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Abstract

Constructing tractable dependent probabil-
ity distributions over structured continuous
random vectors is a central problem in statis-
tics and machine learning. It has proven dif-
ficult to find general constructions for mod-
els in which efficient exact inference is pos-
sible, outside of the classical cases of models
with restricted graph structure (chain, tree,
etc.) and linear-Gaussian or discrete poten-
tials. In this work we identify a tree graphi-
cal model class in which exact inference can
be performed efficiently, owing to a certain
“low-rank” structure in the potentials. We
explore this new class of models by apply-
ing the resulting inference methods to neu-
ral spike rate estimation and motion-capture
joint-angle smoothing tasks.

1 Introduction

Graphical models make it easy to compose simple dis-
tributions into large, more expressive joint distribu-
tions. Unfortunately, in only a small subclass of graph-
ical models is exact computation of marginals and con-
ditionals relatively easy. In particular, while the prob-
lem of exact inference in discrete Markov random fields
(MRFs) has seen a great deal of attention recently
(Wainwright and Jordan, 2008), non-Gaussian MRFs
defined on more general (non-discrete) state-spaces re-
main a more-or-less open challenge.

As a simple example, consider inference over a chain
of dependent probabilities. Such a situation could, for
instance, arise when modeling survey responses con-
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ducted over many years in which the same yes/no ques-
tion is asked each year but where the data for some
years are missing and of interest. One might want to
estimate a population mean latent positive response
probability for every year (including those years miss-
ing responses) that is expected to vary slowly from year
to year. This requires specifying a smoothing prior
on a sequence of variables that lie between between
zero and one. There are many ways to specify such
a smoothing prior, but even in this simple example it
is hard to think of models that allow us to compute
conditional expectations exactly and efficiently. (For
example, the constraints on the latent variables and
non-Gaussian likelihood rule out Kalman filtering in a
transformed space.)

Similar to inferring latent sentiment in a survey re-
sponse modeling application, one can find other latent
variable “smoothing” tasks in fields as diverse as neu-
roscience and motion capture. In neuroscience, it is
of interest to infer the latent probability of spiking –
or firing rate – for a neuron given only observations
of individual spikes over time. Note that this problem
is very similar to the survey response problem above.
We show results from “smoothing” neural firing prob-
abilities to demonstrate the exact inference techniques
proposed in this paper. We also show an example
of smoothing motion capture joint angle time-series
data, demonstrating that our exact method is applica-
ble when even classical approximations break down.

The aim of this work is to expand the class of mod-
els for which exact inference is computationally feasi-
ble, in particular with models of continuous ans struc-
tured random variables with non-Gaussian densities.
We start by reviewing an auxiliary variable method for
introducing Markov chain dependencies between ran-
dom variables of arbitrary type. We then develop an
efficient method for exact inference in a subset of such
models, and identify a new class of “low-rank” mod-
els in which exact inference is efficient. We perform
inference on examples of such models.
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(a) Graphical model with
“smoothing” dependency be-
tween latent variables.

(b) Graphical model with latent
“smoothing” dependency induced
by auxiliary variables.

(c) Factor graph corresponding to
the graphical model in (b).

Figure 1

2 Related Work

To begin, we first review the work of Pitt et al. (2002)
and Pitt and Walker (2005), who describe an auxil-
iary variable approach to introducing dependency be-
tween random variables of arbitrary types. Refer to
Figure 1 and consider the sequence of random vari-
ables X = {xt}T

t=1. (Similarly we use the notation
Y = {yt}T

t=1 and Z = {zt}T−1
t=1 .) Assume that we

would like to bias estimation of the xt’s such that for
all values of t, xt ≈ xt+1. For now, also assume that
we would like the x’s in this chain to be marginally
identically distributed a priori, i.e. xt ∼ G0(xt) for
all t (this will be relaxed in later sections). One way
to proceed is to require that G0 is the invariant dis-
tribution of a Markov chain with transition kernel
p(xt|xt−1), i.e. G0(xt) =

�
p(xt|xt−1)G0(xt−1)dxt−1.

This constraint on p(xt|xt−1) is the same as that for
any MCMC sampler of G0; thus p(xt|xt−1) can be any
valid sampler transition kernel, e.g. the Metropolis-
Hastings transition kernel.

