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Abstract

Anomalies with spatial and temporal stamps
arise in a number of applications includ-
ing communication networks, traffic moni-
toring and video analysis. In these applica-
tions anomalies are temporally or spatially
localized but otherwise unknown. We pro-
pose a novel graph-based statistical notion
that unifies the idea of temporal and spa-
tial locality. This notion lends itself to an
elegant characterization of optimal decision
rules and in turn suggests corresponding em-
pirical rules based on local nearest neigh-
bor distances. We compute a single com-
posite score for the entire spatio-temporal
data sample based on the local neighborhood
distances. We declare data samples as con-
taining local anomalies based on the com-
posite score. We show that such rules not
only asymptotically guarantee desired false
alarm control but are also asymptotically op-
timal. We also show that our composite
scoring scheme overcomes the inherent reso-
lution issues of alternative multi-comparison
approaches that are based on fusing the out-
comes of location-by-location comparisons.
We then verify our algorithms on synthetic
and real data sets.

1 Introduction

We are motivated by local anomalies that arise in sev-
eral applications that deal with spatial and temporal
data. These applications include network anomaly [1],
traffic monitoring [2], sensor network intrusion [3] and
epidemics [4]. For instance, consider network anomaly

Appearing in Proceedings of the 15th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2012, La Palma, Canary Islands. Volume 22 of JMLR:
W&CP 22. Copyright 2012 by the authors.

detection. Here each data sample corresponds to a
time-trace of packet counts from origin-to-destination
over the course of a day. Different days correspond to
different data samples. A local anomaly such as an
outage, port-scan or a network-scan could occur any-
time over a period of a 10-30 minutes. In this paper
we formalize a statistical non-parametric notion of lo-
cal anomalies to deal with such scenarios and develop
algorithms with proven statistical guarantees. Our al-
gorithms are based on local K-nearest neighbor dis-
tances, which is amenable to hashing [5].

Data driven approaches for detection of localized tem-
poral anomalies has been described in a number of
papers in the statistics and data mining. The focus in
data mining is on algorithms and do not provide statis-
tical guarantees[6, 7, 1]. Much of the focus in statistics
literature is on parametric models, where the models
are customized to specific applications. Nominal para-
metric models are first estimated from data and then
anomalies are detected whenever a temporal data se-
quence deviates from that predicted by the nominal
model. Nominal temporal data is usually modeled
as a moving average or other autoregressive models
[8, 9, 10, 11]. Anomalies are detected when a target
data sequence deviates from the model.

A well studied problem related to this paper is the de-
tection of sparse heterogenous mixtures for Gaussian
processes [12, 13, 14, 15]. The nominal data is a real-
ization of a zero mean, unit variance IID process. The
anomaly has an unknown mean shift in a sparse set
of components. These papers attempt to characterize
fundamental tradeoff between sparsity and mean shift
to asymptotically guarantee detection.

Our approach is also related to a number of other
non-parametric data-driven approaches such as [16, 17,
3, 18] with important differences. Existing statistical
approaches do not account for local anomalies, i.e.,
anomalies that are localized to a small time interval
or spatial region. We rigorously define a statistical
notion for local anomaly structure in Sec. 2. This no-
tion of locality lends itself to optimal Bayesian and
Neyman-Pearson characterization (see Sec. 3). While
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this characterization requires knowledge of underly-
ing likelihood models, it nevertheless motivates con-
sideration of specific local statistics such as local K-
nearest neighbor distances on the raw data (Sec. 4).
In this sense our paper is closely related to the rank-
ing method of [18], where scores for each data sam-
ple is computed by ranking global K-nearest neighbor
distances. In contrast we develop several rules (en-
tropy, sum and max statistics) that pool together all
the local K-nearest neighbor distances and yet provide
statistical guarantees. In Sec. 5 we not only establish
asymptotic optimality of such rules in a number of in-
teresting cases but also characterize the improvement
over global anomaly methods such as [18].

In Sec. 5.1 we also describe the benefits of our approach
over other approaches encountered in the context of
multi-comparison tests. Specifically, we consider Bon-
ferroni and the recently developed ”Higher Criticism”
as candidate approaches, where a score for each loca-
tion is first estimated and then anomaly is detected
by fusing these local scores. We notice that these ap-
proaches suffer from poor resolution in the low false
alarm regime. This arises when the number of samples
scale in proportion to dimension of each data sample.
Finally we verify our theoretical analysis on both syn-
thetic and artificial data set in Sec. 6. Proofs of our
results appear in the supplementary section.

2 Local Anomaly Model

We consider discrete-valued data with each data sam-
ple x = (xv)v∈V corresponding to a collection of ran-
dom variables, which are indexed on a graph G =
(V,E). Note that xv can be a random vector with
out loss of generality. The set V is endowed with the
usual graph metric d(u, v) defined for any two nodes
v and u. We often use T to denote |V |. Our setup
accounts for temporal (V is time), spatial (V indexes
spatial locations) and spatio-temporal data.

We assume that baseline data x = (xv)v∈V is drawn
from the null hypothesis H0:

H0 : x ∼ f0(x) (1)

We describe the anomalous distribution as a mixture
of location-specific anomalous likelihood models. Let
fv(x), Pv be the likelihood function and prior proba-
bility associated with location v respectively. Then,

H1 : x ∼
∑

v∈V
Pvfv(x) (2)

We next introduce notation to describe our local
model. Let ωv(s) be a ball of radius s around v:

ωv , ωv(s) = {v′ : d(v, v′) ≤ s}

With abuse of notation ωv will generally refer to a ball
of a fixed radius s at node v. The marginal distribution
of f0, fv on a subset set ω ⊂ V is denoted as f0(xω).
We also denote by ωv,ϵ as the set that includes all
points within an ϵ radius of ωv, i.e.,

