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Abstract

Probabilistic matrix factorization methods aim to
extract meaningful correlation structure from an
incomplete data matrix by postulating low rank
constraints. Recently, variational Bayesian (VB)
inference techniques have successfully been ap-
plied to such large scale bilinear models. How-
ever, current algorithms are of the alternate up-
dating or stochastic gradient descent type, slow
to converge and prone to getting stuck in shal-
low local minima. While for MAP or maximum
margin estimation, singular value shrinkage al-
gorithms have been proposed which can far out-
perform alternate updating, this methodological
avenue remains unexplored for Bayesian tech-
niques. In this paper, we show how to combine a
recent singular value shrinkage characterization
of fully observed spherical Gaussian VB matrix
factorization with local variational bounding in
order to obtain efficient VB inference for gen-
eral MF models with non-conjugate likelihood
potentials. In particular, we show how to han-
dle Poisson and Bernoulli potentials, far more
suited for most MF applications than Gaussian
likelihoods. Our algorithm can be run even for
very large models and is easily implemented in
Matlab. It exhibits significantly better prediction
performance than MAP estimation on a range of
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real-world datasets.

1 Introduction

Matrix factorization (MF) models are widely used in ma-
chine learning and applications, for reduced rank regres-
sion [13], sparse principal components analysis [12], par-
tial least squares [14], multi-task learning [2], latent se-
mantic indexing [3], or collaborative filtering [6]. Ma-
chine learning approaches include maximum margin MF
[16], maximum a posteriori (MAP) estimation [16, 15] and,
more recently, variational Bayesian inference [11, 8, 12, 9].

Whether maximum margin, MAP or variational Bayes,
methods for learning MF models from data roughly fall
into two different classes. First, alternate minimization or
stochastic gradient descent methods are based on efficient
and simple updates, which directly exploit both the spar-
sity in the likelihood and the bilinear model structure. For
example, alternate minimization solves for one matrix at a
time, keeping the other fixed, then iterates this process in
a round-robin fashion. In VB, the posterior over matrices
is assumed to factorize, which at least in conjugate like-
lihood cases leads to simple updates of posterior factors.
These are iterated over in the same fashion. While easily
implemented and scaled up to large problems, these tech-
niques tend to converge exceedingly slowly and are prone
to getting stuck in poor local minima, necessitating mul-
tiple restarts and additional heuristics. The second class
of algorithms is based on recent fundamental results which
establish analytical solutions for certain basic MF models
[18, 16, 1, 9], essentially by computing a singular value de-
composition (SVD) and shrinking or thresholding the sin-



gular values. Can these exact characterizations be used in
order to learn general MF models, as subroutines of iter-
ative algorithms, much like Newton-Raphson optimization
is based on quadratic minimization? If so, we should end
up with algorithms which are much faster to converge and
behave more robustly than methods based on simple gradi-
ent descent or alternate updating. Moreover, due to its vast
impact on diverse applications, very efficient, highly par-
allelizable code for approximate SVD is available to drive
MF learning algorithms. This idea has been realized both
for maximum margin and MAP estimation [16, 19, 17],
while all previous variational Bayesian algorithms for gen-
eral models belong to the first class [11, 8].

Our main contribution in this paper is a novel SVD-based
algorithm for variational Bayesian inference in matrix fac-
torization models with general likelihoods. The main prim-
itive driving our method is a recent SVD shrinkage char-
acterization of VB matrix factorization for complete data
spherical Gaussian likelihood [9]. We show how to solve
VB inference problems for realistic MF models with highly
incomplete Poisson or Bernoulli likelihoods at the expense
of a few calls to approximate SVD code. Our method can
be formulated entirely in terms of sparse or low rank ma-
trices, and it is easily scaled up to very large problems. Its
computational cost per iteration is equivalent to SVD-based
algorithms for MF MAP estimation [19, 17]. The struc-
ture of this paper is as follows. We discuss related work
in Section 2. In Section 3, we introduce the variational
Bayesian matrix factorization setup and review an analyti-
cally solvable special case [9]. Our algorithm is derived in
Section 4. We comment on non-conjugate likelihood po-
tentials in Section 4.1 and describe our large-scale imple-
mentation in Section 4.2. We present experimental results
on a range of real-world datasets in Section 5, and close
with conclusions in Section 6.

