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Abstract ary stochastic process with latent parameters modelled by

a change-point process. Additionally, parameters for each

We study a model of a stochastic process with time interval between neighboring change points, which is

unobserved parameters which suddenly change  called asegmeni(Fearnhead and Liu, 2011), are usually
at random times. The possible parameter values ~ @Ssumed to be drawn independently from a continuous dis-

are assumed to be from a finite but unknown set.  tribution.  Thus each parameter value is only used once
Using a Chinese restaurant process prior over pa- with probability 1. In contrast, there are systems_, yvhere
rameters we develop an efficient MCMC proce- parameters of the dyr!am|cs switch between a finite, but
dure for Bayesian inference. We demonstrate the unknown number of discrete states (Bgrber, 2006, Opper
significance of our approach with an application €t al., 2010). These, however, occur with unknown prob-
to systems biology data. abilities. Algorithms taking this hidden distribution o&p
rameter values into account can discover additional struc-
tural information and achieve more efficient estimates by
1 Introduction joining segments belonging to the same state. Therefore we
propose to model the selection of the parameters for each

Continuous time Gaussian Markov processes, e.g. of theedment by a Chinese Restaurant process (CRP), because

Ornstein-Uhlenbeck (OU) type, are broadly used in fieldsi'F natural!y allows for values to be reuse.d at later points in
ranging from physics (Weber et al., 2011) to biology time. This corresponds to the assumption that the param-

(Kostal et al., 2007) to economics and finance (Chan et a1 €ter distribution is drawn from Birichlet process While
1992). They often provide a good description of the (short-CRPS have been used as dynamical models by Fox et al.

term) dynamics found in various systems and can be usef008), their use as part of change-point processes in dy-

efficiently for inference purposes. On a larger time scaleN@mical systems is new to our knowledge.

however, the parameters of such a model usually do nof, this paper, we present a Markov chain Monte Carlo
stay constant due to external or neglected nonlinear sffect(MCMC) algorithm which asymptotically samples from
Smoothly varying parameters have been successfully modhe exact posterior density of our hierarchical model. Our
elled USing Gaussian processes (LaWrence et al., 2006, Agamp|er is based on the approach used for Change_point
varez etal., 2009). But this approach does not take paramenodels without reusable states in Stimberg et al. (2011).
ters into account, which undergo sometimes rapid changephe sampler is first tested on synthetic data and then ap-
and stay constant between change points. As such behaylied to microarray data from yeast cells in metabolic cy-

ior can be observed both in economics (Preis et al., 2011jles. Afterwards the results are compared to biological
and systems biology (Opper et al., 2010), it is important toknowledge of the system.
develop appropriate models.

Most approaches to Bayesian inference for change-poir‘? Generative model
models (e.g. Fearnhead and Liu, 2011, Giordani and Kohn,

2008) only consider direct independent noisy observa-_ . .

tions of the change-point process. But often in dynami- /9uré 1 shows the generative model, which we assume
cal systems we only get observations from an intermedi-for |nference_on the data sgts n this paper. The state
of the dynamical system at timeis described by arv-
Appearing in Proceedings of thé"" International Conference on dimensional vectok(¢). Its time evolution is given by the
Artificial Intelligence and Statistics (AISTATS) 2012, La Palma, linear stochastic differential equation

Canary Islands. Volume 22 of IMLR: W&CP 22. Copyright 2012

by the authors. dx = (A(t) — Ax)dt + XdW (1)
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f Pa a For the duration of each segment the parameter vector
\ stays constant, but at each change point a new value is
drawn from its distributionr. Sincer is unknown, we as-
c T sume that it comes from a Dirichlet process,
™~ DP(a,pa), Q)