ωv,ϵ = {u ∈ V | d(u, v) ≤ ϵ, v ∈ ωv}

Definition 1. We say an anomaly is of local struc-
ture if the distributions f0 and fv satisfy the following
Markovian and Mask assumptions.
(1) Markov Assumption: We say f0 and fv’s sat-
isfy the observation x forms a Markov random field.
Specifically we assume that there is an ϵ-neighborhood
such that xv, v ∈ ωv is conditionally independent of
xu, u ̸∈ ωv,ϵ when conditioned on the annulus ωv,ϵ∩ωcv.
(2) Mask Assumption: If the anomaly event hap-
pens at region ωv, the marginal distribution of f0 and
fv on ωcv is identical: f0(xωc

v
) = fv(xωc

v
).

wv 

wv,e 

(wv,e)
c 

v 

Figure 1: Illustration of Markov and Mask Properties.
Markov implies random variables in region ωv are inde-
pendent of random variables in ωc

v when conditioned on
the annulus. Mask assumption means that the anomalous
density and nominal density are identical outside ωv.

Note that our assumptions are structural and we are
still left with a non-parametric model for f0 nor fv.
The local anomaly event can happen in any neighbor-
hood ωv, which is centered at node v and the range of
its influence is dictated by radius s.

We present some of the limitations and extensions of
our framework that are not explicitly addressed here:
(a) Unknown radius: While we assumed an upper
bound on s here, we will later account for unknown s
in our algorithm and simulations.
(b) Complex Shaped Anomalies: We have as-
sumed that there is a sufficiently large ball encapsu-
lating the anomaly.
(c) Latent Models: Our model does not appear to
account for latent parameters. For example, consider
traffic data where nominal weekend pattern can be dif-
ferent from weekday pattern. We can account for this
phenomena by suitably extending our model to include
a hidden state. The hidden state dictates whether the
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time-series is from weekends or weekdays. The nomi-
nal pattern then corresponds to a mixture model and
the Markovian assumption holds conditionally, i.e., it
is Markovian when conditioned on the latent variable.
We will present simulations for this setting in Sec. 6.
(d) Multiple Anomalies: While we primarily de-
scribe single anomalies, our method extends to mul-
tiple local independent anomalies as well. To see
this we can let, Puv be probability of joint occur-
rence of anomalies at well-separated locations at two
nodes u, v. Then the term Pvfv(x) can be modified to
Puvfuv(x) and can be further factorized by appealing
to the Markovian property. Our theoretical results ex-
tend to this situation. Evidently [12] single anomalies,
due to the inherent sparsity, are often more difficult to
detect in comparison to multiple anomalies.

2.1 Relevant Applications

Both the Markovian and Mask assumption are quite
general and meaningful. We need the Markovian prop-
erty to ensure local dependence otherwise the effect of
what happens locally would propagate globally and the
effect is no-longer local. The second assumption says
that no information about anomaly can be revealed
from the data extracted outside of the anomalous re-
gion. We have already described communication net-
work anomalies [1] as an instance of local anomalies
in Sec. 1. We further justify the Mask and Markovian
assumptions further by describing other applications.

Detection in Sensor network. A wireless sensor
network is deployed to detect intrusions in an area
based on the field measurements [3]. The nodes of
the graph G are sensors and their associated locations.
The edges connect neighboring sensors. Sensors mea-
sure the received signal strength at various sensor lo-
cations. Intrusion is a localized phenomena since the
sensor range is local and the intrusion itself occurs at a
specific location and at a specific time instant. The re-
ceive signal strength decays as rα with radius r. Note
that Mask assumption holds because the intrusion is
undetectable from sensor measurements that are not
in the immediate neighborhood of the sensing radius.
Markovianity holds because the sensor measurements
are independent under the null hypothesis.

Bio-surveillance of epidemics. In modern bio-
surveillance [4], the problem is the early detection of a
disease epidemic in a certain region. During the early
stages, the disease is contained in a small local re-
gion and the data can be mapped to a general Markov
random field in which each node represents a certain
neighborhood. The mask assumption is satisfied since
regions outside the local anomalous region do not re-
veal information about the disease.

Detection in Traffic data. Each data sample con-
sists of vehicle counts x(t) at time t [2] over the course
of a day. Markovianity in x(t) follows if x(t) follows a
poisson counting process, a typical assumption made
for this scenario. Anomaly can happen at any time
window [i − s, i + s]. Note that in most cases the
anomaly is local in time because the events (such as
baseball game, car accident etc.) will only impact a
certain period of time during the day. During the rest
of the day, the time-series looks exactly like a normal
day satisfying Mask property.

Surveillance. A camera records video footage in an
urban scenario. The dataset can be broken into small
video segments. Different video segments can be as-
sumed to be statistically similar. Anomalies are usu-
ally motion anomalies such as dropped baggage, un-
usual direction of motion etc. These anomalies are
local in space and time (see Fig. 2).

0 50 100 150 200 

Speed 
time 

Figure 2: Illustration of local anomaly in time. Left: Il-
lustrates frame of a video segment [19] with anomaly (bicy-
cle). Right: Plot of speed (computed from optical flow) vs.
time for nominal and anomalous video segments. Note that
speed trace outside the anomalous window looks identical
to nominal traces verifying Mask and Markov properties.

3 Problem Formulation and Optimal
Characterization

An anomaly detector is a decision rule, π, that maps
observations x = (x)v∈V to {0, 1} with zero denot-
ing no anomaly and one denoting an anomaly. Let
Ωπ = {x | π(x) = 1}. The optimal anomaly detector
π minimizes the “Bayesian” Neyman-Pearson objec-
tive function.

