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Abstract

We study the problem of learning a group of prin-
cipal tasks using a group of auxiliary tasks, un-
related to the principal ones. In many applica-
tions, joint learning of unrelated tasks which use
the same input data can be beneficial. The rea-
son is that prior knowledge about which tasks
are unrelated can lead to sparser and more infor-
mative representations for each task, essentially
screening out idiosyncrasies of the data distribu-
tion. We propose a novel method which builds
on a prior multitask methodology by favoring
a shared low dimensional representation within
each group of tasks. In addition, we impose a
penalty on tasks from different groups which en-
courages the two representations to be orthogo-
nal. We further discuss a condition which en-
sures convexity of the optimization problem and
argue that it can be solved by alternating mini-
mization. We present experiments on synthetic
and real data, which indicate that incorporating
unrelated tasks can improve significantly over
standard multi-task learning methods.

1 Introduction

Multi-task learning [5, 8, 20] is a machine learning
paradigm for learning a number of supervised learning
tasks simultaneously, exploiting commonalities between
them. It has been frequently observed in the recent liter-
ature that, when there are relations between the tasks to
learn, it can be advantageous to learn all the tasks simulta-
neously instead of learning each task independently of the
others – see, for example, [1, 2, 4, 5, 8, 9, 10, 17, 20] and
references therein.
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In this paper, we consider the scenario in which there are
two groups of tasks which are known a priori to be unre-
lated, in the sense that the first group of tasks uses features
which are not relevant for the second group of tasks and
vice versa. In other words, the tasks that belong to the same
group tend to share the same set of features while two tasks
belonging to different groups tend not to share any features.
One instance of the above scenario is the problem of iden-
tity/emotion recognition. Suppose that we have a data set
of video clips of individuals expressing a set of emotions.
We know from the literature that recognition of the iden-
tity of a person and recognition of the emotion expressed
depend on different and uncorrelated features of the same
image. Identity recognition is based on features describing
rigid characteristics of the face (e.g., face width, hair color),
whereas emotion recognition is based on features describ-
ing facial muscle configurations (e.g., eyes narrowed, cor-
ners of mouth raised) [7].

In this paper we propose to take advantage of the prior
knowledge that these tasks are unrelated to improve the
learning accuracy on one of the groups of tasks. We call
this last group of tasks principal tasks (e.g., emotion recog-
nition) and the other group auxiliary tasks (e.g., identity
recognition). In the identity/emotion application described
above, we are interested only in learning a good classifier
for detecting emotions in images. If the training sample per
task is small enough, a method which does not take into ac-
count the differentiation of groups can easily overfit, so that
the facial features (idiosyncrasies) of a specific person can
be mistaken as characteristics of a given emotion. To avoid
this, our method exploits the identity labels of the instances
in the training set, but does not use them for prediction of
emotion on the test instances.

The approach we propose builds on the multi-task feature
learning framework described in [2]. Specifically, we add
a regularization term which penalizes the inner product be-
tween the predictor functions of any two tasks belonging to
two different groups. In this way, our formulation can dis-
criminate those features important for each group of tasks
and can lead to improvements in statistical performance.
We also present a simplified setting of our method which
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ensures that it is equivalent to a convex optimization prob-
lem.

Our methodology shares some aspects with some recent
work in multi-task learning. For example, [3] and [11] ex-
tended the multi-task learning approach of [2] by assuming
that there are a number of groups or clusters of tasks and
that the weight vectors of the tasks belonging to the same
group are similar to each other. In this case, the clusters are
not known a priori. In addition, no constraint is imposed
on tasks belonging to different clusters. The idea of ex-
ploiting unrelated groups of tasks to improve learning has
been also addressed in [19, 21, 23]. These studies rely on
multilinear models to describe the relations between dif-
ferent factors (e.g., emotion and identity). However, these
studies present a number of limitations that make them not
always suitable to applications in which the training sets
are not equally distributed among the factors and the vari-
ability between instances belonging to the same factors is
very high. Furthermore, their approach does not allow for
addressing regression problems.

The paper is organized as follows. In Section 2, we re-
view previous work on multi-task learning. In Section 3,
we present our method for incorporating unrelated auxil-
iary tasks in a multi-task framework and an algorithm for
solving the resulting optimization problem. In Section 4,
we present our experiments with the proposed method. Fi-
nally, in Section 5 we discuss our findings and future ques-
tions.

2 Background on Multi-Task Learning

In this section we introduce our notation and describe a
previous method for multi-task learning which forms the
basis of our approach.

2.1 Notation

We are given a set of T supervised tasks. Each task
t = 1, . . . , T is identified by a function ft : Rd → R,
which for simplicity we assume to be linear, that is ft(x) =
w>
t x. The vector of regression coefficients wt ∈ Rd is

unknown and we are provided with m data examples per
task, {(xti, yti) : i = 1 . . . ,m} ⊂ Rd × R, such that
yti = w>

t xti + ηti, i = 1, . . . ,m, t = 1, . . . , T , where
ηti is some zero mean i.i.d. noise process1. We call these
the principal tasks and the goal is to learn them jointly un-
der the assumption that they are related. We will focus only
on multi-task learning in the following, but transfer learn-
ing (see e.g. [17]) – in which the goal is to learn a new task
– is also straightforward within our framework.