2 Related Work

Matrix factorization (MF) models are core components of
collaborative filtering or recommender systems and have
attracted a large amount of research to date. We restrict
our focus to probabilistic approaches. Maximum a poste-
riori (MAP) estimation for MF models or closely related
“maximum margin” variants was pioneered in [16], where
the link to SVD with shrinkage on the spectrum was ob-
served. Previously, an analytical solution based on eigen-
decomposition was established for probabilistic principal
components analysis in [18]. The MAP interpretation of
the method of [16], as well as the link to nuclear-norm reg-
ularization, was made explicit in [15].

More recently, variational Bayesian inference methods
have been proposed [11, 8], where factors are integrated
out approximately rather than estimated. While easy to im-
plement and scalable to large problems, previous VBMF
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algorithms are alternate updating or stochastic gradient de-
scent variants, which converge slowly and are prone to get-
ting stuck in poor local optima. A key result for VBMF
is the global analytical solution for the Gaussian complete
likelihood case established in [9], of pivotal importance for
our work here.

3 Variational Bayesian Matrix Factorization

Suppose our goal is to predict missing entries in a m X n
matrix Y from observations y;;, (ij) € O. For example,
the m rows may index users of an e-commerce website, the
n columns items on sale, and the goal is to make recom-
mendations. If |O| < mmn, it is essential to share statistical
strength by learning latent correlations between the groups,
which in bilinear matrix factorization models are repre-
sented via a joint r-dimensional space, r < min{n,m}.
We specify latent factors U € R™*", V € R™™", and
set X = UVT € R™*". Here, U = [u], V = [vi],
k=1,...,r, where ur € R™, vy, € R" are the columns
which span the latent low-dimensional representation.

For the likelihood, we assume that P(Y|U, V) = P(Y]|X),
where P(Y]X) factorizes w.r.t. matrix entries:

T
Lij = E Wik Vs -
k=1

P(Y|X) = H P(yijlzis),

(ij)e0O

In this paper, we are interested in general likelihood poten-
tials P(y;;|x;;) which do not admit conjugacy properties.
For the prior, we assume the following factorized form:

P(U,V) = [ P(ur)P(wy).
k=1

Bayesian inference is generally intractable in matrix factor-
ization models, even in the case of conjugate Gaussian like-
lihood potentials. The problem arises from product cou-
plings u;;v;1 in the likelihood, which can give rise to a
complex posterior distribution P(U, V|Y). In the varia-
tional Bayesian (VB) approach, we approximate the poste-
rior with a distribution Q(U, V) from a tractable class, by
minimizing

) QU, V)
7 =Fewy [l‘)g PYIU,V)P(T, V>]

~ DQU. V) || P(U, VIY)] - log P(¥).

‘We focus on variational distributions of the factorized form

ey

QU, V) =[] Qur)Q(vy). 0]
k=1

In other words, Q(U, V) admits the same factorization be-
tween pairs of columns of [U V] as the prior.



Even with these simplifying assumptions, the minimiza-
tion of (1) is not a simple problem. The most frequently
chosen approach is to update Q(U) and Q(V) in turn [8].
However, such alternate updating algorithm are notoriously
prone to getting stuck in poor local minima. Our main con-
tribution is an algorithm which fares much better in gen-
eral, by exploiting recent results about a special case of (1)
which can be solved analytically.

