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Abstract

This paper resolves a common complexity is-
sue in the Bethe approximation of statistical
physics and the sum-product Belief Propaga-
tion (BP) algorithm of artificial intelligence.
The Bethe approximation reduces the prob-
lem of computing the partition function in
a graphical model to that of solving a set
of non-linear equations, so-called the Bethe
equation. On the other hand, the BP algo-
rithm is a popular heuristic method for es-
timating marginal distribution in a graphical
model. Although they are inspired and devel-
oped from different directions, Yedidia, Free-
man and Weiss (2004) established a some-
what surprising connection: the BP algo-
rithm solves the Bethe equation if it con-
verges (however, it often does not). This
naturally motivates the following important
question to understand their limitations and
empirical successes: the Bethe equation is
computationally easy to solve?

We present a message passing algorithm solv-
ing the Bethe equation in polynomial num-
ber of bitwise operations for arbitrary bi-
nary graphical models of n nodes where the
maximum degree in the underlying graph is
O(logn). Our algorithm, an alternative to
BP fixing its convergence issue, is the first
fully polynomial-time approximation scheme
for the BP fixed point computation in such
a large class of graphical models. Moreover,
we believe that our technique is of broader in-
terest to understand the computational com-
plexity of the cavity method in statistical
physics.
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1 Introduction

In the recent years, graphical models (also known
as Markov random fields) defined on graphs have
been studied as powerful formalisms modeling infer-
ence problems in numerous areas including computer
vision, speech recognition, error-correcting codes, pro-
tein structure, networking, statistical physics, game
theory and combinatorial optimization. Two cen-
tral problems, commonly addressed in these applica-
tions involving graphical models, are computing the
marginal distribution and the so-called partition func-
tion. It is well-known that the inference problems are
computationally hard in general [Chandrasekaran et
al. 2008]. Due to such a theoretical barrier, efforts
have been made to develop heuristic methods.

The sum-product Belief Propagation (BP) algorithm,
first proposed by Pearl (1988), and its variants (e.g.
Survey Propagation) are such heuristics, driven by
certain experimental thoughts, for computing the
marginal distribution. Their appeal lie in the ease of
implementation as well as optimality in tree-structured
graphical models (models which contain no cycles).
BP (and message-passing algorithms in general) can
be thought as an updating rule on a set of messages:

mt+1 — f(mt),

where m! is the multi-dimensional vector of messages
at the t-th iteration, and f describes the updating
rule (or BP operator).! Two major hurdles to un-
derstand such a message-passing algorithm are about
its convergence (i.e. m' converges to m*?) and cor-
rectness (i.e. m* is good enough?). It is known that
the BP iterative procedure always has a fixed point
m* due to the Brouwer fixed point theorem. However,
BP can oscillate far from a fixed point in models with
cycles, and only several sufficient convergence condi-
tions [Weiss 2000, Tatikonda and Jordan 2002, Heskes
2004, Thler et al. 2006] have been established in the
last decade. More importantly, BP can have multiple
fixed points, and even when it is unique, it may not
be the correct answer. Significant efforts [Wainwright

1See Section 2.1 for the precise definitions of m' and f.
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et al. 2003, Heskes 2004, Yedidia 2004] were made to
understand BP fixed points, while the precise approx-
imation qualities and the rigorous understandings on
their limitations still remain mystery. Regardless of
those theoretical understandings, the BP algorithm
performs empirically well in many applications [Free-
man and Pasztor 1999, Murphy et al. 1999, Forney
2001]. For example, the highly successful turbo codes
[Berrou et al. 1993] in practice can be interpreted as
BP [McEliece et al. 1998] and decisions guided by BP
is also known to work well to solve satisfiability prob-
lems [Ricci-Tersenghi and Semerjian 2009].

