
Bayesian Inference for Change Points in Dynamical Systems with
Reusable States—a Chinese Restaurant Process Approach

Florian Stimberg Andreas Ruttor Manfred Opper
Artificial Intelligence Group

TU Berlin
Artificial Intelligence Group

TU Berlin
Artificial Intelligence Group

TU Berlin

Abstract

We study a model of a stochastic process with
unobserved parameters which suddenly change
at random times. The possible parameter values
are assumed to be from a finite but unknown set.
Using a Chinese restaurant process prior over pa-
rameters we develop an efficient MCMC proce-
dure for Bayesian inference. We demonstrate the
significance of our approach with an application
to systems biology data.

1 Introduction

Continuous time Gaussian Markov processes, e.g. of the
Ornstein-Uhlenbeck (OU) type, are broadly used in fields
ranging from physics (Weber et al., 2011) to biology
(Kostal et al., 2007) to economics and finance (Chan et al.,
1992). They often provide a good description of the (short-
term) dynamics found in various systems and can be used
efficiently for inference purposes. On a larger time scale,
however, the parameters of such a model usually do not
stay constant due to external or neglected nonlinear effects.
Smoothly varying parameters have been successfully mod-
elled using Gaussian processes (Lawrence et al., 2006, Al-
varez et al., 2009). But this approach does not take parame-
ters into account, which undergo sometimes rapid changes
and stay constant between change points. As such behav-
ior can be observed both in economics (Preis et al., 2011)
and systems biology (Opper et al., 2010), it is important to
develop appropriate models.

Most approaches to Bayesian inference for change-point
models (e.g. Fearnhead and Liu, 2011, Giordani and Kohn,
2008) only consider direct independent noisy observa-
tions of the change-point process. But often in dynami-
cal systems we only get observations from an intermedi-
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ary stochastic process with latent parameters modelled by
a change-point process. Additionally, parameters for each
time interval between neighboring change points, which is
called asegment(Fearnhead and Liu, 2011), are usually
assumed to be drawn independently from a continuous dis-
tribution. Thus each parameter value is only used once
with probability 1. In contrast, there are systems, where
parameters of the dynamics switch between a finite, but
unknown number of discrete states (Barber, 2006, Opper
et al., 2010). These, however, occur with unknown prob-
abilities. Algorithms taking this hidden distribution of pa-
rameter values into account can discover additional struc-
tural information and achieve more efficient estimates by
joining segments belonging to the same state. Therefore we
propose to model the selection of the parameters for each
segment by a Chinese Restaurant process (CRP), because
it naturally allows for values to be reused at later points in
time. This corresponds to the assumption that the param-
eter distribution is drawn from aDirichlet process. While
CRPs have been used as dynamical models by Fox et al.
(2008), their use as part of change-point processes in dy-
namical systems is new to our knowledge.

In this paper, we present a Markov chain Monte Carlo
(MCMC) algorithm which asymptotically samples from
the exact posterior density of our hierarchical model. Our
sampler is based on the approach used for change-point
models without reusable states in Stimberg et al. (2011).
The sampler is first tested on synthetic data and then ap-
plied to microarray data from yeast cells in metabolic cy-
cles. Afterwards the results are compared to biological
knowledge of the system.

2 Generative model

Figure 1 shows the generative model, which we assume
for inference on the data sets in this paper. The state
of the dynamical system at timet is described by anN -
dimensional vectorx(t). Its time evolution is given by the
linear stochastic differential equation

dx = (A(t)− Λx)dt+ΣdW (1)
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Figure 1: The generative model.

with fixed decay and diffusion parameters

Λ = diag(λ1, . . . , λN )⊤, (2)

Σ = diag(σ1, . . . , σN )⊤, (3)

and a time-dependent function

A(t) = (A1(t), . . . , AN (t))⊤, (4)

which corresponds to a set ofN independent OU processes.
We haven observationsY = {y1, . . . ,yn} of x(t) at
discrete timestj , j = 1, . . . , n, corrupted by i.i.d. Gaus-
sian noise with varianceσ2

o . Although a pathx(0 : T )
is an infinite-dimensional object, it is a Gaussian process
and thus can be integrated out exactly as shown in sec-
tion 3.2. By doing so we obtain directly the likelihood
P (Y|A(0 : t),Σ,Λ, σo) of the observations given the pa-
rameters, which is used in the MCMC sampler.