3.1 Fully Gaussian Complete Likelihood: G-VBMF

Maybe the simplest instance of VBMF is the spherical
Gaussian complete likelihood case, called G-VBMF in

the sequel. Here, all entries of Y &€ R™*" are ob-
served (O = {1,...,m} x{1,...,n}), and P(y;j|z;;) =
N(yij|wij, 0?) is Gaussian. The noise variance o has to

be the same for all likelihood potentials. Moreover, the pri-
ors are Gaussian as well:

PU) = [[ N(url0,¢ . 1),
k

It is straightforward to apply alternating minimization to
(1) in this case [8], yet the problem remains non-convex.
Importantly, Nakajima et.al. [9] showed that its global min-
imum points, unique up to obvious orthonormal symme-
tries, can be solved for analytically. If Ay, uy, vy are the r
largest singular values, left and right smgular vectors of Y,
so that UAV is closest to Y in Frobenius' norm among
all rank 7 matrices, then for a global minimum point Q* of
(D:

Eg- [UVT] = Eq-[UJEq- V" = U(diag~) V7,
where the elements 7 of ~ are closed form functions
depending on A, o2, ci)k, qu;,k’ m and n. Essentially,
Eqg-[UVT] is obtained from UAVT by leaving the matri-
ces in place, but shrinking A\, — % in a specific way [9].
This characterization allows us to circumvent error-prone
alternating minimization entirely.

In practice, the G-VBMF setup is severely restricted. It
requires a complete likelihood function with potentials on
each entry of Y, which have to be Gaussian and must share
the same variance. These restrictions do not make much
sense for our recommender system example, a prototypi-
cal application of matrix factorization models. The likeli-
hood is incomplete by default. Moreover, observed entries
of Y are binary or natural numbers, which are poorly rep-
resented by a spherical Gaussian likelihood. In the next
section, we show how to combine the G-VMBF result with
variational bounding techniques in order to overcome these
restrictions.

!The Frobenius norm is defined as || A||2 = (tr AT A)'/2,
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P(V)= HN vi|0, ¢2 . I).

4 An Algorithm for General Potentials

Our aim is to solve the VBMF problem (1) in the general
case described in Section 3, yet to make use of the ana-
Iytical G-VBMF solution of Section 3.1 to drive our al-
gorithm. Technically speaking, we have to approximate
the likelihood P(Y]X) by a Gaussian with spherical co-
variance (all variances equal). While this is certainly a
bad one-off approximation, we will introduce variational
parameters which determine the (pseudo-)observations Y
in G-VBMF, then iteratively improve the fit to the poste-
rior distribution. For simplicity, we assume that the prior
P(U, V) already has the form required by G-VBMEF, so we
only have to deal with the likelihood. An extension to more
general Gaussian or non-Gaussian priors can be obtained in
much the same way.

We can write ming F from (1) as

Jmin, Eq [~log P(YIUV™)] + DIQ| P,

where D[Q || P] = D[Q(U, V) || P(U, V).
X =UVT = [z;;], we can write

= Zfzg -sz

]

Introducing

—log P(YIUVT)

E ulkvjk?7

where fl‘j(aiij) = - IOg P(yij|xij) for (Z]) e O,
fij(zi5) = 0 otherwise. We require that the f;;(x;;) are
twice differentiable and

fz](x'l]) <Kk Vg Vi, .

We demonstrate below how to choose  for Bernoulli and
Poisson likelihoods. Now, by Taylor’s theorem:

fis(@ig) < = (@ij — &5)2 + (&) (@i

—&ij) + fii (&iz)-

=:qij(®ij;6i5)

| =

Note that for the logistic case (binary observations), this
bound is looser than the standart Jaakkola’s bound on the
sigmoid [4] but it cannot be used directly here since the
constraint of constant curvature accross observations would
not be satisfied in general. It could in principle have a
significant impact on the accuracy of the approximation
(see [5] for numerical experiments comparing these two
bounds), but this worse curvature bound has the additional
advantage of having a constant second derivative, usefull
to apply G-VBMEF which is only valid for homoscedastic
noise levels.