The Bethe approximation [Bethe 1935] and its vari-
ants (e.g. Kikuchi approximation [Domb and Green
1972]), originally developed in statistical physics of
lattice models, are currently used as powerful approxi-
mation schemes for computing the (logarithm of) par-
tition function in many applications. The Bethe ap-
proximation suggests to use the following quantity as
an approximation for the logarithm of the partition
function:

F(y*) where
F, VF(y*) = 0 and y* are called the (minus) Bethe
free energy function, Bethe equation and Bethe equi-
librium, respectively.? The statistical physics pre-
diction suggests its asymptotic correctness in ran-
dom sparse graphical models, and several rigorous ev-
idences in particular models are known [Bandyopad-
hyay and Gamarnik 2006, Dembo and Montanari 2010,
Chandrasekaran et al. 2011]. Efforts have also been
made to estimate and characterize its error [Chertkov
and Chernyak 2006, Sudderth et al. 2008]. However,
the error still remains uncontrollable for models with
many cycles.

Yedidia, Freeman and Weiss (2004) established a
somewhat surprising connection between the BP algo-
rithm and the Bethe approximation: if BP converges,
it solves the Bethe equation. Equivalently, the BP
fixed point equation f(m*) = m* is in essence equiv-
alent to the Bethe equation VF(y*) = 0. This nat-
urally leads to the following common computational
question for both: the BP fixed point computation is
computationally easy? Formally speaking,

VE(y*)=0.

Q. Given € > 0, is it possible to design a determinis-
tic iterative algorithm finding m* satisfying

(I=e)f(m™) < m™ < (1+¢) f(m"),

in polynomial number of bitwise operations with
respect to 1/e and the dimension of vector m*?

2See Section 2.2 for the precise definition of F.
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Such € > 0 is necessary since the exact computa-
tion (i.e. € = 0) is impossible since BP fixed points
are irrational in general. An algorithm in Q can be
used an alternative to BP with provably fast conver-
gence rate (i.e. fixing the convergence issue of BP) and
eliminates a need for the convergence analysis of BP.
Even though it may not converge to the correct an-
swer, it can, at least, provide a guidance toward it
[Ricci-Tersenghi and Semerjian 2009]. Further, it con-
firms the efficiency of the Bethe approximation scheme
as well since m* satisfying the above inequality pro-
vides y* with [|[VF(y*)|| < e. Efforts to design such
algorithms were made [Teh and Welling 2001, Yuille
2002], but no rigorous analysis on their convergence
rates is known. Chandrasekaran et al. (2011) recently
proposed an algorithm with provable polynomial con-
vergence rate, but the work is for a specific graphical
model, i.e., the uniform distributions on independent
sets of sparse graphs. An ideal algorithm should work
for a large class of graphical models.

1.1 Owur Contribution

The main result of this paper is the following answer A
for the question Q for the BP operator f and arbitrary
sparse binary graphical models. To state it formally,
we let n be the number of nodes and A be the maxi-
mum degree in the underlying graph, respectively.

A. Given ¢ > 0, there exists a deterministic iterative
algorithm finding m* satisfying

(1—=¢) f(m*) < m" < (1+¢)f(m")
in 20A)n2e~*1og® (ne~!) iterations.

In this paper, we call the message m* satisfying the
above inequality as an e-approximate BP fixed point.
In what follows, we explain the algorithm in details.

The known equivalence [Yedidia et al. 2004] between
the BP fixed point equation and the Bethe equation
implies that the question Q is equivalent to the follow-
ing.

Q’. Given € > 0, is it possible to design a determinis-
tic iterative algorithm finding y* satisfying

IVE(yII < e,

in polynomial number of bitwise operations with
respect to 1/¢ and the dimension of the domain
D of the Bethe free energy function F?7

However, we note that it is still far from being obvious
whether it is computationally ‘easy’ to find such a near
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stationary point.> Natural attempts are gradient de-
scent algorithms to find a local minimum or maximum
of F: iteratively update y(t) as

yt+1) = y@t)+aVF(y(t),

where @ € R is the (appropriately chosen) step-size.
The main issue here is that the gradient algorithm may
not find a near stationary point if y(¢) hits (or moves
across) the boundary of D in one of its iterations (and
some projection may be required). Hence, the main
strategy in the work by Chandrasekaran et al. (2011)
to avoid the hitting issue lies in (a) understanding the
behavior of gradient VI close to the boundary of D
and (b) designing an appropriate small step-size in the
gradient algorithm based on the understanding (a).