@ with concentration parameter and base distributiopa .
Integrating out the unknown distributianleads to &Chi-

nese Restaurant Processth the same parameters as the
Dirichlet process, which can be sampled sequentially (Teh,

x[0: T ALY 2010). Given the previous segments, the next value
1 %
@ Ai+1|A17...,A1; ~ (17_“ <OépA+Z(SAk> (8)
0, k=1
n is either sampled froma with probability«/(a + i) or an
old parameter is reused. In the latter case one element of
Figure 1: The generative model. the sequencd, ..., A; is selected with equal probability.
with fixed decay and diffusion parameters 3 The MCMC Sampler
A = diag(\i,..., A n) T, (2)  Applying an Metropolis-within-Gibbs approach we alter-
S = diag(on,...,on)", ©) nate betwee_n sampling the latent change-point process
A(0 : T) given the dataY and the parameter® =
and a time-dependent function {¥,A, 0.} andsampling® given’Y andA (0 : T').
At) = (A(),..., An(t) T, (4) 3.1 Sampling the CRP

which corresponds to a setdfindependent OU processes. Our Metropolis-Hastings (MH) step resembles a random
We haven observationsY = {yi,...,y.} of x({) at  walk on the space of all possibles pathsof0 : 7). To
discrete times;, j = 1,...,n, corrupted by i.i.d. Gaus- create a proposal path we take the previous path and choose
sian noise with varianceg. Although a pathx(0 : T) one of four different actions:

is an infinite-dimensional object, it is a Gaussian process

and thus can be integrated out exactly as shown in seGhjfting the time of a jump The new time of the jump

tion 3.2. By doing so we obtain directly the likelihood s drawn from a Gaussian distribution centered around the

P(Y|A(0 : 1),%, A, 0,) of the observations given the pa- current time and truncated at the neighboring jumps.
rameters, which is used in the MCMC sampler.

A(t) is an latent, piecewise constant process. We assunfédding ajump The jump time is drawn uniformly from
that the numbe of its change points in the time interval the interval[0; 7. With probability p. the new segment
[0; T is drawn from a Poisson distribution, gets a new valud ;, otherwise it reuses an existing one.

¢ ~ Poisson(fT), (5) Removingajump One of the jumps is chosen at random
and removed. With equal probability it is decided if the
with mean valuefT. Conditioned onc their positions  vanished segment uses tAevalue of the segment after or
T1,T2,...,7c € [0;T] are independently and uniformly before the removed jump.
distributed random variables:
Switching a state One of the segments is chosen ran-
7 ~U(0,T). © domly and the valueA; associated with it is changed to

After sorting in ascending order these change points dividé completely new set with probabiliy.., otherwise it is

[0; T] into ¢ + 1 segments, where;_1; 7;] denotes theé-th changed to an existing one.

segment, if we additionally defingy = 0 and7..; = 7.  The shift action is important for determining the correct
These three steps can be combined to sampling the order@dsition of the jumps, therefore we choose it with proba-
list 71, 72,...,7. as the jump times of a Poisson processbility 0.5. The probability to add a jump, remove a jump
with frequencyf in the time interval0; 7'] (Ross, 1983). or switch the state of a segment is 0.125, 0.125 and 0.25,
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respectively. If a new value oA is introduced (either andt;, = ¢; ;41 thens; and¢; have to be computed itera-
by adding a new jump or changing the value of an exist-ively by
ing segment) we draw the new value from the posterior of

Aty i
P(A;]Y,A_;,0) as described in section 3.4. Bij = Bij-10uj+ %(1 —aij) (17)
2
g
3.2 Data Likelihood Gij = &Gyad;+ oy (1-ady), (18)

Since we are interested in the posterior osgt) : T) we ~ Wherea;; = exp(=A(ti; — tij-1)), Bio = &0 = 0,
need to be able to compute the likelihood of the observalfix = Bis &k = & tio = ti—1 andt;, = ;. This
tions Y conditioned onA (0 : T) and the paramete®  €nables us to solve the integral in (13) by setting

up to a normalization constant. The OU proce$s : T') 20 = P(Y|A(0:T),0) (19)
is integrated out to improve our estimator according to the o )

Rao-Blackwell theorem (see e.g. Robert and Casella, 200/"d computing it recursively through

pp. 130 ff.). Therefore we need to compute 2z = ziaN(yilm., —yi,v., +02), (20)
P(Y|A(0:T),0) Mz = miaai+ B, (21)
/ v = & tviaad, (22)

