Consistency and Rates for Clustering with DBSCAN

A Appendix: Remaining Proofs

In this section, we present the proofs of Theorems 3.1
and 3.4.

A.1 Proof of Theorem 3.1

In the following, we quote a version of Talagrand’s in-
equality due to Bousquet (2002) from Steinwart and
Christmann (2008, Theorem 7.5) and a (slightly sim-
plified) bound on the expected suprema of empirical
processes indexed by Vapnik-éervonenkis (VC) classes
of functions, from Giné and Guillou (2001, Proposition
2.1). Both will be used to prove Theorem 3.1.

Theorem A.1. Let (Z,P) be a probability space and
G be a set of measurable functions from Z to R. Fur-
thermore, let B > 0 and o > 0 be constants such that
Epg = 0, Epg? < 02, and ||g|lec < B for all g € G.
Forn >1, define G: Z™ — R by

1 n
1= sup EE (zj)|, z2=(21,...,20) € Z".

Then, for all T > 0, we have

P"({zeZ" L G(2) > 4EpnG+\/2TnU2 B }) <e .

Theorem A.2. Let (Z, P) be a probability space and G
be a set of measurable functions from Z to R. Further-
more, let B> 0 and 0 < o < B be constants such that
Epg? < 02, and ||g|loc < B for all g € G. Suppose G
is a uniformly bounded VC-class, i.e., there exist pos-
itive numbers A and v such that, for every probability
measure P on Z and every 0 < € < B, the covering
numbers satisfy

N(S, La(P), ) < (A—B)

€

Then there exists a universal constant C such that G
defined as in Theorem A.1 satisfies

vB AB vo?

Epylcgc(—lo— —1lo AB). (15)
n g g

Given a measurable g : R? — R and a § > 0 we define
the function gs : R? — R by gs(x) := g(z/6), z € R™
The following lemma, which establishes a stability of
covering number bounds under this operation, will also
be needed in the proof of Theorem 3.1.

Lemma A.3. Let G be set of measurable functions
g : RY — R such that there exists a constant B > 0
with ||glloc < B for all g € §. For § > 0, we write

Gs := {95 : g € G}. Then, for all e € (0,B] and all
0 > 0, we have

Sl;pN(S,LQ(P),E) = Sl]ipN(S&LQ(P)vE)a

where the suprema are taken over all probability mea-
sures P on RY.

Proof. We only prove “<” the converse inequality can
be shown analogously. Let us fix €, > 0 and a distri-
bution P on R%. We define a new distribution P’ on
R? by P'(A) := P(5A) for all measurable A C R%.
Furthermore, let €' be an enet of G5 with respect
to La(P’"). For € := (3’1/6, we then have |C] = |€],
and hence it suffices to show that € is an e-net of §
with respect to La(P). To this end, we fix a g € §.
Then g5 € Gs, and hence there exists an b’ € €’ with
llgs = W'l L,(pry < €. Moreover, we have h := b} 5 € €,
and since the definition of P’ ensures Ep/ fs = Ep f for
all measurable f : R? — [0,00), we obtain

llg — hHLz(P) = |lgs — h5||L2(P’) = |lgs — hI”Lz(P’) <,

i.e. Cis an e-net of § with respect to La(P). O

We further need the following result, which is a refor-
mulation of van der Vaart and Wellner (1996, Theorem
2.6.4).

Theorem A.4. Let A be a set of subsets of Z that
has finite VC-dimension V. Then the corresponding
set of indicator functions G := {1 : A € A} is a uni-
formly bounded VC-class and the corresponding VC-
characteristics A and v only depend on V.

With these preparation we are now able to establish
the following generalization of Theorem 3.1. Applying
this generalization to K of the form (3) immediately
proves Theorem 3.1.

Proposition A.5. Let P be a probability measure on
R? with a bounded Lebesgue density h and K be a real-
valued function on X such that K € Lo (R?)N La(RY).
Suppose that
F={K(@xz-:):2eX}

is a uniformly bounded VC-class. Then, there exists a
positive constant C' only depending on K, h and VC-
characteristics A and v of F such that, for all n > 1,
6 >0, and T > 0 we have

. - C C
P*"(<DeX" :|lhps—h o < — log —
({D e Wins = Bl < o108




Bharath K. Sriperumbudur, Ingo Steinwart

Proof. Let us assume without loss of generality that
[Kllo < 1. We define k5 := 6 7K (%) and
fos = kys — Epksys. Then it is easy to check that
Epfrs = 0 and || frs]jco < 2674 for all z € X and

0 > 0. Moreover, we have
Epk? s = 5*”/ K2 (w 5 y) h(y) dy

Rd

Epfls

IN

IN

5| hlloo | K113

for all x € X and ¢ > 0, where the norm || K| is with
respect to the Lebesgue measure on R?. In addition,
we have

LS Fslw) = hoa@)  hes(e),
=1

where hps and hp s are defined in (1) and (2) respec-
tively. Applying Theorem A.1to G := {f,s: 2 € R4},
we hence obtain, for all § > 0, 7 > 0, and n > 1, that

- - - - 2T
|hps — hpsllee < 4Epn|lhp.s — hpsloo + 5

27 ([l oo || K113
- =7 Tz 1
+ o (16)

holds with probability P" not smaller than 1 —e™7. It
thus remains to bound the term Ep«||hp s — hp s co-
Note that since J is a uniformly bounded VC-class, so
isF:={f—-a:feFae[-11]}, ie. there exist
positive numbers A and v such that

s%p/\/(gr, Ly(P),e) < (ﬁ)y

€

for all 0 < € < 2. For § > 0, we further have 6%G C 5"5,
and hence Lemma A.3 implies