The main technical challenge to apply the strategy
to general binary graphical model, beyond the spe-
cific uniform independent-set model studied by Chan-
drasekaran et al. (2011), is on (a). The domain
D is simply [0, %]n in the uniform independent-set
model since the Bethe free energy function F' is de-
termined by node marginal probabilities in the model.
One can observe that the proof strategy by Chan-
drasekaran et al. (2011) immediately fails even for the
non-uniform independent-set model, which has the do-
main D = [0,1]". Furthermore, the more significant
issue is that in general graphical model the domain
becomes more complex, i.e. D = [0,1]"T™ where m
is the number of edges in the underlying graph. This
is because the Bethe free energy should consider pair-
wise (or edge) marginal probabilities as well. One can
check that any similar approaches to that of Chan-
drasekaran et al. (2011) fail in the larger domain. To
overcome such a technical issue, we first observe that
at stationary points of F', pairwise marginal probabili-
ties should satisfy certain quadratic equations in terms
of node marginal probabilities. This allows to express
the Bethe free energy again in terms of node marginal
probabilities i.e. D = [0, 1]™. Now we study this ‘modi-
fied” Bethe expression to avoid the hitting issue, which
we end up with an appropriate small step-size in the
gradient algorithm. Moreover, we eliminate a need
to decide such a small step-size explicitly in the algo-
rithm, by designing an elegant time-varying projection
scheme. The algorithm is presented in Section 3.

We later realized that the ‘modified” Bethe expres-
sion was already proposed by Teh and Welling (2001),
where they suggested gradient algorithms to minimize
it using sigmoid functions. The main difference in our
work is that our gradient algorithm does the minimiza-
tion task with a projection scheme, instead of using

3PPAD and PLS are complexity classes to capture the
hardness of computations for fixed points and local optima,
respectively.
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sigmoid functions. This is possible since our algorithm
design was motivated from avoiding the hitting issue.
The success of our rigorous convergence rate analy-
sis, which was missing in the work of Teh and Welling
(2001), crucially relies on this difference.

One can observe that our gradient algorithm is im-
plementable as a ‘BP-like’ iterative, message passing
algorithm: each node maintains a message at each it-
eration and passes it to its neighbors. We prove it
terminates in 20(®)n2e~41og®(ne~1!) iterations until
it finds an e-approximate BP fixed point. In a com-
plexity point of view, the only remaining issue is that
each node may require to maintain irrational messages
(of infinitely long bits). We further show in Section
4 that a polynomial number (with respect to 1/¢, n
and 22) of bits to approximate each message suffices,
and hence the algorithm consists of only a polynomial
number of bitwise operations in total. Namely, it is a
fully polynomial-time approximation scheme (FPTAS)
to compute an approximate BP fixed point for sparse
binary graphical models where A = O(logn).

1.2 Organization

In Section 2, we provide backgrounds for graphical
models, Belief Propagation and Bethe approximation.
In Section 3 and 4, we describe our algorithms and
their running times.

2 Graphical Models

We first introduce a class of joint distributions defined
with respect to (undirected) graphs, which are called
(pairwise) Markov random fields (MRFSs) [Lauritzen
1996]. Specifically, let G = (V, E) be a undirected
graph with the vertices being denoted by V' with |V] =
n, and the edges E C (g) denoting a set of unordered
pairs of vertices. The vertices of G label a collection of
random variables x = {z, |v € V'}. Our focus in this
paper is on binary random variables, i.e., @, € {0,1}
forallveV.

Now consider the following joint distribution on
{0,1}™ that factors according to G: for x € {0,1}",

p) =7 [T o) T vuslwn o).

veV (u,w)EE

Here, each %, and 1, are non-negative functions on
{0,1}? and {0, 1}, respectively. These local functions
are called potential functions or compatibility func-
tions. The normalizing factor Z is called the partition
function:

Z = Z H'llfv(l'v) H ¢u,v(xuaxv)' (1)

xe{0,1}n veV (u,w)EE
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Finally, some notations. Let N'(v) be the set of neigh-
bors of a vertex v € V, d,, := |N(v)| be the degree of
v €V, and A := max, d, be the maximum degree in
the graph G. Further, we define