A(t) is an latent, piecewise constant process. We assume
that the numberc of its change points in the time interval
[0;T ] is drawn from a Poisson distribution,

c ∼ Poisson(fT ), (5)

with mean valuefT . Conditioned onc their positions
τ1, τ2, . . . , τc ∈ [0;T ] are independently and uniformly
distributed random variables:

τi ∼ U(0, T ). (6)

After sorting in ascending order these change points divide
[0;T ] into c+1 segments, where[τi−1; τi] denotes thei-th
segment, if we additionally defineτ0 = 0 andτc+1 = T .
These three steps can be combined to sampling the ordered
list τ1, τ2, . . . , τc as the jump times of a Poisson process
with frequencyf in the time interval[0;T ] (Ross, 1983).

For the duration of each segment the parameter vectorA(t)
stays constant, but at each change point a new value is
drawn from its distributionπ. Sinceπ is unknown, we as-
sume that it comes from a Dirichlet process,

π ∼ DP(α, pA), (7)

with concentration parameterα and base distributionpA.
Integrating out the unknown distributionπ leads to aChi-
nese Restaurant Processwith the same parameters as the
Dirichlet process, which can be sampled sequentially (Teh,
2010). Given the previous segments, the next value

Ai+1|A1, . . . ,Ai ∼
1

α+ i

(
αpA +

i∑

k=1

δAk

)
(8)

is either sampled frompA with probabilityα/(α+ i) or an
old parameter is reused. In the latter case one element of
the sequenceA1, . . . ,Ai is selected with equal probability.

3 The MCMC Sampler

Applying an Metropolis-within-Gibbs approach we alter-
nate between sampling the latent change-point process
A(0 : T ) given the dataY and the parametersΘ =
{Σ,Λ, σo} andsamplingΘ givenY andA(0 : T ).

3.1 Sampling the CRP

Our Metropolis-Hastings (MH) step resembles a random
walk on the space of all possibles paths ofA(0 : T ). To
create a proposal path we take the previous path and choose
one of four different actions:

Shifting the time of a jump The new time of the jump
is drawn from a Gaussian distribution centered around the
current time and truncated at the neighboring jumps.

Adding a jump The jump time is drawn uniformly from
the interval[0;T ]. With probability p∗ the new segment
gets a new valueAi, otherwise it reuses an existing one.

Removing a jump One of the jumps is chosen at random
and removed. With equal probability it is decided if the
vanished segment uses theA value of the segment after or
before the removed jump.

Switching a state One of the segments is chosen ran-
domly and the valueAi associated with it is changed to
a completely new set with probabilityp∗, otherwise it is
changed to an existing one.

The shift action is important for determining the correct
position of the jumps, therefore we choose it with proba-
bility 0.5. The probability to add a jump, remove a jump
or switch the state of a segment is 0.125, 0.125 and 0.25,
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respectively. If a new value ofA is introduced (either
by adding a new jump or changing the value of an exist-
ing segment) we draw the new value from the posterior of
P (Ai|Y,A−i,Θ) as described in section 3.4.