Plugging these tight bounds into the criterion and inter-
changing Eq|. . .] and minje, ) (which weakens the bound),
we obtain our final variational optimization problem:

min Eo qij(zi5;&5)] + D P
o ¥, 2P (i) + PRI PL



Our algorithm alternates between updates of [&;;] and of
Q(U, V). For the former, the criterion decouples addi-
tively, so each &; can be updated independently. Since
¢i; is a quadratic, we have that Eqlqi;(zi;; ;)] =
¢i;(Eqlxij]; &j) + Cij, where C;; does not depend on &;;.
Now,

@5 (EQlwijli &ij) = fij (Eqlwij]) = @iy (Eqlwijl; Eqlais])

so that the update is &;; < Eg[z;;], or compactly
(€] + E[UIEWV].

For the update of Q(U)Q(V), note that

@i (i3 &) = 5 (g = (&5 = ['(6)/0))
Gij = &j — (&) /.

= —log N(¥ijl|zij, 1/K),

where “=" denotes equality up to a constant independent
of x;;. Therefore, for fixed [¢;;], the update of Q(U)Q(V)
is equivalent to G-VBMF with pseudo-data Y = [f;;;] and
variance 02 = 1/x. We can solve for E[UV ] analytically,
as noted in Section 3.1. Our algorithm iterates between up-
dates of [¢;;], of Y, and calls of G-VBMF. It is summarized
in Algorithm 1.

Algorithm 1 General VBMF Algorithm
E[U] + 0,E[V] + 0.
while not converged do
Update [¢;;] < E[UJE[V]T.
Update E[U]E[V]T by G-VBMF analytical solution,
based on pseudo-data Y = [&;; — f'(&;)/].
end while

4.1 Bounds for Likelihood Potentials

In this section, we establish quadratic upper bounds on
—log P(y|x) both for binary classification (Bernoulli)
and Poisson likelihood potentials. In both cases, x >
—log P(y|x) is a convex function (the potentials are log-
concave). While the posterior distribution P(U, V|Y) is
complicated due to the product coupling UV T in the like-
lihood, log-concave potentials at least do not add additional
complexities. Moreover, since fl’;(x”) > 0, our quadratic
bounds are tighter in this case. Essentially, f;;(z;;) is sand-
wiched between the upper bound g;; (x;;; &;;) and the linear
lower bound f”(&i;)(xi; — &;j) + fij (&ij)-

If reponses are binary, y € {0, 1}, a Bernoulli likelihood is
appropriate:

eyr

P(ylz) = m7

f(x) =log (14 €") — ya.

Clearly, f(z) is convex. Moreover, f'(z) = =w(z) — v,
m(z) = 1/l + e *) and f"’(z) = w(z)m(—=x

For Bernoulli likelihood potentials, we can use a quadratic
bound with k = 1/4. Moreover, we update

Ui = &ij — [i;(&ij)/r = & — 4(m(&ij) — yig)-

Ify € N={0,1,...}, we can use a Poisson likelihood
with rate function A\(x) > 0:

P(yla) oc M) ), f(2) = Mz) —ylog A(z). (3)
It has been shown in [10] that P(y|xz) is log-concave
(x — —log P(y|x) is convex) if A(z) is both convex and
log-concave. A simple choice satisfying this property is
A(z) = e®. The problem with this rate function is its
exponential growth for large x, which implies non-robust
behaviour in the presence of outliers. Moreover, e” does
not have bounded curvature, so our reduction to G-VBMF
would not work.

In order to remedy these problems, we propose a novel
link function not previously used in this context, A(z) =
log(1 + €®). It is well known that A\(x) is convex, and we
prove log-concavity at the end of this section. It shares with
e” the exponential decay as x — —oo, yet grows only lin-
early (with slope approaching 1) for large x (see Figure 1).
Finally, we need to bound f”(z). First, \’(z) < 1/4, as
seen above. Second, it is confirmed by inspection that the
second derivative of — loglog(1+ e”) is upper bounded by
0.17, so that

ﬂ%%)gv4+Q”%m;ymf:%?%j
Not surprisingly, our bound degrades with the presence of
entries with large y;;. In our experiments, we follow com-
mon practice and clip overly large counts.