Yy =

max
(u,v)EE,zq,2,€{0,1}

In this paper, we primarily focus on the case ¥, =

0(1).4

2.1 Belief Propagation

The sum-product Belief Propagation (BP) algorithm
has messages

t

{mi sy (@), me sy (@) : (u,0) € B2y, 2y € {0,1}}

at the t-th iteration are on the both sides of edges and
it updates them as

ngv Zwuv fuafv)7/’u(xu)

weN (u)\v

where >3, o1y mb,(2z0) = 1. This is equivalent

to the following updating rule on (reduced) messages

{mZ—w ) mf)—)u } .

mfjjv = fusv H mfu—m )
weN (u)\v
where m!,_,, = m!_  (1)/m!_,(0) and the function

: Ry — Ry is defined as

wu,v(oa 0)¢u(0) + ¢u,v(1a O)wu(l) )

fu—)v

fu%v(x) =

88

Now the BP fized point of messages {my—y, My—u}
can be naturally defined as

My—sy = fu—>v H

weN (u)\v

Mw—u |

where one can easily argue the existence of such a fixed
point using the Brouwer fixed point theorem. This
motivates the following notion of e-approximate BP
fixed point.

Definition 1 The set of messages {Mmuy—yu, My—y
(u,v) € E} is called an e-approximate BP fized point

if

Mo 1| <e, V(u,v)€E.
fuﬁv (HweN(u)\v mwﬁu)

“This excludes the case ¥y (-, -) = 0. However, we note
that our algorithm and its analysis still work even for the
case ¥y, (-, -) = 0 such as the independent set model in the
work [Chandrasekaran et al. 2011].
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{6\ o ()| e|1nwu,u(mu,zu)\} .

H mfu%u(xu)v

The BP estimates for node and edge marginal proba-
bilities based on messages, denoted by 7, (+), Ty, (+) for

v eV, (u,v) € E, are defined as
To (X))
Do) H My—o (mv) (2)

ueN (v)
Tuw (Tu, To)

Yo (T0) o (@) Y0 (T, Ty)
< ] mwoulza)

weN (u)\v

where > 7,(2,) =1 and () = >, Tuw(Tu, T0).

H mw—n)(xv) (3)

weN (v)\u

2.2 Bethe Approximation

The Bethe approximation is an approximation to the
logarithm of the partition function (i.e. In Z), given by

Z Zﬂj(xv) I, (z,) — In7, (2,)]

veV x,
s zTu,mm)[mwu,vm,xv)
{uv}EE Tu, Xy

T, (T, To)

~hn Tu(T0) 7o (20)

Under the constraints ) 7,(z,) = 1 and 7,(z,) =
>z, Tuw(Tu, ), it can be reduced as a function F(y)?
of y = [Yv, Yu,v] Where y, = 74, (1), Yu.» = Tu,v(1,1) and
the following substitutions:
7(0) =1—y,
Tuw(0,0) =1 —1y, —
Tu,v(ov ]-) =Yv = Yuw
Tu,v(lvo) = Yu — Yu,v-

Yo + Yu,v

One can obtain the gradient VF(y) = [%, 83%} as

F 1-—
OF _ »@ £ —— %
Oy Yu
+ > ln<1yvyu+yuﬁv P >
WEN (v) 1=y, Yv = Yu,v
(4)
oF _ w(uw) 1 < Yu — Yu,v Yo Yuw ’
ayu,v 1- Yu — Yo + yu,v yu,v
(5)
where
Po(1) Yu,w(0,1)
P :=In + > I
o) " 2 o)
1l)(u,v) -— In ¢M;U(07 0) 'l/]u,v(]-v 1)

wu,v(la 0) ¢u,1)(07 1) .

5_F is called the Bethe free energy function.
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It is known that there is one-to-one correspondence
between BP fixed points and zero gradient points of
F'. In particular, one can obtain the following lemma,
where its proof can be done easily using the algebraic
expressions (4) and (5) of gradients.
Lemma 1 Given ¢ € [0,1), suppose ¥y = [Yuv,Yun]
satisfies ||VFE(y)|lco < €. Then, the set of messages
{Mu—sv, My—sy @ (u,v) € E} is a 6e-approzimate BP
fixed point if it is given as
¢u,v(0, 1) 1 - yv - yu + yu,v yv
My—oy = . : .
wu,v (07 O) 1 - yv yv - yu,v
(6)

The proof of Lemma 1 is omitted due to space con-
straints.