= P(X[|©)P(Y|X,0,A(0:T))dX 2 _
mg = Zolmt¥is (23)

n 05+ vz

_ /HP(xi|xi_1,@,A(0 - T))Plyilx:) o2
i=2 v = 5o, (24)
05 T vz

X P(yi|x1)dX. 9 .
with m; = y1, v1 = 02 andz; = 1 as start values.
If A(t) is constant between_; and¢; then from the solu-
tion of the Ornstein-Uhlenbeck process (Gardiner, 2009, p3.3  Acceptance ratios
73) we know
The new proposed patA*(0 : T') is accepted with the
P(xi|xi-1,0,A(0:T)) = N(xi|mo,,v,,)  (10)  usual MH acceptance probability. Which in this case is

with Ppcc = min (17 \I’L\I’priorqj) ) (25)

where the likelihood ratio

Mo, = )z,tl exli(—/\At) o P(Y|A*(0: T),0) 25)
L Al z)\* ) (1 — exp(—AAD) LT P(YIA(0: T),0)
o2 is computed as described in section 3.2. The prior ratio
Vo; = 2 (1 —exp(—2AAY)), (11) B P(A*(0:T))
\I/prior* m (27)
whereAt = t; — t;—1 and N (-|m, v) is the Gaussian den- _ ‘
sity with meanm and variancer. If A(t) is not constant ~and proposal ratio
betweent,_; andt;, the mean has to be computed itera- Q(A(0: T)|A*(0:T)) o8
Eg/)eglsat the jump times. We now can write the factors in @7 QA (0:T)A0: 1)) (28)
P(yslxi) = N (yilxs, 02) (12) follgw .from (8) and depend on the chosen random walk
action:

and

Shifting the time of a jump Conditioned on the number
P(xilxi-1,0,A(0: T)) = N(xi|aixi—1 + i, &) (13)  of jumps the jump times are uniformly distributed. There-
fore the prior does not change when we shift the time of

with a jump. Because the proposal density is truncated at the
ai = exp(—A\AL), (14) neighboring change points, it is not symmetrical. If_we
Alti 1) move a change point fromto ¢t* and the proposal density
Bi = ’;‘ (1— ), (15) istruncated bymin andimay, then the ratio is
z D(lmct) — @(fmct)
gi = ;7(1 - 0‘22)7 (16) ‘I’priorqu = (I)(tma;—:tt* ) _ @(tm.n;:t* )7 (29)

if there are no jumps between andt;_,. Otherwise if where®(-) is the cumulative distribution function of the
there ard jumps att; 1, ...,t;; and we defing;_; = ;o standard normal distribution.
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Adding a jump When adding a jump point we have to 10r
distinguish between adding a new set of parameters or an
already existing one. If we denote the number of segments
which use the parameter sAt; in the old sample by#;

then for the first case4; = 0) the acceptance ratio is

fapa(A;) Preml’
a+ct+1 Q(Ay)(c+ 1)paddds

8
wherek is the number of parameter sets anthe num- 1‘:2. 6
ber of jumpsbefore applying the proposal actionpagg 4r
and prem are the probabilities to choose the action to add 2 R A
and remove a jump, respectively a@dA ;) is the density 265450 &0 800 1000
from which the newA; is drawn (in our case the poste- t
rior P(A;|Y,A_;,©), see section 3.4). If, on the other
hand, the parameter set for the new segment already existdgure 2: Posteriox(0 : T') results for a toy data set. The

8,
6,
4

X,(t)

2
0
\I’prior\I/Q - ) (30) 10

(#; > 0) the ratio is green crosses are the noisy observations and the true pro-
cess is drawn as a red line. The posterior mean is the blue
UpiorV g = afi Preml'k . 31) line surrounded by an confidence interval of two times the
a+c+1(1=p)(c+ 1)padd standard deviation. The sampler usee- 1.5.
Removing ajump Removing a change point whose state
was the last instance of its kingt( = 1) leads to 3.4 Parameter Sampling
Tpion Vg = —— te QA cpadds . (32) Sampling the parameters is done by another Gibbs sampler
fapa(Ayg) Preml’ which iteratively draws new values for the parameters sets
When A; still occurs after removing the change point Ai from the posterior. When looking at the computation of
(#: > 1) the ratio becomes the likelihood in section 3.2 we see thaft) is linear in the

B: which is linear inm.,. This means the different values
a+c (1= p.)cpadd (33) A; are linear in the means of Gaussians which are multi-
f#i—1)  KTpem plied to give the likelihood. Therefore we can use the same
approach we used for computing the likelihood to propa-
Switching a state If we switch the current parameter set gate the mean and variance dependingAgrforward. If
A, of an segment t@\ ; the are four different cases to con- the base distributiop, is Gaussian the posterior will be as
sider: well and we can easily sample from it. For the applications
in this paper we assume thatand A are known, but if
1. The old parameter set is still usegt,(> 1) and the  needed they can be sampled by Metropolis-Hastings steps
new parameter set is already active in another segmentith e.g. a log-Gaussian random walk proposal.