6
gl | A0)=e"
- - = A(X)=log(1+e*)
4+
3t =
’/
','
2t P
1t e
-3 -2 -1 0 1 2 3

Figure 1: Rate functions A(z) for Poisson potentials used
in this paper.

Finally, we establish the log-concavity of A(z) = log(1
e®). First, N(x) = 7w(z) = (1 + e %)L, 7'(a)

I+



2671. —

m(x)r(—x) = 7(x)

¢ (@) = n(z)/\(2),

If g(x) log A(x), then

L (e @)Y _ .
o (79 50) =56 (7w
Now, log(1 + z) < x, so that —1/A(z) < —e~*, therefore
g"(x) <0, so that g(x) is concave.

7(z)?
Az)

g"(x) =

4.2 Large-Scale Implementation

Most real-world applications of MF models feature very
large m and n along with sparse observations: |O] < mn.
Both m and n can be in the tens or hundreds of thousands,
and |O| can be many millions. Viewed in this light, the
analytical solution of G-VBMF in terms of an SVD of a
m X mn matrix (Section 3.1) seems much less attractive.
Storing or even building a dense matrix of this size is far
beyond tractability, let alone performing an SVD at the cost
of O(max{m,n} min{m, n}?). For reasons such as these,
SVD-based algorithms are not used much in machine learn-
ing, where simpler alternate updating or stochastic gradient
descent algorithms are preferred. In this section, we show
that our VBMF algorithm, while based on SVD, can nev-
ertheless be run at very large scales, using code which is
publicly available and in fact part of Matlab. Our observa-
tions, which are related to what is proposed in [19], should
be useful beyond the VBMF algorithm of interest here.

Recall the VBMF updates from Algorithm 1. We will show
that beyond E[U] € R™*" and E[V] € R™*", only sparse
matrices with |O| non-zeros h~ave to be maintained. First,
[£i5] = E[UJE[V]T. Second, Y = [&;; — f;;(&i;)/]. How-
ever, f;;(&i;) = 0 for (ij) ¢ O, so that Yis E[UJE[V|T
plus a |O|-sparse matrix. We can compute matrix-vector
multiplications with Y at the cost O(|O| + r(m + n)),
by multiplying with E[U], E[V]T and the sparse matrix
separately. This means that the analytical solution of G-
VBMF can be obtained by an approximate SVD package
such as ARPACK, the code behind Matlab’s SVDS. For not
too large rank r, SVDS scales about as O(r) matrix-vector
multiplications. Once E[U], E[V] are updated, we compute
(E[UJE[V]T) o in O(|O|r), which is the basis for comput-
ing the next g;;, (ij) € O. To conclude, even though our
algorithm is based on the analytical SVD solution of G-
VBME, it requires no more memory than an alternate mini-
mization algorithm, and it comes at about the same cost per
iteration (if we count iterations of SVDS in our case).

5 Experiments
We consider the following datasets:
e Bus Stops: In this public transport analysis scenario,

commuters validate a ticket upon entering a bus.
These validations are stored in a database, to be mined
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in order to identify potential problems or bottlenecks
occuring at certain times during the day. We used a
full day of validation tickets of a public transport sys-
tem from a large city (about 2 million inhabitants), re-
sulting in a matrix with 500 rows (we selected the 500
most used bus stops) and 300 columns (correspond-
ing to 5 rush hours of the day), containing a total of
249 500 validations. Our objective is data imputation
in order to compensate for missing information due
to machine failures, deficiency of ticketing, frauds or
other error sources.