Bayesian: max
π

∫

Ωπ

∑

v∈V
Pvfv(x)dx (3)

subject to

PF ,
∫

Ωπ

f0(x)dx ≤ α
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The optimal decision rule can be characterized as

∑

v

PvLv
anomaly

>
<

nominal

ξ (4)

where the likelihood ratio function Lv is defined as
Lv = fv(x)/f0(x) and ξ is chosen such that the false
alarm probability is smaller than α. Lemma 1 (see
Supplementary Section for the proof) shows that the
likelihood ratio function Lv simplifies under our as-
sumptions of Definition 1.

Lemma 1. Let ωv be a ball around v and ωv,ϵ be the ϵ-
neighborhood set such that the Markovian assumption
of Definition 1 is satisfied. Then we have,

Lv(x) =
fv
(
xωv,ϵ

)

f0
(
xωv,ϵ

) (5)

Several issues arises in applying this decision rule.
Both Pv and the likelihood model fv are unknown and
we only have nominal training data. A uniform prior
(Pv = 1/|V |) or a worst case prior are options for deal-
ing with unknown Pv. The worst-case prior also has
a well-known Bayesian interpretation and provides a
link between the robust composite testing and opti-
mal Bayes decision theory. Under symmetrizing loca-
tion invariance [20] assumptions it turns out that the
uniform prior is also the worst-case prior. The issue of
unknown fv is an important aspect in anomaly detec-
tion. Typically, the volume of Ωc under the Lebesgue
measure is used as a proxy for the missed detection
rate. This requires that Ωc be bounded and this is
guaranteed if f0(·) has bounded support. This issue is
further complicated in our setting since Lv(x) is loca-
tion dependent and so support of f0 varies with loca-
tion. So if at location v, xωv,ϵ lies in a set of diameter
λv and ωv,ϵ has diameter s+ ϵ Equation 5 reduces to:

Lv(x) =
λ

−(s+ϵ)
v

f0
(
xωv,ϵ

) (6)

3.1 Composite Scores with Guarantees

While Equation 4 characterizes the optimal decision
rule, it is unclear how to choose a threshold to ensure
false alarm control. To this end we let G(x) be a real-
valued statistic of the raw data. Consider the score
function:

R(η) = Px∼f0 (x : G(x) ≥ G(η)) (7)

It is easy to show that this score function is distributed
uniformly for a large class of statistics G(x). This
includes:

(1) NP detector: GSUM (x) =
∑
v Lv(x).

(2) GLRT [21]: GMAX(x) = maxv Lv(x).
(3) Entropy: GENT (x) = −∑v log(Lv(x)).

Lemma 2. Suppose statistics G(x) has the nestedness
property, that is, for any t1 > t2 we have {x : G(x) >
t1} ⊂ {x : G(x) > t2}. Then R(η) is uniformly dis-
tributed in [0, 1] when η ∼ f0.

This lemma implies that we can control false alarms
via thresholding the statistic R(η).

Theorem 3. If G satisfies the nestedness property, by
setting the detection rule as R(η) ≤ α, we control the
FA at level α. Furthermore, if R(η) is computed with
GSUM (x) =

∑
v Lv(x), then it is optimal solution to

Equation 3 for the uniform prior.

4 LCS based on Nearest-Neighbors

The goal in this section is to empirically approximate
R(·) given training data (x(1), · · · , x(n)), a test point
η and a statistic G(·). Consider the empirical score
function:

Rn(η) =
1

n

n∑

i=1

I{Gn(x(i))≥Gn(η)} (8)

where Gn is a finite sample approximation of G and
I{·} is the indicator function. Here we propose local
nearest neighbor based statistics. We denote it as a lo-
cal neighborhood based composite scores (LCS). This
is because Gn(·) as described in the previous section
combines statistics over local neighborhoods of a data
sample and the ranking function produces a composite
score for an entire time series or random field.

Definition 2. We define the d-statistic dωv,ϵ(η) for
window ωv,ϵ at an arbitrary point η as the distance of

ηωv,ϵ
to its k-th closest point in

(
x

(1)
ωv,ϵ , · · · , x(n)

ωv,ϵ

)
.

We generally choose Euclidean distance for computing
the distances. In general, we can apply any distance
metric customized to specific application. To approxi-
mate G(x) for different cases we need to determine the

support parameter λv. To this end we let d
(j)
ωv,ϵ as the

ordered the distances of dωv,ϵ(x
(j)) (j = 1, 2, · · · , n) in

decreasing order and we approximate the support as
an ξ percentile:

λv = d(⌊nψ⌋)
ωv,ϵ

(9)

where ⌊nψ⌋ denotes the integer part of real number
and can be tuned (in simulations we usually use the
median). Now GSUM (x) =

∑
v Lv(x) can be approxi-

mated by SUM LCS, Gn,SUM :

Gn,SUM =
∑

v

(
dωv,ϵ(η)

λv

)s
(10)

Similarly, we can take a max statistic to obtain MAX
LCS:

Gn,MAX = max
v

dωv,ϵ(η)

λv
(11)
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Observe that when s is equal to dimension of x the
two statistics max and sum coincide. This resulting
statistics is identical to the K-nearest-neighbor ranking
(KNN-Ranking) scheme of [18].

Practical Issues with GSUM (·): Recall from Sec-
tion 3, GSUM (x), appears to be optimal for uniform
priors and minimax optimal under symmetrizing as-
sumptions. However, it is difficult to reliably approx-
imate GSUM (x) for several reasons. (1) Sum is no
longer optimal if the prior is not uniform. (2) Errors
can accumulate for the summation but max is rela-
tively robust. (3) The additional s exponent term in
the expression of SUM LCS (which compensates for
the dimension) leads to sensitivity to parameters such
as λv. (4) For large values of s, since max distance is a
dominant term in GSUM (x) the theoretical difference
between the two statistics maybe negligible. There-
fore, we pursue MAX-LCS in this paper and prove
some its properties in the next section.