3 Message Passing Algorithm for BP
Fixed Point Computation

In this section, we present the main result of this pa-
per, a new message passing algorithm for approximat-
ing a BP fixed point. From the (algebraic) relation-
ship between approximate BP fixed points and near
gradient points of the Bethe free energy function F' in
Lemma 1, it is equivalent to compute a near gradient
point y ie. |[VEF(y)|2 <e.

3.1 Algorithm Description

Our algorithm, described next, for finding such a point
is essentially motivated by the standard (projected)
gradient algorithm. The non-triviality (and novelty)
lies in our choice of appropriate (time-varying) ‘projec-
tion [-].” with respect to the (time-varying) ‘step-size
%’ at each iteration and subsequent analysis of rate

of convergence.

Algorithm A1l

1. Algorithm parameters:
g€ (0,1) and y(t)=[y,(t) € (0,1):veV]
at the t-th iteration.

2. y(t) is updated as:

YU+ = |yl + -VEE@.ys)]| |

7

where the projection []. at the ¢-th iteration is
defined as

*

1 1
— 1 : 1
2] = {1/ ifz < /1 )
1 : 1
1—m lfl’>1—m
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and yg(t) = [yu.o(t)] € (0,1)F is computed as
the unique solution satisfying

Yu(t) = Yuo(t) W) = Yun(?)

=1
L—yu(t) = yo(t) + yuw(t) e ¥y, (1)
0 < Yu,o(t) < min{y, (t), yu ()}
3. Compute  messages  {My_p, My—y}t  from

(Yo (t), Yu,v(t)] using the formula (6).

4. Terminate if {my_,, My} IS an e-approximate
BP fixed point.

The algorithm is clearly implementable through
message-passing where each node u sends y,(t) to all
of its neighbors v € NM(u) at each iteration. We also
note that solving the second step for computing v, ., (t)
can be done efficiently since it is solving a quadratic
equation whose coefficients are decided by y,(t) and
yu(t). We establish the following running time of the
algorithm.

Theorem 2 A1 terminates in 203 n2e=4 loggg 1t-
erations as long as . = O(1).

The proof of Theorem 2 is presented in the following
section. Note that the algorithm may require to main-
tain irrational messages or rational messages of long
bits. In Section 4, we present a minor modification of
the algorithm to fix the issue, which leads to a fully
poly-time approximation algorithm (FPTAS) to com-
pute an approximate BP fixed point.

3.2 Proof of Theorem 2
We first define F* on (0,1)™: for y = [y] € (0,1)"

F(y) =F(y,ye),

where F' is the (original) Bethe free energy function
defined in Section 2.2 and the additional vector yp =
[Yu.w] € (0,1)/F] is defined as the solution satisfying
that y, » < min{y,,y,} and

Yu = Yu,w ) Yo — yu,u> -0 (7)
1 -9y —yo + Yu,v Yu,v

) 41 <

Observe that each y,, 4, is a function of y,,, Yy, i.€. Yu,o =
Yu,o(Yus Yv). One can check that the gradient of F* has
the same form with that of F' as follows.

oF™ 11—y,
= ¢(”)+ln—y
Yy Yo
1— v Ju u,v )
+Zln< y1y+y" i )
ueN (v) — Yo Yo — Yu,w
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where we recall that y, , is decided in terms of y,, Y
from (7). This implies that the updating procedure of
y(t) in the algorithm is simply as

yE+1) = y<t>+%w*<y<t>> e

Based on this interpretation, we start to prove the run-
ning time of the algorithm by stating the following key
lemma.

Lemma 3 Define § > 0 as the largest real number
that satisfies the followings.

1/2

and 461n— < 1.
2AA + 1)yttt 41

20 —

Then,

y(t) € D :=[5,1—6]", Vi>t, =61

Proof. First observe that y(t«) € D due to our choice
of projection []. and 1/4 = §. Hence, it suffices to

establish the following three steps: for all v € V' and
t >ty

oOF*

<0 if y,>1—2§ and ye D,
Yy
(9)
F*
88 >0 if y, <20 and y e D, (10)
Yo
OF™* 5
= if D. 11
\f‘ayv 3 1YE 1

From (8), (9), (10) and (11
y(t) € D for all t > t..