In Pitt and Walker (2005) a particular transition ker-
nel based on the Gibbs sampler is considered. Their
clever idea was to form a joint distribution p(x, z)
(dropping the subscript notation for the moment),
defined as p(x, z) = p(z|x)G0(x). Clearly, if we
Gibbs-sample from this distribution, i.e. sample z1 ∼
p(z1|x1), x2 ∼ p(x2|z1), z2 ∼ p(z2|x2), . . ., then the
marginal sequence x1, . . . , xT is marginally distributed
as G0, as desired. One advantage of this approach is
that we have a great deal of freedom in our choice
of p(z|x). Pitt and Walker (2005) and others (Caron
et al., 2007; Gasthaus et al., 2009) suggest choosing
p(z|x) to be conjugate to G0(x), since this implies that
p(x|z) is in the same family as G0, making sampling
more straightforward. In addition, as the amount of
information in z about x is increased, neighboring val-
ues of x are more closely coupled together. We can
also easily incorporate noisy observations yt from this
model (as shown in Figure 1): if the likelihood of yt

given xt is also conjugate to G0, then p(xt|zt−1, yt) re-
mains in the same family as G0, making conditional
Gibbs sampling from p(X|Y ) straightforward.

3 Low-rank Markov chains

Constructing a Gibbs sampler to sample the x’s and
z’s conditioned on observations (y’s in Figure 1) is
only asymptotically exact in the limit of infinite Gibbs
sweeps. What has been overlooked until now (to
our knowledge) is that the x’s can often themselves
be analytically marginalized out, leaving a Markov
chain in the z’s only, where computation often remains
tractable when the z’s are discrete random variables
with a small state-space. Therefore, in the subset of
this class of models in which the z’s are discrete ran-
dom variables, exact inference can be efficiently per-
formed.

To see how this is possible, consider the form of the
joint distribution of the graphical model in Figure 1b
when the z’s are discrete random variables. In this
case we can write

p(X) = p(x1)

T−1�

t=1

�

zt

p(zt|xt)p(xt+1|zt)

where we disregard the observations yt momentarily
for the sake of clarity. To emphasize the primary role
of the x’s, p(X) can be re-expressed in the following
equivalent form

p(X) ∝
T−1�

t=1

Rt�

zt=1

ft,zt(xt)gt,zt(xt+1) (1)

for appropriate functions ft,zt
and gt,zt

, where each
sum is a potential coupling neighboring x variables,
and where Rt is the size of the state-space of zt,
which we will refer to as the “rank” of the potential,
for reasons that will become clear below. (The con-
verse is also true; it is straightforward to show that,
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given nonnegative ft,zt and gt,zt , we can construct
corresponding conditionals p(zt|xt) and p(xt+1|zt), al-
though the resulting Markov chain in the x’s may be
non-stationary). In fact, the conditional distribution
p(X|Y ) can be expressed in exactly the same form, by
absorbing the observation densities p(yt|xt) in the f
or g terms. In Figure 1c we have chosen to include the
yt’s in the g factor.

Now, if the x’s were discrete random variables, then
eq. (1) would represent a discrete Markov chain in
which the transition matrices are of rank Rt. Recall
that exact inference in such a low-rank Markov chain
is relatively easy (Siddiqi et al., 2010), since the com-
putational complexity of the forward-backward algo-
rithm is dominated by the cost of multiplication by
the transition matrix, and multiplication by low-rank
matrices is relatively cheap.

The key idea is that, as long as the z’s are discrete
random variables with small state-space, exact infer-
ence on the Markov chain X defined in eq. (1) remains
tractable. Even in the general (non-discrete X) case,
exact inference requires just O(R2) time (assuming
constant Rt = R, t = 1, . . . , T ), as in a standard low-
rank hidden Markov model; here the z’s correspond to
the latent variables. Consider the partition function
of the joint distribution p(X, Z).

�
dX1:T

T−1�

t=1

Rt�

zt=1

ft,zt(xt)gt,zt(xt+1)

=

R1�

z1=1

��
dx1f1,z1(x1)

�
dx2g1,z1(x2)×

R2�

z2=1

�
f2,z2(x2)

�
dx3g2,z2(x3) · · ·

We arrive at the distribution of Z simply by remov-
ing the sums over the z’s from the partition function.
Rearranging the products and integrals above reveals
the Markov structure of Z.

p(Z) ∝
�

dx1f1,z1(x1)

�
dx2g1,z1(x2)f2,z2(x2)×

�
dx3g2,z2(x3)f3,z3(x3) · · ·

�
dxT gT−1,zT−1

(xT ) (2)