Algorithm: For concreteness we list the steps below.
(Input) Nominal Data, (x(1), · · · , x(n)), test sample,
η, false alarm rate, α and maximum anomaly size, s,
if known else select initial size.
(Step 1) Compute k nearest distances dωv,ϵ(·) for each
v and for all the nominal data and test sample.
(Step 2) Compute MAX-LCS using Eq. 11 for each
nominal sample, (i) and test sample, η.
(Step 3) Compute the rank for η using Eq. 8. De-
clare anomaly if rank below threshold α and window
size s is known. If s unknown iterate over geometri-
cally increasing window sizes. Declare anomaly if the
minimum rank falls below α/#{windows}.

5 Theoretical Properties of
Composite Scores

First, we show that Gn,MAX asymptotically converges
to the true statistic GMAX . This which implies that
the score function Equation 7 converges to uniform
distribution, and thus establishes false alarm control
for thresholding MAX-LCS.

Theorem 4. Assume smoothness condition on f0 as
in [18] and the regularity condition k → ∞, n → ∞
and k/n → 0, we have,

Rn,MAX(η)
n→∞−→ RMAX(η)

= Px∼f0
(
max
v

Lv(x) ≥ max
v

Lv(η)
)

A similar property holds for SUM LCS. Consequently,
SUM LCS scheme is asymptotically optimal.

The proof of the asymptotic optimality of SUM LCS
follows by combining the convergence result above
with Theorem 3. However, we do not pursue SUM

LCS due to the serious practical issues described in
Sec. 4.

Corollary 5. Given the same technical con-
ditions as Theorem 4, the MAX-LCS score
1
n

∑n
i=1 I{Gn,MAX(x(i))≥Gn,MAX(η)} with Gn,MAX =

maxv dωv,ϵ(η)/λv asymptotically converges to uniform
distribution.

The above corollary tells us that MAX-LCS asymp-
totically controls false alarm rate. Next we derive the
properties of MAX-LCS to deduce its detection power.
First, we consider a simple case when f0 is Gaussian
which leads to a precise sharp characterization.

Theorem 6. Assume the normal pattern is IID stan-
dard Gaussian N (0, 1) and the ground truth anomaly
pattern is:

H1 :

{
xi ∼ N (µi, 1) i = 1, · · · , s
xi ∼ N (0, 1) i = s+ 1, · · · , T.

and this structure of anomaly is not revealed. Consider
the regime when both s and T go to infinity and s/T
goes to zero. It follows that for miss probability PM
of KNN-Ranking scheme to vanish, we need

∑s
i=1 µ

2
i

to scale as Θ
(√

T
)
. In comparison for the MAX-LCS

we need
∑s
i=1 µ

2
i to scale as Θ

(√
slog(T/s)

)
.

This result establishes a fundamental dichotomy,
namely, for values of s, i.e., the radius of local anomaly
such that s = o(T/ log(T )), locally based MAX-LCS
is provably superior to KNN-Ranking of [18].

Finally, given further assumptions on the d-statistics,
we can prove a more general result about the detection
power of MAX-LCS. We need two assumptions about
d-statistics of normal points and anomalous point.

• For the normal training points, dωv,ϵ(x
(j)) decays

exponentially Pr
(
dωv,ϵ(x

(j)) > d
)

≤ e−λd. This is
true when f0 is sub-gaussian [22].

• For the anomalous test point η, the measure
of dωv,ϵ(η) is not concentrated around zero:
Pr
(
dωv,ϵ(η) < log(T ) ρλ

)
≤ ϵ.

Theorem 7. Consider the case when the nodes
(xv)v∈V for the nominal data are independent. Given
the above two assumptions, the expectation of MAX-
LCS (over the training set and the test point) is upper
bounded by 1

2ϵ+ 1
2 (1 − e−1/ρ).

Theorem 7 can be extended in several cases where the
nodes (xv)v∈V are correlated. Specifically, for so called
negative associations (see [23] and Chapter 3 of [24])
it follows that,

Pr
(
dωv,ϵ(x

(j)) < d,∀i
)

≥
∏

v

Pr
(
dωv,ϵ(x

(j)) < d
)

(12)
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and in these cases Theorem 7 continues to hold. In
other cases such as in Markovian settings a similar
bound can be derived if the sub-gaussianity of certain
conditional distributions is assumed. In these cases
Theorem 7 points to the fact that the average missed
detection rate of MAX-LCS is small. This result in
combination with Theorem 5 provides a sharp charac-
terization of false alarm and missed detection rates.

5.1 LCS vs. Multiple Comparisons

Multiple comparison(MC) arises whenever two groups
(such as a control group & treatment group) are com-
pared over many attributes. In our context each at-
tribute can be identified with a local neighborhood and
two groups (nominal and test sample) can be com-
pared for each local neighborhood. A score or signif-
icance value can be assigned for each local neighbor-
hood. These local neighborhood scores can be fused
to determine the presence or absence of anomaly. It
has long been recognized that MC [25, 12] leads to
poor false alarm control unless one corrects for multi-
ple comparisons. Traditionally, much of the MC lit-
erature [12, 26, 13, 15] has focused on Gaussian set-
ting and so the issue of empirical computation of local
scores does not arise and the p-value for each loca-
tion is computed. In our context local p-values can be
computed by the KNN-ranking scheme [18] localized
to a specific local neighborhood ωv,ϵ. These p-values
can then be fused using methods developed in the MC
literature. For the purpose of comparison we describe
two well-known methods:

Bonferroni Detector: Here we take a minimum of the
p-values (estimated) or scores corresponding to each
window [25] and declare anomaly if it is below a Bon-
ferroni corrected threshold α/#{windows}.
Higher Criticism (HC): The higher criticism statis-
tic [12] computes the following quantity: HC =
max1≤i≤α0l

√
l[i/l − p̂(i)]/

√
p̂(i)(1 − p̂(i)). It has been

argued that this detector is asymptotically optimal
for sparse heterogenous mixture of Gaussian pro-
cesses [12].