3.2 Data Likelihood

Since we are interested in the posterior overA(0 : T ) we
need to be able to compute the likelihood of the observa-
tions Y conditioned onA(0 : T ) and the parametersΘ
up to a normalization constant. The OU processx(0 : T )
is integrated out to improve our estimator according to the
Rao-Blackwell theorem (see e.g. Robert and Casella, 2004,
pp. 130 ff.). Therefore we need to compute

P (Y|A(0 : T ),Θ)

=

∫
P (X|Θ)P (Y|X,Θ,A(0 : T )) dX

=

∫ n∏

i=2

P (xi|xi−1,Θ,A(0 : T ))P (yi|xi)

× P (y1|x1) dX. (9)

If A(t) is constant betweenti−1 andti then from the solu-
tion of the Ornstein-Uhlenbeck process (Gardiner, 2009, p.
73) we know

P (xi|xi−1,Θ,A(0 : T )) = N (xi|moi , voi) (10)

with

moi = xi−1 exp(−λ∆t)

+
A(ti − 1)

λ
(1− exp(−λ∆t)) ,

voi =
σ2

2λ
(1− exp(−2λ∆t)) , (11)

where∆t = ti − ti−1 andN (·|m, v) is the Gaussian den-
sity with meanm and variancev. If A(t) is not constant
betweenti−1 and ti, the mean has to be computed itera-
tively at the jump times. We now can write the factors in
(9) as

P (yi|xi) = N (yi|xi, σ
2
o) (12)

and

P (xi|xi−1,Θ,A(0 : T )) = N (xi|αixi−1 + βi, ξi) (13)

with

αi = exp(−λ∆t), (14)

βi =
A(ti−1)

λ
(1− αi), (15)

ξi =
σ2

2λ
(1− α2

i ), (16)

if there are no jumps betweenti and ti−1. Otherwise if
there arel jumps atti,1, . . . , ti,l and we defineti−1 = ti,0

andti = ti,l+1 thenβi andξi have to be computed itera-
tively by

βi,j = βi,j−1αi,j +
A(ti,j−1)

λ
(1− αi,j) (17)

ξi,j = ξi,j−1α
2
i,j +

σ2

2λ
(1− α2

i,j), (18)

whereαi,j = exp(−λ(ti,j − ti,j−1)), βi,0 = ξi,0 = 0,
βi,k = βi, ξi,k = ξi, ti,0 = ti−1 and ti,k = ti. This
enables us to solve the integral in (13) by setting

zn = P (Y|A(0 : T ),Θ) (19)

and computing it recursively through

zi = zi−1N (yi|mzi − yi, vzi + σ2
o), (20)

mzi = mi−1αi + βi, (21)

vzi = ξi + vi−1α
2
i , (22)

mi =
σ2
omzi + yivzi
σ2
o + vzi

, (23)

vi =
σ2
ovzi

σ2
o + vzi

, (24)

with m1 = y1, v1 = σ2
o andz1 = 1 as start values.

3.3 Acceptance ratios

The new proposed pathA∗(0 : T ) is accepted with the
usual MH acceptance probability. Which in this case is

PAcc = min (1,ΨLΨpriorΨ) , (25)

where the likelihood ratio

ΨL =
P (Y|A∗(0 : T ),Θ)

P (Y|A(0 : T ),Θ)
(26)

is computed as described in section 3.2. The prior ratio

Ψprior =
P (A∗(0 : T ))

P (A(0 : T ))
(27)

and proposal ratio

ΨQ =
Q(A(0 : T )|A∗(0 : T ))

Q(A∗(0 : T )|A(0 : T ))
(28)

follow from (8) and depend on the chosen random walk
action:

Shifting the time of a jump Conditioned on the number
of jumps the jump times are uniformly distributed. There-
fore the prior does not change when we shift the time of
a jump. Because the proposal density is truncated at the
neighboring change points, it is not symmetrical. If we
move a change point fromt to t∗ and the proposal density
is truncated bytmin andtmax, then the ratio is

ΨpriorΨQ =
Φ( tmax−t

σt
)− Φ( tmin−t

σt
)

Φ( tmax−t∗
σt

)− Φ( tmin−t∗
σt

)
, (29)

whereΦ(·) is the cumulative distribution function of the
standard normal distribution.
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Adding a jump When adding a jump point we have to
distinguish between adding a new set of parameters or an
already existing one. If we denote the number of segments
which use the parameter setAi in the old sample by#i

then for the first case (#i = 0) the acceptance ratio is

ΨpriorΨQ =
fαpA(Ai)