We can use the forward-backward algorithm to com-
pute exact marginals or samples from p(Z); since,
given Z, the x’s are independent, we can therefore eas-
ily compute exact marginals or samples from p(X) as
well. To be explicit, expressions for the forward and
backward variables are as follows:

A
(z1)
1 =

�
dx1f1,z1(x1)

A
(zt)
t =

Rt−1�

zt−1

A
(zt−1)
t−1

�
dxtgt−1,zt−1(xt)ft,zt(xt)

B
(zT−1)
T =

�
dxT gT−1,zT−1

(xT )

B
(zt−1)
t =

Rt�

zt

B
(zt)
t+1

�
dxtgt−1,zt−1(xt)ft,zt(xt) (3)

These are message passing equations (Bishop, 2006)
and the forward and backward variables can be com-
puted by induction on t. Given these quantities, the
marginal distributions of the X become mixture of
modes indexed by the zt:

p(xt) ∝
Rt−1�

zt−1

A
(zt−1)
t−1

Rt�

zt

B
(zt)
t+1gt−1,zt−1(xt)ft,zt(xt)

So, if the inner products
�

gt−1,i(x)ft,j(x)dx can be
evaluated then we can perform exact inference in X
(or more generally in X given observations Y ) in

O
��T

t=1 R2
t

�
time, by the forward-backward algo-

rithm sketched above. (Note that we need only com-
pute these inner products once; these can therefore be
pretabulated if necessary before inference begins.) It
is straightforward to show that the linear scaling of
this inference with T holds for general acyclic Markov
random fields (i.e., trees) with potentials of the low-
rank form described in eq. (1). Moreover, for certain
graphs with cycles, the full p(X) or p(X|Y ) can be
treated efficiently as a weighted sum of trees via the
method of conditioning (Pearl, 1988).

When applying such a model to data, it will usually
not be the case that we know the rank of the potential
functions f and g. In this case R has to be estimated
from data. This is a standard model selection problem;
a Bayesian approach would exploit the marginal like-
lihood p(Y |R) =

�
p(X|R)p(Y |X)dX of the observed

data Y given the rank R. This marginal likelihood
can be computed directly from our forward recursion
(as usual in the context of hidden Markov models (Ra-
biner, 1989)); see Fig. 2 for an illustration.

Finally, Z is guaranteed to be a proper Markov chain
only if all the inner products over f and g are posi-
tive. On the other hand, mathematically there is noth-
ing against performing the recursive inference with
the above forward-backward variables when the in-
ner products can be negative, though numerical issues
due to cancellation of numbers below machine preci-
sion may be a problem in this case. We will stick to
nonnegative potentials in this work.
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Figure 2: The marginal likelihood can be used to esti-
mate the rank of the underlying process X generating
data Y . Here a sample X0 was generated from the
beta-binomial time series model p(X|R) (Section 4.1)
with rank R = 5; i.e., Rt = 5 for all times t. We plot
the log-likelihood (circles) log p(X0|R) as a function of
R. Then we generate data Y from p(Y |X0) and use
the data to estimate the rank by maximizing the log-
likelihood log p(Y |R) (crosses) as a function of R. As
the binomial parameter Nt ≡ N increases, the data Y
become more informative about X0, and p(Y |R) ap-
proaches p(X0|R).

4 Examples

4.1 Beta-binomial and Dirichlet-multinomial
time series

We now return to the probability-smoothing exam-
ple we mentioned in the introduction. We con-
sider a time series of binomial distributed data yt ∼
Binomial(Nt, xt). If we choose any prior p(X) such
that the posterior p(X|{Nt}, Y ) has the form of eq.
(1), then exact inference is tractable. For example, we
could choose xt and zt to have the following simple
conjugate Beta-binomial form:

x1 ∼ Beta(α, β)

zt|xt ∼ Binomial(zt;Rt, xt)

xt+1|zt ∼ Beta(α + zt, β + Rt − zt)

Thus xt is marginally Beta(α, β), and the dependence
between xt and xt+1 — i.e., the smoothness of the x’s
as a function of time — is set by Rt: large values of
Rt lead to strongly-coupled xt and xt+1. Eq. (1) in

this case becomes

p(X) =

T−1�

t=1

Rt�

zt=0

aztx
zt
t (1 − xt)

Rt−zt×

xzt
t+1(1 − xt+1)

Rt−zt (4)

which we will call the beta-binomial smoother, for the
appropriate coefficients azt .