Resolution Issues: The main problem is that when em-
pirical estimation of p-values is combined with fusion
of p-values, resolution issues arise whenever the data
dimension, T , scales in proportion to the number of
data samples, n. To see this note that p-values at
each location cannot be expected to be smaller than
1/n since we only have n data samples. Now if we were
to apply the Bonferroni correction and we wish to con-
trol false alarms at level α, we need to test each loca-
tion against a corrected threshold α/T . This quantity
makes sense (for s = 1) when T/n ≤ α which requires
that the number of samples grow faster than the data
dimension. HC does not necessarily suffer from this

problem. Nevertheless, it is known [12] that in the
limit when the anomalous locations are sparse both
methods, HC and Bonferroni, result in similar per-
formance. Note that in contrast to the above fusion
strategies our MAX-LCS algorithm first pools together
information from all of the windows (via G(x) statis-
tics) and then computes a composite statistic for each
sample. A direct impact of this type of processing is
that we can control false alarms at any desired level.

6 Simulation

In this section, we test our MAX LCS algorithm on
both synthetic and real data set on time-series data of
length T , size n and anomaly radius s. The computa-
tional cost of MAX LCS is linear in dimension, linear
in the total number of local regions and quadratic in
the data size. Standard techniques such as k-d trees
and locality sensitive hashing [5] can be used to speed
up the computation but we do not pursue this aspect
here. We apply the algorithm described in Sec. 4 for
known and unknown window sizes.

6.1 Synthetic data

We experiment with synthetic data because ground
truth information is necessary to compute false pos-
itives (FP) and true positives (TP). For time-series
data set, the ground truth is usually not available.
Therefore, synthetic data is more appropriate for ac-
curate comparison in terms of FP and TP.
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Figure 3: ROC curves for KNN-ranking, Bonferroni and
Higher Criticsm (HC), MAX-LCS, and the variant of
MAX-LCS when s is unknown. Length of time-series is
100; Duration of anomaly pattern is s = 5; Training sam-
ple size n = 200. For normal sequence the value of each
time instant is IID Gaussian N (0, 1). Note that both HC
and Bonferroni do not produce estimates for FP < 0.3.

For all experiments we set the time series length to be
T = 100 and data size to be n = 200; and anomaly
radius to be s = 5. The anomaly pattern is generated
from a mixture model where we first randomly choose

974



Venkatesh Saligrama, Manqi Zhao

a window [i, i+ s− 1]. Outside of the window xt still
follows the nominal pattern while in the window [i, i+
s−1] we generate xt ∼ U [−4, 4]. We choose m = 2000
test time-series where m0 = 800 of them are drawn
from H0 and m1 = 1200 are drawn from H1.

IID Gaussian: In the first synthetic experiment, we
generate the normal training time-series as IID stan-
dard Gaussian vector N (0, IT ). In the left panel of
Figure 3 we plot the empirical ROC curve for KNN-
ranking, Bonferroni, Higher Criticism, MAX-LCS and
the variant of MAX-LCS where s is unknown. We can
see that KNN-ranking performs much worse than our
MAX-LCS. Bonferroni and Higher Criticism perform
similarly when the FA α > 30%. However, when FP
< 30%, the empirical ROC curve is missing for these
two algorithms(see Sec. 5.1 for explanation).

Inhomogeneous Gaussian: The nominal pattern fol-
lows the equation x(t) = 3 sin(t/10+1)−5 sin(3t/40)−
3 and the variance is larger near the two ends com-
pared to the variance in the middle (see Fig. 4). Again
we see that HC and Bonferroni suffer from resolution
at FP < 0.3.

10 20 30 40 50 60 70 80 90 100
−6

−4

−2

0

2

4

6

time

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
0.5 

0.55 

0.6 

0.65 

0.7 

0.75 

0.8 

0.85 

0.9 

0.95 

1 

false positive 

tr
u

e
 p

o
s
it
iv

e
 

  

  

Global Score 

   Bonferroni/Higher-Criticism 

LAGS-MAX 

LAGS-MAX(s unknown) 

Figure 4: The length of time-series is 100; Anomaly Du-
ration is s = 5. Training sample size n = 200. Top: Il-
lustrates Inhomogenous Gaussian Process; The variance at
time t varies as N (S(t), σ2

t ) where the error bar plot of
parameter (S(t), σ2

t )’s is shown. Bottom: ROC curves for
different algorithms. Note that both HC and Bonferroni
do not produce estimates below FP < 0.3.

Latent Model with Gaussian Mixtures: Here the nor-
mal pattern is drawn from a mixture model. There
exist two normal patterns with equal prior probabil-
ity: x(t) = 3 sin(t/10 + 1) − 5 sin(3t/40) − 3 and
x(t) = 4 sin(t/20) + 2. We also have varying noise
variance over time (Fig. 5). Note that this is a la-
tent model (Section 2) since the markovianity is only
satisfied conditionally. However, note that d-statistics
can sometimes handle latent models. This is because
the samples corresponding to the different mixtures are
each uniformly distributed in the unit interval. Conse-
quently, test sample is an anomaly if it is distant from
each of the mixture components. In this example of a
Gaussian mixture, the corresponding d-statistics turns
out to be essentially unimodal. We can see that the
Bonferroni-type correction and HC perform similarly
and the ROC curves are missing when FP is < 25%.
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MAX-LCS 

MAX-LCS (s unknown) 

Figure 5: The time-series of length 100; Duration of
anomaly pattern is s = 5. Training sample size n = 200.
The nominal time-series is generated from a mixture model.
Top: two sample paths of nominal training time-series.
Bottom: ROC curve comparison. Note that HC and Bon-
ferroni do not produce estimates below FP < 0.25.