α+ c+ 1

premT

Q(Ai)(c+ 1)paddp∗
, (30)

wherek is the number of parameter sets andc the num-
ber of jumpsbefore applying the proposal action.padd

andprem are the probabilities to choose the action to add
and remove a jump, respectively andQ(Ai) is the density
from which the newAi is drawn (in our case the poste-
rior P (Ai|Y,A−i,Θ), see section 3.4). If, on the other
hand, the parameter set for the new segment already exists
(#i > 0) the ratio is

ΨpriorΨQ =
α#i

α+ c+ 1

premTk

(1− p∗)(c+ 1)padd
. (31)

Removing a jump Removing a change point whose state
was the last instance of its kind (#i = 1) leads to

ΨpriorΨQ =
α+ c

fαpA(Ak)

Q(Ai)cpaddp∗
premT

. (32)

When Ai still occurs after removing the change point
(#i > 1) the ratio becomes

ΨpriorΨQ =
α+ c

f(#i − 1)

(1− p∗)cpadd

kTprem
. (33)

Switching a state If we switch the current parameter set
Ai of an segment toAj the are four different cases to con-
sider:

1. The old parameter set is still used (#i > 1) and the
new parameter set is already active in another segment
(#j > 0)

ΨpriorΨQ =
#j

#i
. (34)

2. The old parameter set is still used (#i > 1) and the
new parameter set has not been in use (#j = 0)

ΨpriorΨQ =
αpA(Aj)

#i

(1− p∗)
Q(Aj)kp∗

. (35)

3. The old parameter set vanishes (#i = 1) while the
new parameter is already used (#j > 0)

ΨpriorΨQ =
#j

αpA(Ai)

Q(Aj)kp∗
(1− p∗)

. (36)

4. The old parameter set vanishes (#i = 1) and the new
parameter set has not been in use (#j = 0)

ΨpriorΨQ =
pA(Aj)Q(Ai)

pA(Ai)Q(Aj)
. (37)
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Figure 2: Posteriorx(0 : T ) results for a toy data set. The
green crosses are the noisy observations and the true pro-
cess is drawn as a red line. The posterior mean is the blue
line surrounded by an confidence interval of two times the
standard deviation. The sampler usedα = 1.5.

3.4 Parameter Sampling

Sampling the parameters is done by another Gibbs sampler
which iteratively draws new values for the parameters sets
Ai from the posterior. When looking at the computation of
the likelihood in section 3.2 we see thatA(t) is linear in the
βi which is linear inmzi . This means the different values
Ai are linear in the means of Gaussians which are multi-
plied to give the likelihood. Therefore we can use the same
approach we used for computing the likelihood to propa-
gate the mean and variance depending onAi forward. If
the base distributionpA is Gaussian the posterior will be as
well and we can easily sample from it. For the applications
in this paper we assume thatΣ andΛ are known, but if
needed they can be sampled by Metropolis-Hastings steps
with e.g. a log-Gaussian random walk proposal.

3.5 Samples from the OU Posterior

Since we integrate outx(0 : T ) our sampler does not gen-
erate posterior samples for it. However, given the param-
eters and the CRP the marginal posterior overx(0 : T ) is
Gaussian and can be computed exactly without discretiza-
tion error (see e.g. Archambeau et al., 2007). Depending on
the time resolution we are interested in, the computational
costs can be quite demanding, therefore the best approach
is to compute the posterior only for a thinned out, indepen-
dent set of samples from the CRP and the parameters.