We could consider more general priors of the form

p(X) ∝
�

t

Rt�

i=0

atix
αi
t (1 − xt)

βixγi

t+1(1 − xt+1)
δi

where αi, βi, γi, and δi are greater than or equal
to −1 so that the inner product integrals don’t di-
verge, and ati > 0 for the reasons described above.
Given the form of the binomial likelihood, that the
posterior p(X|{Nt}, Y ) will have the same form, but
with the constants αi, βi, γi, and δi modified accord-
ingly. Distributions of this form could be considered
as tractable conjugate priors for binomial time series
data. Note that the necessary inner products can be
computed easily in terms of standard beta functions,
and inference proceeds in O(R2) time, assuming con-
stant Rt = R.

Multivariate generalizations are conceptually straight-
forward: we replace beta distributions with Dirichlets
and binomials by multinomials, since by analogy to
the beta-binomial model, the Dirichlet is conjugate to
the multinomial distribution:

�x1 ∼ Dirichlet(�α)

�zt|�xt ∼ Multinomial(Rt, �xt)

�xt|�zt ∼ Dirichlet(�α + �zt)

�yt|�xt, nt ∼ Multinomial(�yt; �xt, nt)

Just as in the beta-binomial case, this defines a se-
quence of marginally-Dirichlet distributed probabili-
ties xt, with Rt controlling the smoothness of the state
path X. Inference in this case scales quadratically with
the total number of possible histograms �zt that might
be observed.

4.2 Smoothing conjugate priors for
multinomial data

In many cases one would like a conjugate prior for
multinomial data that leads to smooth estimates of
the underlying probabilities. In the preceding exam-
ple, we constructed a conjugate prior for count data
that has smooth and nonnegative sample paths. If we
further constrain these sample paths to sum to one,
then we could interpret X as a discrete probability
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Figure 3: The inferred spiking probability density from spike train data assuming a binomial spiking model and
the beta-binomial smoother. The black bars are the observed spikes. The solid white line is the inferred mean
of the spiking probability. Each time unit is 2 ms.

distribution; it is easy to see that the resulting smooth-
ing prior p(X) is conjugate to multinomial data, due
to the completely factorized form of the multinomial
likelihood. However, it is not immediately clear how to
exploit the model’s low-rank structure to perform in-
ference in a tractable way, since the constraint that the
components of X sum to one breaks the tree structure
of the graphical model.

One approach is to transform to a larger state-space,
xt → qt = (xt st), where st denotes the cumulative
sum st = x1 + x2 + · · · + xt. This leads to a Markov
prior on the augmented state variable Q of the form

p(Q) ∝ δ(s1 = x1)x
ν1−1
1

R�

k1

ak1x
k1,1

1 x
k1,2

2 ×

δ(s1 = s2 − x2)x
ν2−1
2

R�

k2

ak2x
k2,1

2 x
k2,2

3 ×

· · · δ(sT−2 = sT−1 − xT−1)x
νT−1−1
T−1 ×

R�

kT−1

akT−1
x

kT−1,1

T−1 x
kT−1,2

T × (5)

δ(sT−1 = sT − xT )xνT

T δ(sT = 1)

As outlined in greater detail in the appendix, we can
perform forward-backward inference on this density by
recursively integrating the above density, over all the
xi and the si, to compute the normalization constant,
and then rearranging the summations into the form
of a sum-product algorithm. The resulting inference
algorithm requires O(R2T 2) storage and O(R6T 2) pro-
cessing time.

4.3 Phase data

So far our random variables have lived in convex sub-
sets of vector spaces; standard approximation meth-
ods (e.g., Laplace approximation (Kass and Raftery,
1995) or expectation propagation (Minka, 2001)) can
often be invoked to perform approximate inference in
these settings. However, our method may be applied
on more general state-spaces, where these classical ap-
proximations break down. As a concrete example, con-
sider a time-series of phase variables (angles). The von
Mises distribution

p(xt|µt, κt) ∝ eκt cos(xt−µt)

(with mean and concentration parameters µt and κt)
is popular for modeling one-dimensional angular data,
largely because the necessary normalization factors
can be computed easily, and furthermore this model
has the convenient feature that, like the normal den-
sity, it is conjugate to itself (Gelman et al., 2003). As
in our previous examples, this univariate distribution
can be augmented to tractably model smoothed time-
series data. For instance, we could take

p(X) ∝
�

t

R�

i=0

e
R
2 cos(xt− 2πi

R+1 )e
R
2 cos(xt+1− 2πi

R+1 ) (6)