6.2 Real data

We use the power consumption data set to verify our
MAX-LCS algorithm. The power data set records the
power consumption for a Dutch research facility for the
whole year of 1997 [27]. Measurements are made ev-
ery 15 minutes and there are totally 96 × 365 = 35040
measurements in the year 1997. We regard the mea-
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surements of each day (of length 96) as an individual
time-series. Hence we have T = 96 and we choose the
window size s = 16. We set the threshold ξ = 20%.

Normal weekday Normal weekend 
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Christmas eve 

Anomaly 1 

Anomaly 2 

time time 

P
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n
 

Figure 6: Left Column: the first plot shows a typical
normal weekday. The other two plots are two anomalous
weekdays (1997-05-12, 1997-10-19) returned by our MAX-
LCS algorithm but not detected by Bonferroni, higher crit-
icism or an algorithm based on KNN-ranking. Right Col-
umn: The first plot shows a typical normal weekend. The
other two plots are two anomalous weekends or holidays
(1997-03-02, Good Friday, Christmas Eve) returned by our
MAX-LCS algorithm but not detected Bonferroni, higher
criticism or an algorithm based on KNN-ranking.

Typical normal weekday and normal weekend time-
series patterns are shown in the first column of Figure
6. The other three plots on the upper (lower) panel
of Figure 6 show three anomalous weekdays (week-
ends or Holidays) that are returned by our MAX-
LCS algorithm and that are not detected using the
KNN-ranking. Interestingly, the last two plots in the
lower panel actually correspond to the good Friday
and Christmas Eve of 1997 (During most time of these
days, the curve is indistinguishable from a normal pat-
tern). We can see visually that actually the anomaly
is local in time. Note that we cannot detect such sub-
tle patterns of anomalies using KNN-ranking. Note
that in our algorithm, we don’t discriminate between
weekdays or weekends and we never use this piece of
information in the algorithm. The distinction between
weekends and weekdays are just for the clarity of il-

lustration. For illustration purposes, we also plot in
Figure 7 the original time series of the last three weeks
of 1997 (upper panel) and their score function via
the GMAX(x) statistics (lower panel). Due to lack of

Figure 7: Upper panel: the original last three week
time-series of 1997 (Power data set). The days with red
dots correspond to the anomalous days detected by MAX-
LCS. Lower panel: Score function for each day for the
same period. Anomalies are now obvious.

ground truth information for the power demand data
set, we cannot plot the ROC curve of our algorithm.
Here what we choose to do is to inject some artificial
anomalies to some of the days and compute the de-
tection power. To be more precise, we inject artificial
anomalies to all the 50 days between 1997-04-07 and
1997-05-26 by choosing a random 4-hour period and
add Gaussian noises to these periods. Here we vary the
threshold ξ and for different choice of ξ we get differ-
ent detection power (see Figure 8). For MAX-LCS and
KNN-ranking, ξ is exactly the proportion of declared
anomalies. For the Bonferroni procedure, it is hard

Threshold 3% 10% 20% 30% 40% 50%

MAX LCS 6 16 26 35 45 49
KNN-Rank 0 2 7 21 29 37
Bonferroni 1 16 26 34 42 44

Figure 8: Detection Power of MAX LCS, KNN-Rank,
Bonferroni on the Power data set with injected anomalies

to explicitly control the number of declared anoma-
lies. For a fair comparison, one reasonable choice is
to correct the threshold by a factor of T/s = 6, that
is, the threshold ξ′ = ξ/6 where ξ is used in MAX-
LCS and KNN-ranking. We can see that MAX-LCS
is consistently better than KNN-ranking. Bonferroni
is comparable with MAX-LCS in a certain range of ξ
but performs poorly when ξ is very small.
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7 Appendix

To avoid cumbersome notation we consider several simplifying assumptions.

The proofs here consider the case of time series data. The data length is T and the number of samples are n
and the anomaly radius is s. The underlying graph is just a Markov chain. In this case, a node v is reduced
to an ordered index i. We also assume first order Markovianity, i.e., conditioned on the random variable, xt at
time t the random variables xv, v > t and xu, u < t are independent. The results can be easily generalized to
the general Markov random graph. Consider balls of size s at location i. These are time windows

ωi = {i− s, i− s+ 1, . . . , i+ s− 1}.
Let the 1-neighborhood window be

ωi,1 = {i− s− 1, i− s, i− s+ 1, . . . , i+ s}

8 Proof of Lemma 1

By the formula of the conditional probability,

Li(x) =
fi(x)

f0(x)
=
fi
(
xωi,1

)
fi

(
xωc

i,1
|xωi,1

)

f0
(
xωi,1

)
f0

(
xωc

i,1
|xωi,1

)

By Markovian property, the second term in the numerator can be simplified to,

fi

(
xωc

i,1
|xωi,1

)
= fi

(
xωc

i,1
|xi−1, xi+s

)

Note that all the variables in the RHS is in the normal window [i, i+s−1]c, and by the mask property, it should
equal to

fi

(
xωc

i,1
|xi−1, xi+s

)
= f0

(
xωc

i,1
|xωi,1

)

which cancels out the second term of the denominator. The second equality follows from decomposing the
likelihood ratio in another way:

Li(x) =
fi
(
xωc

i

)
fi

(
xωi |xωc

i,1

)

f0
(
xωc

i

)
f0

(
xωi |xωc

i,1

)

The first terms of the numerator and the denominator cancel out due to the mask property. Moreover, due to
Markov property, the second terms of numerator and the denominator can be simplified to be only dependent
on the boundary xi−1, xi+s.

9 Proof of Lemma 2

Denote y0 = R(η0) for a fixed η0 and y = R(η) for η ∼ f0. Then we have

Pr(y ≤ y0) = Pη∼f0 (Px∼f0 (x : G(x) ≥ G(η)) ≤ Px∼f0 (x : G(x) ≥ G(η0)))

(a)
= Pη∼f0({x : G(x) ≥ G(η)} ⊂ {x : G(x) ≥ G(η0)})

(b)
= Pη∼f0(G(η) ≥ G(η0)) = y0

where both (a) and (b) follow from the nestedness property of G and the last equality follows from the definition
of y0.