4 Results

4.1 Synthetic Data

To test our sampler we use a synthetic dataset with a two-
dimensional Ornstein-Uhlenbeck process where the hid-
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Figure 3: PosteriorA(t) results for a toy data set withα set
to 1.5. The red dashed line is the true process and the blue
line the posterior mean surrounded by a confidence interval
of two times the standard deviation.
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Figure 4: Posterior distribution over the number of different
values ofA for the toy data set. The true process has 5
distinct values.

den processA(t) jumps 9 times and has 5 distinct states:
(0.1,0.9), (0.3, 0.5), (0.5, 0.3), (0.7, 0.7) and (0.9, 0.1). For
the base distributionpA we used a Gaussian with mean and
standard deviation 0.5. In figure 2 the data and the poste-
rior distribution for the OU processx(t) is shown. It can
be seen that the posterior fits the true data and successfully
ignores outliers. The sampler estimates the latent process
A(t) well, which is clearly visible in figure 3.

Most interesting for the CRP model however is if the sam-
pler determines the number of distinct states inA(t). When
there are 9 jumps theprior would have 2.9 states forα = 1,
3.5 states forα = 1.5 and 4 states forα = 2 on average.
For these values ofα figure 4 shows theposteriordistribu-
tion over the number of states. Forα = 1.0 andα = 1.5
the right number of states (5) is clearly the most probable,
while for α = 2.0 6 states is slightly more probable. We
can visualize the probability thatA(t) is in the same state
at two points in time by a heatmap, as in figure 5. The

Figure 5: Heatmap results for the toy dataset withα = 1.5.
The color of a point(t1, t2) represents the probability that
A(t1) = A(t2). The black dashed lines surround areas
where this is true in the real process.
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Figure 6: Difference over time between the trueA(t) and
the posterior mean of the CRP sampler (blue area,α = 1.5)
and the change-point sampler (red line) for the toy dataset.

result accurately fits the true heatmap and we can see that
e.g. the segment between approximately 70 and 120 and the
one between 450 and 570 are only assigned the same state
with probability 65%, probably because there are very few
observations for the first segment.

4.2 Comparison with a Simplified Change-Point
Model

Especially for short segments like this, our CRP model
is better suited than a simple change-point model with-
out reusable states. Joining separated instances of a state
should improve the parameter inference because there is
more data per state. To verify this we applied a similar
sampler for a change-point model where the unknown dis-
crete distributionπ is replaced by the fixed base distribu-
tion pA. Figure 6 shows the absolute difference between
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Figure 7: Difference between the true values and simula-
tions results of the CRP sampler withα = 1.5 and the
change-point sampler on the toy data set.

the true processA(t) and the posterior mean for both the
CRP and the change-point model. The CRP has a lower er-
ror most of the time and is—as expected—especially better
for smaller segments. If we integrate the error over time
we see that the CRP model has an error which is more than
15% smaller than the change-point model’s (see figure 7).
Not surprisingly the simplified change-point model has a
slightly better fit to the data because it is able to choose the
best fitting value ofA in each segment. In contrast to this,
the difference between the posterior mean overx(t) and
the true process is around5% better for the CRP indicating
that it more successfully compensates for the observation
noise.

Another advantage between the two models is the com-
putation time. While the CRP sampler took roughly 14
hours for half a million samples, the change-point sampler
needed over 30 hours for the same number of samples. This
is mainly because the change-point model has more distinct
states which need to be updated in each iteration. Both
samplers are part of the same Matlab program to make the
times comparable.

4.3 Transcriptional Regulation in Yeast

As a real dataset we use microarray measurements from
yeast cells going through metabolic cycles. The measure-
ments come from Tu et al. (2005) and consist of highly
noisy gene expression measurements over time. The yeast
cells were forced into metabolic cycles by alternating be-
tween starving them and offering glucose.