This acts as a smoothing prior, since at each time t,
for each corresponding pairwise potential, each of the
terms in the sum over i is a unimodal function peaked
at xt = xt+1 = 2πi

R+1 . That is, each term contributes a
bump along the diagonal, and therefore the sum over
i corresponds to a nearly-diagonal transition matrix,
i.e. to a smoothing prior. Larger values of R lead to
smoother sample paths in X. Inference proceeds as
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in the previous examples; if the observations yt also
have von Mises densities given xt (as in the example
application discussed in the next section), then the
necessary inner products can be computed easily in
terms of Bessel functions.

As in the Dirichlet-multinomial case, extensions to
multivariate phase data are conceptually straightfor-
ward (the von Mises-Fisher density generalizes the uni-
variate von Mises density (Mardia and Jupp, 2000);
see Cadieu and Koepsell (2010) for another general-
ization). We will describe another generalization, to
oscillatory or narrowband time series data, below.

5 Experiments

We began by analyzing some simple neural spike
train data (http://neurotheory.columbia.edu/
∼larry/book/exercises.html) using the beta-binomial
smoother. A segment of a spike train in which
each time unit represents 2 ms was obtained. The
spikes (the binary observations {yt}) were modeled as
draws from a binomial distribution with time-varying
probability xt. The smoother of eq. (4) was used
with α = β = 1, setting the a priori marginals to be
uniform distributions. We used R = 100, which leads
to a prior autocorrelation time of approximately 60
ms. The forward-backward algorithm was run to infer
the distribution over xt as a function of time as shown
in Figure 3. The marginal mean varies smoothly over
time, rising during times of higher spike rates.

We also performed some basic comparisons to Gibbs
sampling. The Gibbs sampler is the standard ap-
proach to computation in this type of model, but as
emphasized above it only leads to approximate so-
lutions, whereas the marginalized forward-backward
approach we have introduced here provides exact re-
sults. The basic result, shown in Figure 4 is unsur-
prising: many Gibbs sweeps are required to achieve a
certain error level, particularly in cases where the sam-
ple paths from the conditional distribution p(X|Y, R)
are strongly coupled.

Next we turned to a dataset involving phase vari-
ables. We analyzed joint articulation motion
capture data from the CMU Graphics Lab Mo-
tion Capture Database (http://mocap.cs.cmu.edu/
search.php?subjectnumber=13&trinum=9). A time-
series of angles of extension of the right radius of a
man drinking from a bottle of soda was analyzed. This
motion was modeled with the von Mises smoother of
eq. (6) with R = 20 and κ = 2. The observations
yt were modeled as von Mises draws with mean xt.
The forward-backward algorithm smoothed the data
effectively and allowed for appropriate inference in the
presence of missing data, as illustrated in Fig. 5.
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Figure 4: For different amounts N of data, the
marginal means of a Markov chain X of length T = 100
were computed both exactly and approximately by
Gibbs sampling, using the beta-binomial smoother.
Here we plot the root mean square error per time step
of the Gibbs solution with respect to the exact solution
as a function of the number of Gibbs sweeps. For each
value N of the binomial count parameter we plot this
curve for three values of the rank R. Each curve is the
median of 25 traces, each the average of 10 indepen-
dent runs of the Gibbs sampler. Each of the 25 traces
corresponds to different randomly generated input
data from p(Y |R). The sampler was initialized with
each xt drawn independently from the marginal prior
distribution, p(xt) = Uniform([0, 1]). The Gibbs es-
timates converge most quickly when p(X|Y, R) is most
uncoupled, that is, when R is small and/or N is large;
when R is large or N is small the Gibbs error requires
many sweeps to shrink towards zero.