10 Proof of Theorem 3

The first statement follows directly from Lemma 2. The second statement follows from the fact that GSUM (·)
satisfies nestedness property and so is uniformly distributed. The optimality follows from the fact that for distri-
butions that are not flat, the corresponding score R(x) is a one-to-one monotonically increasing transformation
of the likelihood ratio. The result now follows by noting that thresholding the likelihood ratio is itself an optimal
detector.
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11 Proof of Theorem 4

The following lemma establishes that Gn,MAX converges to GMAX in the limit.

Lemma 8. Given the regularity condition k → ∞, n → ∞ and k/n → 0, we have,

(
dωi,1(η)/λi

)s → ξα,i
f0(ηωi,1)

when n → ∞ (13)

where λi is set as Equation (13) and ξα,i satisfies Px∼f0
(
f0(xωi,1

) ≤ ξα,i
)

= α.

Proof. The convergence result is based on the asymptotic moments expression for k-NN distance distributions
developed in [22, 28]. Given the regularity condition: k → ∞, n → ∞ and k/n → 0, we have that [22, 28],

n

k

(
dωi,1(η)

)s → 1

csf0(ηωi,1)

where cs is some constant which only depends on the value of s. Then we can derive the limit expression of the
compensation factor:

n

k
(λi)

s
=
n

k

(
d(⌊nα⌋)
ωi,1

)s

Therefore k
n (1/λi)

s
will converge to the ⌊nα⌋’s smallest value of csf0(ηωi,1).

On the other hand, when n goes to infinity, the solution of Px∼f0
(
f0(xωi,1) ≤ ξα,i

)
= α can be approximated by

the solution of 1
n

∑n
j=1 I{

f0(x
(j)
ωi,1

)≤ξα,i

}, which is exactly the the ⌊nα⌋’s smallest value of f0(ηωi,1).

Based on the above lemma, we can easily establish Theorem 4.

12 Proof of Theorem 6

In this section, we want to quantitatively compare the detection power of LPE with MAX LPE when H0 is
Gaussian:

H0 : xi ∼ N (0, 1), i = 1, · · · , T
and the ground truth anomaly pattern H1 is:

H1 :

{
xi ∼ N (µi, 1) i = 1, · · · , s
xi ∼ N (0, 1) i = s+ 1, · · · , T.

that is, the anomaly always happens at the very beginning. We should understand that in the following calculation
we only reveal H0 to the detector (via training sample) and the detector is unaware of H1.

We first derive the result for the extreme case s = 1. Later the proof techniques can be easily generalized to
any sparsity level s. Here we adopt a Neyman-Pearson criteria to evaluate the two detectors, that is, we fix the
false alarm at level α and compare their detection power. When H0 is standard Gaussian, LPE detector (in

limit) reduces to ANOVA analysis [29] and the detection boundary is
∑T
i=1 x

2
i = ξ where ξ is chosen such that

Pxi∼N (0,1)

(∑T
i=1 x

2
i ≤ ξ

)
= 1 − α. Also for Gaussian H0 the boundary of MAX LPE (in limit) is simplified to

maxTi=1 |xi| = ξ′ where ξ′ is chosen such that Pxi∼N (0,1)

(
maxTi=1 |xi| ≤ ξ′) = 1 − α. The remaining job is to

compute the detection power of these two detectors.

In computing the detection power of LPE, we will need the tail probability of non-central chi-square distribution
[30].

Lemma 9 (Sankaran). Define non-central χ2 distribution Y =
∑n
i=1

(
Xi

σi

)2

where Xi ∼ N (µi, σ
2
i ) and we also

define λ =
∑n
i=1

(
µi

σi

)2

. We have the following approximation formula for the tail probability of Y :

Pr(Y ≥ y) ≈ Q

(
( y
n+λ )h − (1 + hp(h− 1 − 0.5(2 − h)mp))

h
√

2p(1 + 0.5mp)

)
(14)
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where the Q-function Q(x) = 1√
2π

∫∞
x
e−x2/2dt and

h = 1 − 2

3

(n+ λ)(n+ 3λ)

(n+ 2λ)2
, p =

n+ 2λ

(n+ λ)2
, m = (h− 1)(1 − 3h).

Proposition 10. Consider the regime when s = 1 and T goes to infinity. To make the miss detection rate PM
of LPE vanish, µ2 should at least scale as Θ(

√
T ).

Proof. For LPE detector with decision boundary
∑T
i=1 x

2
i = ξ, the false alarm rate is

Pxi∼N (0,1)

(
T∑

i=1

x2
i ≥ ξ

)
= α

The RV
∑T
i=1 x

2
i is chi-square distributed with freedom of degree T . By applying the tail probability approxi-

mation in Lemma 9, we have

Q


 ( ξT )1/3 − 1 + 2

9T

1
3

√
2
T


 ≈ α

Solving this equation gives the estimate of ξ:

ξ ≈ T +
√

2TQ−1(α) + o(
√
T )

We can also evaluate the miss detection probability

PM = Px1∼N (µ,1),xi∼N (0,1),i≥2

(
T∑

i=1

x2
i ≤ ξ

)

In this case, we can regard
∑T
i=1 x

2
i as a non central chi-square distributed random variable with λ = µ2. Again

by applying the tail probability approximation in Lemma 9, we have

PM = 1 −Q


 ( ξ

T+λ )1/2 − 1 + 1
T

1
2

√
8
T




A necessary condition for PM to vanish is the argument in the Q-function is at least negative:

(
ξ

T + λ

)1/2

− 1 +
1

T
< 0

which implies ξ < T + λ. Since we have already derived that ξ is T +
√

2TQ−1(α), we finally get that µ2 = λ
should be at least on the order of

√
T .