), it clearly follows that

Proof of (9). We first provide a proof of (9). To
this end, if y € (0,1)", we have

1_yv_yu+yu,v. Yv
1 - yv yv - yu,v
_ 1 . Yo
- Yu—Yu,v _
1+ T Yo —Vatven Yv = Yu,w
1
- 1 —p(uw) Yo (1 + Puo )
+e Yo —Yuw Yv — Yuv
< max {1, e'/’(u’v)}
<5, (12)

where we use the definition (7) of v, ,. Using this, (9)
follows as

F* 11—y,
0 =4 +1n W
Yy Yo
+ Z In ( y’ul_ Yu + Yu,v . Yo )
uweN (v) Y Yo = Yuw
< (2(A + 1)) +In < + Al
2(A + 1)ypiatt
=In———"—
1
<0,
where the last inequality is from our choice of § <
1/2
2(A+1)pA T

Proof of (10). Second, we provide a proof of (10).
Similarly as we did in (12), we have

1—y, — Yu + Yuw ) Yo >m {1 ew(u v)}
1- Yu Yv = Yu,v
1
> s (13)
Hence, (10) follows as
oF™
— ,l/}(’U) _|_1
Yy Sy
g (e o)
wEN(v) Yo Yo = Yuw
> —In (2(A + 1)3h,) +1 1220 Am L
—1In B n n—
- 26 P
1
2(A + 1)pla+t
>0,
where the last inequality is again from our choice of
1/2
0= 2(A+1)ypiA T

Proof of (11). Finally, we provide a proof of (11).

Using (12) and (13), it follows as
’ oF™ — Yy

Yo

( —YutYuo Yo )’
lfyv Yv = Yu,v

<In(2(A+ 1)) +ln
1-2§

_ ‘w(m

2

ueN (v)

0y

— 26 4
55 + Aln
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where the last equality is from our choices of 9, t, which
imply

1 1
Ve = 62 > 4~In—
= A5hngs
This completes the proof of Lemma 3. 0

Using the above lemma, we will show that the algo-
rithm terminates in 20(®)n2e=*log®(ne~!) iterations
until it outputs an e-approximate BP fixed point. We
first explain why it suffices to show the following:

T
20(%) n log T
Yo IVF y@)3 = ——=— (14)
t=t. vT

1—1/2

Zz—‘:t* t*l/? N
that we can choose T = 29(®)n2c=*1log®(ne~1) such

that
S e 0Pl < ()

t=t.
From ZtT:t* ¢t = 1, there exists t € [t.,T] such that
IVE*(y(t))|l2 < €/6. Further, observe that if yg(¢) is
defined from (7),

where ¢; = The above equality suggests

IVE(y(®),ye®)l2 <

Then, Lemma 1 implies that the computed messages at
the ¢-th iteration is an e-approximate BP fixed point.

IVE*(y(®)ll2 < /6.

Now we proceed toward establishing the desired in-
equality (14). The important implication of Lemma 3
is that the algorithm does not need the projection [-].
after the t,-th iteration. In other words, from Lemma
3 and (8), we have that

yt+1) = y<t>+%w*<y<t»,

In what follows, we will assume ¢ > ¢, and y(¢) € D
from Lemma 3.

Vit>t,.

Using the Taylor’s expansion, we have

where R is a n X n matrix such that

2 1%

|Ryw| < sup
yeB

6yv 0 Yw '
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and B is a Leo-ball in R™ centered at y(t) € D with
its radius

1 OF*
7 |-

From (11), we know r < %. Hence, y, € [6/2,1 - §/2]
for y = [y,] € B. Using this with 6 = 1/29(%), one

can check that
QO(A)
B 0

Therefore, using these bounds the equality (
duces to

O?F*

ifv=w,(v,w) eF
B 0500 '

otherwise

15) re-

F(y(t+1))

o(A)

> Py(0) + f e o) -
o),

> Py0) + v - 257,

since |E| < A -n. If we sum the above inequality over
t from t, to T — 1, we have

F(y(T) = F*(y +Z\[||VF* yO)I3

(20<A> ) Z -

t=t.