e Antenna: This dataset consist of (anonymized) mo-
bile phone connectivity data of foreign tourists trav-
eling within a large city. A typical day of the week
was split in five-minute intervals, and the number of
connections to each antenna (or base station) in this
time period was computed, indicating which locations
are preferred by tourists like at what time of the day.
However, spatial information was not used in the cur-
rent experiment, where the data was organized in a
1229 x 244 (number of antennas X number of time
intervals) matrix. At a total of 988715 connections,
79% of the matrix entries are zeros. The busiest inter-
val corresponds to 49 connections on a single antenna.

e Print Jobs: We obtained five months of print logs
data from an office environment, indicating which
user prints on which printer at what time. The anal-
ysis of these logs is useful for the print infrastruc-
ture manager to detect malfunctionning devices, e.g.
by identifying where some printers tend to be under
userd compared to their historical data. The data sam-
ple that we obtained contains 27249 unique print logs
which where agregated into 11447 print events (mul-
tiple prints within one minutes were considered as a
single print event). There are 124 users printing on
22 printers. Even if it is small, this dataset is rela-
tively hard to model with a low-rank parameterization
because each user tend to print only on one or two
printers.

For each dataset, we generated a binary version of the
data by setting to one any strictly positive count. For the
count data, we removed 5% of the highest values to obtain
a reasonable value for ym.x. We used logistic regression
(i.e. sigmoid inverse link function) to model binary ob-
servations and Poisson potentials (3) where based on the
A(z) = log(1 + €%) inverse link function. Our goal is data
imputation: predicting the values of missing entries in a
count matrix. We evaluate our predictions using the likeli-
hood of the test data, i.e. the logistic loss

Uy, ) = ylog(Z) + (1 —y)log(1l — 2)



90% missing 80% missing 50% missing

Dataset Algo | Binary loss time(sec) | Binary loss time(sec) | Binary loss time(sec)
busstops | MAP | 34515.2(558.9) 17.9 20292.9(91.8) 10.6 4497.0(201.8) 12.3
busstops | VB 34404.4(489.4) 18.8 19781.9(388.9) 10.5 4500.8(225.4) 13.2
antenna | MAP | -101995.0(3807.3) 9.5 -85221.9(1184.2) 10.7 -81724.1(1069.1) 11.0
antenna | VB -108155.7(4634.9) 14.8 -93535.7(1231.9) 11.2 -81724.2(1068.6) 10.4
printJobs | MAP | 2895.1(274.5) 1.3 2473.6(464.3) 0.9 466.6(143.9) 0.9
printJobs | VB 2773.8(127.7) 1.6 2427.8(880.2) 1.8 460.8(166.9) 1.1

Table 1: Test log-likelihood of the MAP estimator and the proposed VB algorithm for binary data on various data sets with
different proportion of missing data. Results are averaged over 10 runs (standard deviation in parenthesis).
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Figure 2: Predictive loss computed on the binarized
BusStop dataset to illustrate the automatic smoothing of the
VB the algorithm compared to MAP estimation.

for binary data and the asymmetric Poisson loss:

£ ) = M) = yiow (575 ).

for count data, where y is the true value and z is the pre-
diction.

Implementation details For binary data, we used the lo-
gistic regression inverse link function, and for count data,
we used the novel rate function A\(x) = log(1 + e*) pre-
sented earlier. The prior variances ¢2 ,, ¢2 , of the latent
factors where set to be equal and their value was selected
in the range [0.1, 10] and the dimension K of the latent fac-
tors varied from 1 to 5. For each dataset, we selected these
hyperparameters by optimizing the performance on a val-
idation data matrix, which was not used in the subsequent
experiments. The training times quoted below do not in-
clude these validation runs. Our implementation is written
in Matlab. Computations were run on a standard 8-core
Linux server.