Proposition 11. Consider the regime when s = 1 and T goes to infinity. To make the miss detection rate PM
of MAX LPE vanish, µ2 should at least scale as Θ(log(T )).

Proof. For MAX LPE detector with decision boundary maxTi=1 |xi| = ξ, to control FA at level α, we have

Pxi∼N (0,1)

(
T

max
i=1

|xi| ≤ ξ
)

= 1 − α

which implies (1 − 2Q(ξ))T = 1 − α and this gives the solution

ξ = Q−1

(
1 − (1 − α)1/T

2

)
≈ Q−1

( α
2T

)
≈
√

2 log(2T/α)

979



Local Anomaly Detection

where the last step from the Chernoff bound approximation Q(t) ≈ 1
2e

−t2/2. Now we can evaluate the miss
detection probability

PM = Px1∼N (µ,1),xi∼N (0,1),i≥2

(
T

max
i=1

|xi| ≤ ξ
)

(15)

= Px1∼N (µ,1) (|x1| ≤ ξ)

T∏

i=2

Pxi∼N (0,1) (|xi| ≤ ξ) (16)

= (1 − α)
T −1

T (Q (µ− ξ) −Q(µ+ ξ)) (17)

To drive PM to zero, a necessary condition is that µ − ξ is negative, i.e., µ2 should be at least as large as
ξ2 = 2 log(2T/α).

The above propositions address the simple case s = 1, but the derivation can be easily adapted to any sublinear
sparsity level. Now we are ready to prove to prove Theorem 6.

The miss detection rate of LPE follows exactly from the same line of argument except that now λ =
∑s
i=1 µ

2
i .

The analysis of MAX LPE requires a bit more effort. The definition of GMAX is

GMAX(η) = max
i=1,2,··· ,T−s+1

i+s−1∏

t=i

(f0(ηt))
−1

where f0(ηt) is assumed to be standard Gaussian. When s > 1, neighboring products
∏i+s−1
t=i (f0(ηt))

−1 are
correlated because they share common terms and this makes the analysis more involved. To simplify the analysis
we assume T/s is an integer and we analyze the slightly modified GMAX :

G′
MAX(η) = max

i/s is integer

i+s−1∏

t=i

(f0(ηt))
−1

that is, we just consider the max over the non-overlapping time windows. To control the false alarm at α, now
we have

Pxi∼N (0,1)

(
max

i/s is integer

i+s−1∑

t=i

x2
t ≤ ξ

)
= 1 − α

Again by applying the tail probability of chi-square distribution we can solve ξ and get ξ ≈ s +
√

4s log
(

2T
αs

)
.

Also, similar to the argument in the proof of Theorem 10, PM vanishes only if ξ < s+ λ, or,

s+

√
4s log

(
2T

αs

)
< s+

s∑

i=1

µ2
i

and this proves the second part of the theorem.

Theorem 6 implies that MAX LPE outperforms LPE in the regime T ≥ Θ(s log(T/s)). The smaller the sparsity
s is relative to T , the more striking the performance difference is.
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13 Proof of Theorem 7 and Extension to Correlated Case

We want to upper bound the expectation of 1
n

∑n
j=1 I{maxi dωi,1

(x[j])≥maxi dωi,1
(η)}. Without loss of any generality

we assume that the anomaly happens at window [1, s+ 1] for η. Then we have,

Eη,x(1),··· ,x(n)


 1

n

n∑

j=1

I{maxi dωi,1
(x[j])≥maxi dωi,1

(η)}




=Eη,x(1),··· ,x(n)


 1

n

n∑

j=1

I{maxi dωi,1
(x[j])≥dω1,1 (η)}I{maxi dωi,1

(x[j])≥maxi>1 dωi,1
(η)}




≤ 1

n

n∑

j=1

E
(
I{maxi dωi,1

(x[j])≥dω1,1 (η)}
)

E
(
I{maxi dωi,1

(x[j])≥maxi>1 dωi,1
(η)}
)

where the last inequality follows from Cauchy-Schwarz inequality. The terms in the second expectation are all
normal. Hence this term converges to 1/2 limit. Therefore the last expression simplified to

1

n

n∑

j=1

E
(
I{maxi dωi,1

(x[j])≥dω1,1 (η)}
)

E
(
I{maxi dωi,1

(x[j])≥maxi>1 dωi,1
(η)}
)

=
1

2n

n∑

j=1

Pr
(
max
i
dωi,1(x

[j]) ≥ dω1,1(η)
)

=
1

2
Pr
(
max
i
dωi,1(x

[j]) ≥ dω1,1(η)
)

Due to symmetry, the superscript [j] can be any value. We just put a [j] here. For the simplicity of notation,
we denote dmax = maxi dωi,1(x

[j]) and the distribution of η as qη(·). Now we have

1

2
Pr
(
max
i
dωi,1(x

[j]) ≥ dω1,1(η)
)

=
1

2
Pr
(
dmax ≥ dω1,1(η)

)

=
1

2

∞∫

0

qη(w) Pr(dmax ≥ w)dw

=
1

2

ρ log(T )/λ∫

0

qη(w) Pr(dmax ≥ w)dw +
1

2

∞∫

ρ log(T )/λ

qη(w) Pr(dmax ≥ w)dw

We bound the two integral separately. For the first integral, we make use of the assumption and get

1

2

ρ log(T )/λ∫

0

qη(w) Pr(dmax ≥ w)dw ≤ 1

2
ϵ

For the second integral, we have

1

2

∞∫

ρ log(T )/λ

qη(w) Pr(dmax ≥ w)dw

≤1

2

(
1 −

(
1 − 1

Tρ

)T−s+1
)

and this term converges to 1
2 (1 − e−1/ρ) in limit.
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