Extended appendix

In section 4.2 of the main text we describe a polyno-
mial time smoother for multinomial data confined to
the unit simplex. Here we derive the forward variables
of this smoother, which we need to perform efficient
inference. The necessary backward variables may be
derived following the same integration steps but start-
ing from time 7" and proceeding backward.

Define so = 0, and let k; be the multi-index [k;1, kio],
over which the sum 7, xflefl couples z; to 241
(in addition to the implicit coupling by the simplex
constraint). Let {ax(t)} = {ax} be a set of coeffi-
cients, indexed by multi-index k, that we assume to be
constant over time, merely for notational convenience.
Pushing all sums as far to the right as possible, and
defining 6; = §(s; = S$;+1 — xi41), the joint density in
the expanded state-space is
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For the purpose of computing the forward variables,
the multinomial exponents {v; — 1} may be omitted
and considered absorbed by the k; ;, so as to further
simplify the notation.

We compute the normalization constant of the joint
distribution:
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To compute Z, we integrate from left to right, first
integrating dx1, then dsi, then dzs, then dso, and so
on until dsy. Even after only the first five integrations,
a pattern begins to emerge:
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The first equality results from integration with respect

to 21, which removes the delta function 6y = d(sp =
51 —x1) = 6(xy = 1), leaving (s; — s9)*1 in place
of xlf“. The second equality results from integration
with respect to si, which removes the delta function
81 = 0(s1 = sa—m3), which replaces (s;—s¢)"1 = slfl’l
with (sy—x9)*1:1. Next we integrate with respect to 2,
which proceeds by the following change of variables:
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where B(q, ) is the beta function. The next inte-
gration with respect to sy removes the delta function
do = §(s2 = s3—x3), resulting in the power of (s3—x3).
The last equality is a result of the same change of vari-
ables when integrating with respect to x3, yielding an-
other beta function, and leaving the last line of the



expression identical to the last line of the expression
two steps before, except that the “time” indices have
all increased by one.

To condense this expression, define ko2 = k71 = 0,
and KZ = Z;‘:l kj_172 + kj71. Lastly, define b(kln) =
B(kn—1,2 + kn,1, K, —1). Continuing with the integra-
tion from left to right, we find an expression for the
normalization constant as the following nested sum:
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This is not in sum-product form because, e.g., b(k1.1)
depends on all the indices of summation. We may
put this into sum-product form as follows. However,
we can rearrange this summation into the form of a
tractable sum-product algorithm as follows. Each sum
over k; is first a sum over k; 1 € {0,--- , R}, and then a
sum over k; o € {0,--- , R}. The sums are in the order
k1,1, k1,2, k21, k22, and so on. Now, notice that ev-
ery set of values {k;}7_, = {[ki 1, ki 2]}, corresponds
uniquely to a set of values {[k; 1, K;]}’_;, with K; as
defined above, and vice versa. Then we may sum over
values of the latter quantity in the order Kz, kr_1 1,
Kr_1, kr_21, and so on, instead of summing over val-
ues of k;, and obtain the same result. That is, we treat
the K; as sum indices instead of explicitly summing
over the k; .

To sum over all possible values of this second set of in-
dices, the values of the indices must be constrained to
be compatible. For instance, k1 = 1 is not compatible
with Ky = 0, because Ky = k11 + k12 + k21 > k11
This compatibility requirement manifests in the up-
per and lower bounds of the sums over these indices
in eq. (1). Consider the sum over k; 1, given some
values for ko; and K, (which come earlier in the
multiple sum). A priori, k11 € {0,---,R}. How-
ever, ]ﬁ,l = Kg — kg,l — k‘172 S K2 — kg,l and
/€171 = KQ — k2,1 — /{5172 Z K2 — k271 — R, so we have
k’Ll € {maX{O, K27k271 7R}, s ,HliIl{R, Kz*kg,l}}.
These are the values of k; ; that are to be summed
over, i.e. that are compatible with the values of previ-
ously specified indices. More generally,
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We redefine b(k1.,) = B(kn—1,2 + kn,1, K,—1) as the
same quantity in terms of the new indices of summa-
tion, b(K,—1,K,) = B(K,, — K,,—1,K,,—1). Putting
this all together we can write the normalization con-
stant in the form of a sum-product algorithm, arrang-
ing the sums in the prescribed order and pushing all
factors as far to the left as possible:
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Note that since we are no longer explicitly summing
over k; o, it has been replaced by K11 — K; — kir1,1



in the second element of the multi-index indexing the
coefficients {ay}. The forward variables A7) then,
can be immediately read off as follows. The first and
second superscripts index values of k;; and K, re-
spectively:
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and Z = EQ(T DR A(Z Similarly we can derive back-
ward variables C’t( 7 ), where the first superscript in-
dexes k¢_1 2 and the second indexes L; = Ez;t ki—12+
ki1. Marginal quantities can be computed readily.
The singleton marginal density is
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Therefore this method requires O(R?*T?) storage for
the forward and backward variables, and O(RST?)
processing time to compute marginals. For process-
ing time, one factor of T" comes from the number of
marginals to compute. The other factor comes from
the number of forward variables for each time, which
increases linearly with T, manifesting in the limits of

the sums over j and [ in eq. (2).



