drug, repeal.death.tax, increase.taxe, medic.liability.crisi (0.12)

4. va.health.care, united.airline.employe, security.private.account, private.account, issue.facing.american (0.11)

5. southeast.texa, temporary.worker.program, guest.worker.program, million.illegal.immigrant, guest.worker (0.11)

6. national.heritage.corridor, asian.pacific.american, columbia.river.gorge, american.heritage.month (0.10)

7. ready.mixed.concrete, driver.education, witness.testify, indian.affair, president.announce (0.08)

8. low.cost.reliable, wild.bird, suppli.natural.ga, arctic.wildlife.refuge, price.natural.ga (0.06)

9. judicial.confirmation.process, fifth.circuit.court, chief.justice.rehnquist, summa.cum.laude, chief.justice (0.05)

10. north.american.fre, american.fre.trade, change.heart.mind, financial.accounting.standard, central.american.fre (0.05)

11. pluripotent.stem.cel, national.ad.campaign, cel.stem.cel, produce.stem.cel, embryonic.stem (0.04)

12. able.buy.gun, deep.sea.coral, buy.gun, credit.card.industry, caliber.sniper.rifle (0.04)

Figure 5: Congress109 topics, summarized as their top-five terms by lift – θkj over empirical term probability –
and ordered by usage proportion (column-means of Ω, which are included in parentheses). The image plot has
cells shaded by magnitude of ωik, with Republicans in red and Democrats in blue.

for congress109, while convergence under VEM takes
many times longer. Gibbs sampling is quickly able
to find a neighborhood of decent posterior probability,
such that it performs well relative to VEM but worse
than the MAP estimators.

Finally, to illustrate the analysis facilitated by these
models, Figure 5 offers a brief summary of the
congress109 example. Top phrases from each topic
are presented after ranking by term-lift, θkj/qj where
qj =

∑n
i=1 xij/

∑n
i=1mi, and the image plots party

segregation across topics. Although language cluster-
ing is variously ideological, geographical, and event
driven, some topics appear strongly partisan (e.g., 3
for Republicans and 4 for Democrats). Top-lift terms
in the we8there example show similar variety, with
some topics motivated by quality, value or service:

1. anoth.minut, flag.down, over.minut, wait.over, arriv.after (0.07)

2. great.place, food.great, place.eat, well.worth, great.price (0.06)

while others are associated with specific styles of food:

9. chicago.style, crust.pizza, thin.crust, pizza.place, deep.dish (0.05)

11. mexican.food, mexican.restaur, authent.mexican, best.mexican (0.05).

In both examples, the model provides massive dimen-
sion reduction (from 1000 to 12 and from 2804 to 20)
by replacing individual phrases with topic weights.

6 Discussion

Results from Section 5 offer some general support for
our methodology. In model selection, the marginal
likelihood approximation appears to provide for effi-
cient data-driven selection of the number of latent top-
ics. Since a default approach to choosing K has been
thus far absent from the literature, this should be of
use in the practice of topic modeling. We note that
the same block-diagonal Laplace approximation can
be applied as a basis for inference and fast posterior
interval calculations. Dispersion shows potential for
measuring goodness-of-fit, but its role is complicated
by bias and alternative sources of overdispersion.

We were pleased to find that the efficiency of joint
MAP estimation did not lead to lower quality fit, but
rather uniformly met or outperformed alternative es-
timates. The simple algorithm of this paper is also
straightforward to scale for large-data analyses. In a
crucial step, the independent updates for each ωi|Θ
can be processed in parallel; our experience is that this
allows fitting 20 or more topics to hundreds of thou-
sands of documents and tens of thousands of unique
terms in less than ten minutes on a common desktop.
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