~ 24\"

N (85, La(P).0) < N5, La(P) ) < (2]

for all probability measures P on R? and all 0 < € <2

Now, our very first estimates show that every g € § :=

593G satisfies ||g||c < 2 and Epg? < 0¢||h|| || K |3, and
hence Theorem A.2 yields

1 2v 24
Epnsup|— » g(X;)| < C<— log ———
9€8 ]2 no /oAl |1 K13

voe||hls || K13 24
+ log = s |-
n V4 hllsoll K13
Multiplying both sides by §~¢, we obtain
2 2A
Yy

g —F————
nd® 7 /6 R 1K

Epn|lhp.s — hpslleo < C(

o A IKTE 24
nd NGNS

which, when used in (16), yields the result. O

A.2 Proof of Theorem 3.4

Proof of Theorem 3.4. i). Let D € X™ be a dataset
such that ||hps — hpsllec < €. Moreover, let p > 0
be the current level that is considered by Algorithm 1.
Then, Theorem 3.3 shows that, for p € [0, p**—3c—3n],
Algorithm 1 identifies exactly the topologically con-
nected components of M, s in its loop that belong
to the set ((C(Mpyeqn)), where ¢ : C(Mpjpeyn) —
C(M,,s5) is the top-CCRM. In the following, we thus
consider the set ((C(M,yety)) for p € [0, p** —3e—3n).

Let us first consider the case p € [0, p* —e —n). Then,
(c1) and (c3) together with the assumed p+e+4n < p*
show |C(Mp4eqn)| = 1. This yields [((C(Mpiety))| =
1, and hence Algorithm 1 does not stop. Consequently,
we have p*(D) > p* —e — .

Let us now consider the case p € [p*+e*+n*+e+n, p*+
e* +n* +2e+2n]. Then we first note that Algorithm 1
actually inspects such an p, since it iteratively inspects
all p = e +1in, « = 0,1,..., and the width of the
interval above is € 4+ 1. Moreover, our assumptions on
e*, n*, € and n guarantee p* +¢&* +n* +2e+2n < p** —
3e—3n and hence we have p € [p*+e*+n*+e+n, p** —
3e — 3n]. Let us write (4 : C(Mpes) = C(Mpiein),
(— :C(Mpe+) = C(Mp—c—y), and (4 - : C(Mpyetn) —
C(M,—.—,) for the top-CCRMs between the involved
sets. Using the composition property of top-CCRMs
in (ba), we then obtain the following diagram:

C (Merern)

Moreover, we have p —e —n > p* +e* +n* > p* and
p+e+mn > p*, and hence (¢1) and (c2) show that
|IC(Mp—c—y)| =2 and |C(Mp4cqn)| = 2. Consequently,
(c3) ensures that the maps (4 and (_ are bijective.
Consequently, (4 — is bijective.  Let us further
consider the top-CCRM (' : C(M,5) = C(Mp—c—p).
Then the composition property of top-CCRMS in
(be)—yields another diagram:

(.-

C(MPJrern) C(Mpfsfn)

C(Mpﬁ)

Since (4 — is bijective, we then find that ( is injective,
and since we have already seen that M, .., has
two top-connected components, we conclude that
C(C(Mpyeqn)) contains two elements. Consequently,
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the stopping criterion of Algorithm 1 is satisfied, that
is, p*(D) < p* +&* +n* + 2+ 2n.

ii). Theorem 3.3 shows that in its last loop Al-
gorithm 1 identifies exactly the topologically con-
nected components of M,.(py; that belong to the
set Ca(c(Mp*(D)Jrern))v where (. : C(Mp*(D)Jrern) -
C(M,+(py,s) is the top-CCRM. Moreover, since Algo-
rithm 1 stops at p* (D), we have |C- (C(M p+(D)4etn))| 7
1 and thus [C(M,(p)4etn)| # 1. From p*(D) +
e+ n < p* and (¢1) we thus conclude that
|C(M«(D)4e4+n)| = 2. For later purposes, note that
the latter implies the injectivity of (.. In addition,
since |C(M«(Dytetn)| = 2, (c3) yields (_ p«(Dygeqn :
C(Mp=) = C(Mp«(D)4eqr) is bijective. Since p*(D) +
3e + 3n > p*, it follows from (c1)—(c3) that we
have Gy p«(D)+etn @ C(Mpee) = C(Mye(D)43e43y) 18
bijective. Using the composition property of top-
CCRMS in (b2), we obtain that (i _ ,«(D)tetn
C(My(Dy43e+3y) — C(Mp+(p)yestn) is bijective, and
hence |C(M - (p)43c+3,)| = 2. Let us now consider the
following commutative diagram:

G (D) +etn

C(Mp*(D)JrSerBn) - p*(D)+s+n)
C3€ Ca
C(M - (D)42e+21,5) C(My(Dy,s)

Cr
where again, all occurring maps are the top-CCRMs
between the respective sets. Now we have already
shown that (. is injective and that (i _ ,«(p)yeqy 18
bijective. Consequently, (3. is injective.

iii). Follows from Theorem 3.3 and p*(D) + 2¢ +2n <
p** — 3¢ — 3.

iv). Since p*(D) 4+ 3e+3n > p*(D) +e+n > p*, by
(c1)~(c3), we see that the maps (_ ,+« and (y ,«= are
bijective. Therefore (. _ ,«(p)4eqy is bijective and the
diagram follows. O