The expression levels of the genes are regulated by cer-
tain proteins, called transcription factors (TF). Normally
TFs occur in small copy numbers making them hard to
measure. When active they either up- or downregulate the
genes’ transcription into mRNA thereby influencing the ex-
pression level of the gene. Barenco et al. (2006) modelled
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Figure 8: Robustness of the results to different values of the
parameterα. The lines depict the mean of the CRP prior
while the triangles represent the mean posterior values of
the number of jumps and states from simulations with dif-
ferent values ofα. The vertical violet line is the mean num-
ber of jumps coming from the exponential prior with rate
f = 0.01.

the expression profile of a gene by an ordinary differential
equation (ODE) with the transcriptional regulation repre-
sented by changes in the drift. This ODE is the special
case of an Ornstein-Uhlenbeck process without diffusion,
σ2
i = 0. Applied to our modelλi represents the degrada-

tion rate of the mRNA whileAi(t) is the transcription rate.
Changes inAi(t) model switches between different states
of TF activity.

We apply our model to a subset of the data consisting of 10
gene expression time series with 36 measurements each.
Since the data is averaged over multiple cells the system
noise varianceσ2

i was set to 0 and we use the same degra-
dation ratesλi and observation noise varianceσ2

o as Op-
per and Sanguinetti (2010). The base distributionpA is a
Gaussian distribution with zero mean and 0.25 as standard
deviation.

Taking about 7.5 hours on a standard office computer we
generated 1 million samples withα set to1.00. The results
predict that 3 distinct states are most likely (≈ 96%) while
the rest of the samples indicate at 4 or more states. As can
be seen in figure 8 this result is robust to changes inα. As-
suming binary states for each TF leads to the conclusion
that two transcription factors with states (off,off), (on,off),
(off,on) and (on, on) are involved in the transcriptional reg-
ulation of these genes.

This fits the biological evidence from Harbison et al. (2004)
and Lee et al. (2002) which was combined by Opper and
Sanguinetti (2010) to determine that 3 of the proteins are
only regulated by the transcription factorFHL1, 2 only by
RAP1and the remaining 5 are regulated by both.
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Figure 9: Results on a subset of the yeast data with only
3 proteins regulated solely by FHL1. For a description see
figure 8.

We further test our method by doing inference for a dataset
of only the 3 proteins which are regulated solely by FHL1.
The parameters are the same as for the full dataset but now
only two distinct states are found most of the time, corre-
sponding to the active and inactive state of FHL1. Figure 9
again shows this to be robust to changes inα. The period-
icity of the transcriptional activity can be seen in figure 10
corresponding to the biological setup of the experiment.

5 Discussion & Outlook

In this paper we consider a model of a continuous time
stochastic process with unobserved parameters which un-
dergo sudden changes at random times. The novel aspect
of our model is the assumption that the possible parameter
values are assumed to be from a finite (typically small) but
unknown set. Hence distinct values can occur repeatedly.
In a Bayesian approach such a situation can be modelled
elegantly by assuming a Chinese restaurant process prior
over parameters. We demonstrate an efficient MCMC pro-
cedure which for toy models leads to faster and more pre-
cise inference results compared to a simple change-point
model which draws completely new parameter values for
each segment. Applied to a microarray data set, we show
that our inference method can be used to estimate the num-
ber of transcription factors controlling a set of genes.

While the computational times for the datasets presented
here seem rather large it has to be noted that the sampler
was implemented in Matlab. We implemented the sam-
pler in Matlab and C++ for a model with a fixed number
of states and for the full yeast dataset the C++ program
was around 12 times faster than the Matlab implementa-
tion. Therefore we expect a similar improvement for the
CRP sampler which means 1 million samples for the full
yeast data would take roughly 40 minutes.

Figure 10: Heatmap for the yeast data withα = 2. The
color of a point (t1, t2) represents the probability that
A(t1) = A(t2).

While our model contains an Ornstein-Uhlenbeck process
at the moment, that can be replaced easily by other pro-
cesses whose likelihood can be computed efficiently, e.g.
a Cox-Ingersoll process or a Poisson process where the
rate undergoes sudden changes. With these changes the
model could be applied to a broader range of data sets,
e.g. financial or neurobiological data. One additional ex-
tension would be to letA(t) change only in certain dimen-
sions while others stay the same. This would better rep-
resents data where components have different but overlap-
ping change points.
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