(#; > 0)

lI’prior\I/Q =

Uprior ¥ = % (34) 3.5 Samples from the OU Posterior

2. The old parameter set is still use@;(> 1) and the
new parameter set has not been in yge € 0)

Since we integrate owt(0 : 7') our sampler does not gen-
erate posterior samples for it. However, given the param-
eters and the CRP the marginal posterior avgr : T') is
apa(A;) (1 —ps) Gaussian and can be computed exactly without discretiza-
#, Q(A))kp. tion error (see e.g. Archambeau et al., 2007). Depending on
the time resolution we are interested in, the computational
3. The old parameter set vanisheg; (= 1) while the  costs can be quite demanding, therefore the best approach
new parameter is already use#;(> 0) is to compute the posterior only for a thinned out, indepen-
& QA kp, dent set of samples from the CRP and the parameters.

\I’prior\I/Q = (35)

‘I’pnor\I’Q OZPA(Ai) (1 — p*) . (36)
4 Results
4. The old parameter set vanishés; (= 1) and the new
parameter set has not been in uge & 0) 4.1 Synthetic Data
UpriorV g = NG )Q(Ai). (37)  To test our sampler we use a synthetic dataset with a two-
pa(A:)Q(A;) dimensional Ornstein-Uhlenbeck process where the hid-
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Figure 3: PosterioA (t) results for a toy data set withset

to 1.5. The red dashed line is the true process and the blugigure 5: Heatmap results for the toy dataset with: 1.5.

line the posterior mean surrounded by a confidence intervathe color of a pointt,, t,) represents the probability that

of two times the standard deviation. A(t;) = A(ty). The black dashed lines surround areas
where this is true in the real process.
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Figure 4: Posterior distribution over the number of differe

values of A for the toy data set. The true process has 5Figure 6: Difference over time between the trét) and

distinct values. the posterior mean of the CRP sampler (blue aiea, 1.5)
and the change-point sampler (red line) for the toy dataset.

den procesd\(t) jumps 9 times and has 5 distinct states:

Egélt’f;'gg (ZI(IO&‘,t::Ib?JtISC)) ’ (Oié%:g ,d(glé’a%s?s), i:g%gﬁ;]gg?ran d result accurately fits the true heatmap and we can see that
P e.g. the segment between approximately 70 and 120 and the

standard deviation 0.5. In figure 2 the data and the poste=- ;
rior distribution for the OU process(t) is shown. It can one between 450 and 570 are only assigned the same state

be seen that the posterior fits the true data and successful\f\”th probability G5%, probably because there are very few

ignores outliers. The sampler estimates the latent proces%f)servatlons for the first segment.

A (t) well, which is clearly visible in figure 3. ) ) o )
4.2 Comparison with a Simplified Change-Point

Most interesting for the CRP model however is if the sam- Model

pler determines the number of distinct stateAift). When

there are 9 jumps therior would have 2.9 states for = 1, Especially for short segments like this, our CRP model
3.5 states forv = 1.5 and 4 states forx = 2 on average. is better suited than a simple change-point model with-
For these values af figure 4 shows thposteriordistribu-  out reusable states. Joining separated instances of a state
tion over the number of states. Fer= 1.0 anda = 1.5  should improve the parameter inference because there is
the right number of states (5) is clearly the most probablemore data per state. To verify this we applied a similar
while for « = 2.0 6 states is slightly more probable. We sampler for a change-point model where the unknown dis-
can visualize the probability thak(¢) is in the same state crete distributionr is replaced by the fixed base distribu-

at two points in time by a heatmap, as in figure 5. Thetion pa. Figure 6 shows the absolute difference between
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Figure 7: Difference between the true values and simulaFigure 8: Robustness of the results to different valuesef th

tions results of the CRP sampler with = 1.5 and the parameter. The lines depict the mean of the CRP prior

change-point sampler on the toy data set. while the triangles represent the mean posterior values of
the number of jumps and states from simulations with dif-
ferent values ofv. The vertical violet line is the mean num-

the true procesa (¢) and the posterior mean for both the per of jumps coming from the exponential prior with rate
CRP and the change-point model. The CRP has a lower err — 0.01.

ror most of the time and is—as expected—especially better
for smaller segments. If we integrate the error over time
we see that the CRP model has an error which is more than

15% smaller than the change-point model’s (see figure 7).