Conceptually, we are applying a rather simple state-
space model to this data, with the true underlying
angle (the hidden state variable) modeled as xt+1 =
xt + �t, and the observation modeled as yt = xt + ηt

for appropriate noise terms �t and ηt. This state-space
viewpoint suggests some natural further generaliza-
tions. For example, if we let xt+1 = xt +2πω+�t, then
xt could model a narrowband signal with dominant fre-
quency ω. Our inference methods can be applied in a
straightforward manner to this oscillatory model, and
may therefore be useful in a number of potential appli-
cations, e.g. the analysis of noisy electroencephalogra-
phy data, or in the acoustic applications described in
Turner and Sahani (2011).
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Figure 5: The inferred probability density of angle in motion capture data. The solid white line is the observed
signal. The dotted white line, mostly obscured by the solid white line, is the inferred mean. The colorbar
indicates the inferred posterior. Bands appear in intervals where the observations are suppressed. They are
tapered because, deeper within the band, distant observations are less informative of the density, which is
therefore nearly uniform. Inset: Inference with no data held out. The solid line is the observed signal, the
dashed line the inferred mean. Much of the noise in the signal has been smoothed. Each time unit is 2 ms.

6 Discussion

We have introduced a class of “low-rank” models for
continuous-valued data in which exact inference is pos-
sible by efficient forward-backward methods. These
exactly-solvable models are perhaps of most interest in
cases where standard approximation methods (e.g., ex-
pectation propagation or Laplace approximation) are
unreliable, such as the application to circular data time
series discussed in section 4.3. Even in less “exotic”
cases, such as the beta-binomial model discussed in
section 4.1, classical methods based on Gibbs sampling
can mix slowly (c.f. Fig. 4), making the exact sampler
introduced here more attractive. (More generally, of
course, there is significant value in exact, not approx-
imate, inference methods: in mission-critical applica-
tions, for example, it is essential to have methods that
are guaranteed to return the correct answer 100% of
the time.) Thus we hope that these low-rank models
might prove useful in a wide range of applications.

Directions for future theoretical research include con-
nections with recent work on inference in reproducing
kernel Hilbert spaces (RKHSs) by Song et al. (2010a)
and Song et al. (2010b). The latter describe an ap-
proximate RKHS inference method in tree-structured
graphical models, e.g. over non-Gaussian continuous
variables. They perform belief propagation by opera-
tions on messages represented in a RKHS. Their ap-
proximate inference algorithm takes as input samples
from the variables and estimates the necessary oper-
ators. It could be fruitful to explore connections be-
tween such a program and the methods we present

here.

Our models also bear resemblance to the Reduced-
Rank Hidden Markov Models (RR-HMMs) proposed
by Siddiqi et al. (2010). These are n-state hidden
Markov models with rank k < n transition matri-
ces. Probabilities in RR-HMMs can be represented
in terms of k × k matrices, and inference can be
done in O(k2) time. Our method exploits a similar
property of the models it treats, reformulating tran-
sitions between continuous state-spaces (not only be-
tween high-dimensional discrete state-spaces) in terms
of low-dimensional discrete spaces.

Further, there are a number of models that include
inference in a large number of chains of dependent,
constrained random variables for which our exact in-
ference approach might not only improve inference
but may result in significant computational savings.
One example is the generalized Polya-urn dependent
Dirichlet process (GPU-DDP) mixture (Caron et al.,
2007). The GPU-DDP models time series observa-
tions as being draw from a time-dependent Dirichlet
mixture. The latent parameters of the mixture com-
ponents are allowed to change over time, but must be
constrained in the same way that the auxiliary vari-
able random walk of Pitt et al. (2002) constrains the
latent sample paths in this paper. Inference in GPU-
DDP mixtures is hard, suffering from slow mixing and
high computational complexity, particularly in the low
sample count, high-rank domain in which our exact in-
ference approach excels. Applying our inference proce-
dure to GPU-DDP inference could result in substantial
improvements.
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7 Appendix

Here we derive forward variables (FV) of the multino-
mial data smoother of section 4.2. A detailed deriva-
tion is available online. Let {ak(t)} = {ak} be coeffi-
cients, indexed by multi-index k, assumed here to be
constant over time. Define s0 = 0 and δi ≡ δ(si =
si+1−xi+1). Deriving FV, the exponents {νi − 1} in
(5) may be considered absorbed by the ki,j , to simplify
notation. We compute the normalization constant:

Z =

� 1

0

ds1

� s1

0

dx1 · · ·
� 1

0

dsT

� sT

0

dxT p(Q)

=

� 1

0

ds1

� s1

0

dx1

R�

k1

ak1
x

k1,1

1 δ0×

� 1

0

ds2

� s2

0

dx2

R�

k2

ak2x
k1,2+k2,1

2 δ1 × · · ·

We integrate left to right, first dx1, then ds1, dx2, ds2,
and so on through dsT . Integration over x1 removes