Baseline algorithm We compare against MAP estima-
tion. As noted there, the MAP algorithm has a similar
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structure to our VB method, where the G-VBMF subrou-
tine simply shrinks and threshold at O the eigenvalues, by
a amount directly proportional to c;’i and ¢, 7. Note that
the singular value thresholding step in the MAP algorithm
corresponds to the solution of a nuclear-norm regularized
problem with spherical Gaussian likelihood.

In all our experiments, convergence speed is similar to EM-
like algorithms: the train likelihood quickly increases with
the first iterations, but the algorithm is extremely slow to
converge to the exact maximum values. In any case, after
approximately 100 iterations, the test likelihood does not
increase significantly. In all the experiments, we stopped
after a maximum of 200 iterations. Results on binary data
are shown in Table Table 1, while results on count data
based on Poisson potentials are shown in Table Table 2. VB
predictions generally outperform those of MAP estimation,
indicating that Bayesian averaging over uncertainties helps
in our data imputation tasks, especially when the fraction
of missing data is large. When the matrix is nearly full
(i.e. with 50% of missing data), the MAP solution and the
VB solution tend to become equivalent. Note also that the
runtime of our VB method is close to that of MAP, showing
that the additional computation involved in the G-VBMF
subroutine is negligeable.

6 Conclusions

We presented a novel efficient algorithm for variational
Bayesian inference in general matrix factorization mod-
els with non-conjugate Poisson and Bernoulli likelihoods.
Based on the analytical solution for fully observed spher-
ical Gaussian likelihood Matrix Factorization models de-
rived in [9], our method is driven by few calls to approx-
imate SVD solvers for “sparse plus low rank” matrices,
in contrast to previous VB alternate minimization algo-
rithms which typically require many iterations and restarts
to avoid poor local optima. We employ Poisson poten-
tials for count or discrete score data, proposing a novel in-
verse link function with better properties than the canoni-
cal exponential choice. Our method can be scaled to very
large problems using standard software available in Mat-
lab. Tt outperforms MAP estimation on a range of real-



90% missing 80% missing 50% missing

Dataset Algo | Poisson loss time(sec) | Poisson loss time(sec) | Poisson loss time(sec)
busstops | MAP | 72987.86(235.8) 25.9 63394.70(71.4) 21.8 38641.02(233.6) 17.8
busstops | VB 72873.65(247.1) 273 63392.47(78.4) 28.1 38639.73(232.5) 18.5
antenna | MAP | 65694.61(23.7)  27.7 56708.71(67.3) 26.2 34155.29(73.2) 18.4
antenna | VB 65541.63(22.0) 34.8 56701.88(64.9) 31.2 34160.26(74.6) 19.1
printJobs | MAP | 1793.74(2.0) 2.9 1391.99(18.5) 2.6 486.67(0.3) 2.6
printJobs | VB 1701.68(2.3) 3.1 1288.45(20.1) 2.7 486.85(0.1) 3.0

Table 2: Test log-likelihood of the MAP estimator and the proposed VB algorithm for count data on various data sets with
different proportion of missing data. Results are averaged over 10 runs (standard deviation in parenthesis).

world problems, while running in time comparable to a
highly efficient MAP solver which employs SVD shrink-
age in a similar manner.

In future work, we aim to use more sophisticated local
variational bounds, while maintaining the reduction to G-
VBMF. Specifically, we are not yet using the degrees of
freedom offered by the ¢, 1, ¢, » parameters in G-VBMF.
Also, we are working on a improvement on the bound by
relaxing the constraint of having a constant variance x ac-
cross all the observations, as done for heteroscedastic ma-
trix factorization [7]: by using local variational bounds
valid for every row rather than for the whole matrix, one
can obtain tighter bound. A simple rescaling of the latent
matrix rows X = UV'T, would then lead to the same sub-
problem solved by the G-VBME. This idea could equiva-
lently be applied to the columns of the matrix, but it is not
clear how to do it jointly in rows and columns, in order to
be efficient on large and nearly squared matrices.
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