Since |F*(y)| = O(An) for y € D, we obtain

T-1 T—1
T FIVF GO < 0@n+0 (20%0) 3 5.

t=t.

Thus, we finally obtain the desired conclusion (14) as
follows.

T

S e IVFy0)IB
1 T

1 % 2
_ m; 7 IVF*(y(t)l2

T
< (w0 (o) 31
Zt:t* Vi t=t.
20B)nlog T

JT )

where we recall that ¢, = §—4 = 20(&),

the proof of Theorem 2.

This completes
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4 Modification to FPTAS

In this section, we provide a minor modification
of Algorithm A1l in Section 3, to establish a fully
polynomial-time approximation scheme (FPTAS) for
the BP fixed point computation. We will show only
a polynomial number of bits are enough to maintain
for each message v, (t). To this end, we define the fol-
lowing function g* = [¢g¢] which describe the updating
rule (at the ¢-th iteration) of Algorithm A1, i.e.
y(t+1) = g'(y(t)) under Algorithm A1.

Now we formally propose the following algorithm of
minor modification.

Algorithm A2

1. Algorithm parameters:
€ (0,1) and

at the t-th iteration, where z,(t) has k-bits (i.e.
2F2,(t) € Z) for all t > 0, v € V.

2. z(t) is updated as:

2t +1) — g,(2(t))

3. Compute a set of messages {Mmq_yy, My, | satis-
fying

 Gun(0,1) 1 2() = 2u) + 2un(®)
Mz = wu,v(ov O) 1—-2, (t)

. 2y (t)
2p(t) — zuw(t)’

where 2z, ,(t) > 0 is computed to satisfy

Zu(t) = Zu,0(t)
1 — 2y (t) — 2o (t) + 2y w(t)

zlt) - zu,v<t>>‘ -

w(u’v) +1In (

[ 0]

Zuo(t)

4. Terminate if {Mmy—yy, My—y IS an e-approximate

BP fixed point.

z(t) = [2,(t) € (0,1) : v € V]

We note that each step in the above algorithm is exe-
cutable in a polynomial number of bitwise operations
with respect to A, 1/e, k and n. The second step
to compute gf consists of O(A) arithmetic operations,
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logarithm, division, addition, square root and multipli-
cation. Furthermore, the equations in the third step
to compute {my_y, My, } can be solvable in a poly-
nomial number of bitwise operations with respect to
1/e and k.

Now we state the following theorem, which shows that
one can choose k as a polynomial in terms of n, 1/
and 22. This implies that Algorithm A2 is a FPTAS
for such a choice of k as long as A = O(logn). We
note that one can obtain the explicit bound of k£ in
terms of A, 1., n and € via explicitly calculating each
step in our proof.®

Theorem 4 A2 terminates in 2°0(*)p2e—* loggg it-
erations for some k = 20(8)p2e—14 10g4§ as long as

P = 0(1).

The proof of Theorem 4 is omitted due to space con-
straints.

5 Conclusion

In the last decade, exciting progresses have been made
on understanding computationally hard problems in
computer science using a variety of methods in statis-
tical physics. The belief propagation (BP) algorithm
or its variants are on this line and suggest to solve cer-
tain relaxations of hard problems. In this paper, we
address the question whether the relaxation is indeed
computationally easy to solve in a strong sense. We
believe that our rigorous complexity analysis of the
BP-relaxation is the important step to guarantee the
computational complexity of BP-based algorithms.

Acknowledgements

We are grateful to Devavrat Shah for fruitful com-
ments on this paper. We are also grateful to Max
Welling for pointing out the similarity between our al-
gorithm and that by Teh and Welling (2001).

References

[1] A. Bandyopadhyay and D. Gamarnik. Counting
without sampling: new algorithms for enumera-
tion problems using statistical physics. Proceed-
ings of the seventeenth annual ACM-SIAM sym-
posium on Discrete algorithm, 890-899, 2006.

[2] H. A. Bethe. Statistical theory of superlattices.
Proc. Roy. Soc. London A, 150:552-558, 1935.

6 Another naive way to avoid such an explicit choice of
k is to run Algorithm A2 ‘polynomially’ many times by
increasing k (as well as the number of iterations) until it
succeeds.