δ0, leaving s
k1,1

1 in place of x
k1,1

1 . Integration over s1

removes δ1, leaving (s2 − x2)
k1,1 instead. Integration

over x2 proceeds by a change of variables:

� s

0

dx(s − x)α−1xβ−1 u=x/s
= sα+β−1B(α, β)

where B(α, β) is the beta function. Integration over s2

removes δ2, leaving (s3 − x3)
k1,1+k1,2+k2,1 . Integration

over x3 uses the same variable change. Continuing, Z
becomes the following nested sum:

Z =

R�

k1

ak1

�
R�

k2

ak2b(k1:2)

�
R�

k3

ak3b(k1:3) · · ·
�

R�

kT−1

akT−1
b(k1:T−1)b(k1:T )


 · · ·






where we define k0,2 ≡ kT,1 ≡ 0, Ki ≡
�i

j=1 kj−1,2 +
kj,1, and b(k1:n) ≡ B(kn−1,2 + kn,1,Kn−1).

This is not in sum-product form because, e.g., b(k1:T )
depends on all the indices of summation. We may
put this into sum-product form as follows. A sum
over ki is a sum over ki,1 ∈ {0, · · · , R}, then a sum
over ki,2 ∈ {0, · · · , R}. Notice that every set of values
{ki}T

i=1 = {[ki,1, ki,2]}T
i=1 corresponds uniquely to a set

of values {[ki,1,Ki]}T
i=1, and vice versa. Then we may

sum over the latter in the order KT , kT−1,1, KT−1,
kT−2,1, and so on, instead of summing over ki, with
the same result. The index values must be constrained;
k1,1 = 1 is not compatible with K2 = 0, because K2 =
k1,1 + k1,2 + k2,1 ≥ k1,1. This requirement manifests
in the upper and lower bounds of the sums over these
indices. It can be shown that ki,1 ∈ {max{0,Ki+1 −

ki+1,1 − (2i − 1)R}, · · · ,min{R,Ki+1 − ki+1,1}} and
Ki ∈ {max{ki,1,Ki+1−ki+1,1−R}, · · · ,Ki+1−ki+1,1}:

Z =

R(2T−2)�

KT =0


 �

kn−1,1

�

Kn−1

· · ·
�

�

k2,1

�

K2

a[k2,1,K3−K2−k3,1]B(K3 − K2,K2)

�

�

k1,1

a[k1,1,K2−K1−k2,1]B(K2 − K1,K1)




 · · ·




The FV, then, are as follows. The first and second
superscripts index values of kt,1 and Kt, respectively:

A
(i,j)
2 =

min{R,j−i}�

k=max{0,j−i−R}
a[k,j−k−i]B(j − k, k)

i ∈ {0, · · · , R}, j ∈ {i, · · · , i + 2R}

A
(i,j)
t =

min{R,j−i}�

k=max{0,j−i−(2t−3)R}

j−i�

l=max{k,j−i−R}

a[k,j−l−i]B(j − l, l)A
(k,l)
t−1

i ∈ {0, · · · , R}, j ∈ {i, · · · , i + 2(t − 1)R}

A
(j)
T =

min{R,j}�

k=max{0,j−(2t−4)R}

j�

l=max{k,j−R}

a[k,j−l]B(j − l, l)A
(k,l)
T−1

j ∈ {0, · · · , 2(T − 1)R}

and Z =
�2(T−1)R

i=0 A
(i)
T . Similarly we can derive back-

ward variables C
(i,j)
t , where the first superscript in-

dexes kt−1,2 and the second indexes Lt ≡
�T

i=t ki−1,2+
ki,1. Marginals can be computed readily:

p(xt) =
1

Z
R�

i=0

i+2(t−2)R�

j=i

R�

k=0

k+2(T−1−t)R�

l=k

(7)

A
(i,j)
t−1 C

(k,l)
t+1 B(j, l)

R�

kt−1,2=0

R�

kt,1=0

a[i,kt−1,2]a[kt,1,k]x
kt−1,2+kt,1

t (1 − xt)
j+l

This method requires O(R2T 2) storage for the FV,
and O(R6T 2) time to compute marginals. For time,
one factor of T comes from the number of marginals

to compute, the other from the number of A
(i,j)
t for

each t, which increases linearly with T , manifesting in
the limits of the sums over j and l in eq. (7).
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