Not surprisingly the simplified change-point model has ath€ €xPression profile of a gene by an ordinary differential
quation (ODE) with the transcriptional regulation repre-

slightly better fit to the data because it is able to choose th& h in th it hi i< th ol
best fitting value ofA in each segment. In contrast to this, sented by ¢ anges in the drift. This ODE_ IS t € specia
the difference between the posterior mean avé and case of an Ornstein-Uhlenbeck process without diffusion,
2 _ i . -
the true process is arountl better for the CRP indicating ¢ ~ 0. Applied to our modeh, represents the degrada

that it more successfully compensates for the observatiofo" rate of the mRNA Wh'le.b‘i () Is the transcription rate.
noise. Changes imA;(t) model switches between different states

of TF activity.
Another advantage between the two models is the com- L
putation time. While the CRP sampler took roughly 14 We apply our model to a subset of the data consisting of 10

hours for half a million samples, the change-point sample@€N€ EXPression time series with 36 measurements each.

needed over 30 hours for the same number of samples. ThiR"'C€ the data is averaged over multiple cells the system

i i 2
is mainly because the change-point model has more distinéﬁ}o',Se variance; v(;/asbset to 0 and we use the same degra-
states which need to be updated in each iteration. BotQalion rates; and observation noise varianeg as Op-

samplers are part of the same Matlab program to make thige" anq Sangu_ine?ti (20_10)' The base distribuianis a
times comparable. Gaussian distribution with zero mean and 0.25 as standard

deviation.

Taking about 7.5 hours on a standard office computer we
generated 1 million samples withset to1.00. The results

As a real dataset we use microarray measurements fropredict that 3 distinct states are most likely 96%) while
yeast cells going through metabolic cycles. The measurethe rest of the samples indicate at 4 or more states. As can
ments come from Tu et al. (2005) and consist of highlybe seen in figure 8 this result is robust to changes iAs-
noisy gene expression measurements over time. The yeastming binary states for each TF leads to the conclusion
cells were forced into metabolic cycles by alternating be-that two transcription factors with states (off,off), (off),
tween starving them and offering glucose. (off,on) and (on, on) are involved in the transcriptiona-re

The expression levels of the genes are regulated by celrj-Iatlon of these genes.

tain proteins, called transcription factors (TF). Normall This fits the biological evidence from Harbison et al. (2004)
TFs occur in small copy numbers making them hard toand Lee et al. (2002) which was combined by Opper and
measure. When active they either up- or downregulate th&anguinetti (2010) to determine that 3 of the proteins are
genes’ transcription into MRNA thereby influencing the ex-only regulated by the transcription facteHL1, 2 only by
pression level of the gene. Barenco et al. (2006) modelletRAP1and the remaining 5 are regulated by both.

4.3 Transcriptional Regulation in Yeast
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Figure 9: Results on a subset of the yeast data with only

3 proteins regulated solely by FHL1. For a description segigure 10: Heatmap for the yeast data with= 2. The

figure 8. color of a point (t1,t,) represents the probability that
A(ty) = A(ta).

We further test our method by doing inference for a dataset
of only the 3 proteins which are regulated solely by FHL1.While our model contains an Ornstein-Uhlenbeck process
The parameters are the same as for the full dataset but noat the moment, that can be replaced easily by other pro-
only two distinct states are found most of the time, corre-cesses whose likelihood can be computed efficiently, e.g.
sponding to the active and inactive state of FHL1. Figure % Cox-Ingersoll process or a Poisson process where the
again shows this to be robust to changes.iThe period- rate undergoes sudden changes. With these changes the
icity of the transcriptional activity can be seen in figure 10 model could be applied to a broader range of data sets,
corresponding to the biological setup of the experiment. e.g. financial or neurobiological data. One additional ex-
tension would be to leA (¢) change only in certain dimen-
sions while others stay the same. This would better rep-
5 Discussion & Outlook resents data where components have different but overlap-
ping change points.
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