Jinwoo Shin

3]

[10]

[11]

[12]

[13]

C. Berrou, A. Glavieux and P. Thitimajshima.
Near Shannon Limit Error-correcting Coding and
Decoding: Turbo codes (I). Proceeding of ICC
(Geneva), 1993.

V. Chandrasekaran, M. Chertkov, D. Gamarnik,
D. Shah and J. Shin. Counting independent sets
using the Bethe approximation. SIAM Jouurnal
on Discrete Mathematics, 25(2):1012-1034, 2011.

V. Chandrasekaran, N. Srebro and P. Harsha.
Complexity of inference in graphical models, Un-
certainty in Artificial Intelligence, 2008.

M. Chertkov and V. Y. Chernyak. Loop series
for discrete statistical models on graphs. Journal
of Statistical Mechanics: Theory and Experiment,
2006.

A. Dembo and A. Montanari. Ising models on
locally tree-like graphs. The Annals of Applied
Probability, 20(2): 565-592, 2010.

C. Domb and M. S. Green. Phase Transitions
and Critical Phenomena. Vol. 2. Academic Press.
London, 1972.

C. D. Forney, Jr. Codes on Graphs: News and
Views. Conference on Information Sciences and
Systems. The John Hopkins University, 2001.

D. A. Forsyth, J. Haddon and S. Toffe. The Joy
of Sampling. International Journal of Computer
Vision, 41(1):109-134, 2001.

W. T. Freeman and E. C. Pasztor. Learning Low
Level Vision. In Proceeding of International Con-
ference of Computer Vision, 1999.

T. Heskes. On the uniqueness of loopy belief
propagation fixed points. Neural Computation,
16(11):2379. 2413, 2004.

A. T. Thler, J. W. Fischer IIT and A. S. Willsky.
Loopy Belief Propagation: Convergence and Ef-
fects of Message Errors. The Journal of Machine
Learning Research, 6:905-936, 2006

S. L. Lauritzen. Graphical models. Oxford Uni-
versity Press, USA, 1996.

R. J. McEliece, D. J. C. Mackay and J. F. Cheng.
Turbo decoding as an instance of Pearl’s belief
propagation algorithm. IEEE Journal on Selected
Areas in Communication, 16(2):140-152, 1998.

K. P. Murphy, Y. Weiss and M. Jordan. Loopy
belief propagation for approximate inference: an
empirical study. In Proceedings of Uncertainty in
Artificial Intelligence, 1999.

1045

[17]

[18]

[19]

[25]

J. Pearl. Reverend Bayes on inference engines: A
distributed hierarchical approach. Proceedings of
the Second National Conference on Artificial In-
telligence, AAAI Press, USA, 1982.

F. Ricci-Tersenghi and G. Semerjian. On the cav-
ity method for decimated random constraint sat-
isfaction problems and the analysis of belief prop-
agation guided decimation algorithms. J. Stat.
Mech., 2009

E. B. Sudderth, M. J. Wainwright, and A. S.
Willsky. Loop series and Bethe variational bounds
in attractive graphical models. Advances in neu-

ral information processing systems, 20:1425-1432,
2008.

S. Tatikonda and M. Jordan. Loopy belief propa-
gation and gibbs measures. Uncertainty in Artifi-
cial Intelligence, 2002.

Y. W. Teh and M. Welling. Belief Optimization
for Binary Networks: A stable Alternative to
Loopy Belief Propagation. Uncertainty in Artifi-
ctal Intelligence, 2001.

M. J. Wainwright, T. Jaakkola and A. S. Will-
sky. Tree-based reparameterization framework
for analysis of sum-product and related algo-
rithms. IEEE Transactions on Information The-
ory, 45(9):1120-1146, 2003.

Y. Weiss. Correctness of local probability prop-
agation in graphical models with loops. Neural
Computation, 12(1), 2000.

J. Yedidia, W. Freeman, and Y. Weiss. Construct-
ing free energy approximations and generalized
belief propagation algorithms. IEEE Transactions
on Information Theory, 51:2282-2312, 2004.

A. L. Yuille. CCCP algorithms to minimize the
Bethe and Kikuchi free energies: Convergent al-
ternatives to belief propagation. Neural Compu-
tation, 14, 2002.