1In practice, the number of examples per task may vary but we
have kept it constant for simplicity of notation.

2.2 Multi-Task Feature Learning

Our aim here is to review a learning algorithm which takes
advantage of prior knowledge that the number of features
used by the tasks is small. This is a well studied assump-
tion in multi-task learning, see [2, 5, 6, 8, 17] and ref-
erences therein. In the linear multi-task learning model,
this assumption means that the vectors wt lie on a low di-
mensional subspace. In other words, the matrix of tasks
W = [w1, . . . , wT ] can be factorized as the product of a
d × d orthogonal matrix U and a d × T coefficient matrix
A, which has only few nonzero rows. Note that the rows of
A are associated with the features while the columns with
the tasks. To learn such a factorization, we define the aver-
age empirical error

Epr(UA) =
1

T

T∑

t=1

1

m

m∑

i=1

L(yti, a
>
t U

>xti) (1)

and, following [2], minimize the regularized error

Epr(UA) + γ‖A‖22,1 (2)

over all matrices A ∈ Rd×T and orthogonal matrices U ,
that is,U>U = I . The norm appearing in the regularization
term in equation (2) is defined as

‖A‖2,1 ≡
d∑

j=1

√√√√
T∑

t=1

a2jt

namely, it is the sum of the `2 norms of the rows of matrix
A. This choice is a special case of the regularization term
used in the Group Lasso estimator [24] and it encourages
matrices with many zero rows, under assumptions (e.g. Re-
stricted Eigenvalue conditions) about the distribution of the
data [12].

In [2] it is proved that the above problem is equivalent to
the convex problem

inf Epr(W ) + γ tr(W>D−1W )

s.t. W ∈ Rd×T , D � 0, tr (D) ≤ 1. (3)

If (Â, Û) is an optimal solution of (2), then Ŵ = Û Â is
an optimal solution of (3), see [2, Thm. 1]. Moreover, for a
fixed W the optimal D is given by

D(W ) =
(WW>)

1
2

tr (WW>)
1
2

.

3 Exploiting Orthogonal Tasks

We now present our method, which uses an auxiliary group
of tasks, assumed to be unrelated to the principal group, to
improve the learning process. Here we use the term unre-
lated to signify that the two groups of tasks are defined by
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orthogonal set of features. The intuition is that, by exploit-
ing this orthogonality – that will be formalized shortly – we
will improve the estimation of the principal group of tasks
(and possibly the auxiliary one as well).

We identify the auxiliary tasks by the column vectors
v1, . . . , vS . We let V be the d × S matrix whose columns
are given by the above vectors, in order. We also denote by
{(x′si, y′si) : i = 1 . . . ,m} ⊂ Rd × R, s = 1, . . . , S the
examples for these additional tasks.

We make the following assumption about the two group of
tasks:

• a low dimensional representation is shared by the tasks
within each group, and

• the principal tasks wt share no features with the aux-
iliary tasks vs.

To formalize these requirements, we write V = UB, where
B is a d × S matrix of coefficients and let C = [A,B] so
that [W,V ] = UC. We require that

• the matrix C has few nonzero rows and

• each of these rows has nonzero values in only one
group of columns.

A schematic example of a matrix which our method should
favor is

C =




a11 a12 a13 0 0
a21 a22 a23 0 0
0 0 0 b31 b32
0 0 0 b41 b42
0 0 0 0 0
...

...
...

...
...

0 0 0 0 0




.

In this example, there are three principal tasks and two aux-
iliary tasks. Furthermore, there are two important features
for each group of tasks, but these features are not shared
across the groups. Finally, there is a large number of fea-
tures which are not relevant to any of the tasks.

We incorporate the above constraints into our method as
follows. We let

Eaux(UB) =
1

S

S∑

s=1

1

m

m∑

i=1

L(y′si, b
>
s U

>x′si)

and minimize the regularized error

Epr(UA) + Eaux(UB) + γ Φ(A,B) + λΨ(A,B) (4)

over all matrices A ∈ Rd×T , B ∈ Rd×S and orthogo-
nal matrices U ∈ Rd×d. There are two regularization pa-
rameters γ, λ > 0 which may be tuned by cross valida-
tion. The first parameter controls the number of features

shared by the tasks – the larger γ, the smaller the number of
shared features will be; the second parameter controls the
degree of orthogonality between the two groups of tasks –
the larger λ, the less “correlated” the tasks within the two
groups will be. In particular, in the limit λ → ∞, the two
groups of tasks will be orthogonal to each other.

The regularization term in (4) consists of two parts. The
term Φ(A,B) favors few nonzero rows in the matrix [A,B]
and the term Ψ(A,B) penalizes features shared by the
different groups of tasks. Regarding the first term, we
may choose Φ(A,B) = ‖[A,B]‖22,1 as in standard multi-
task feature learning (Section 2.2). Regarding the second
term, we want that ajtbjs = 0, for every t ∈ {1 . . . T},
s ∈ {1 . . . S} and j ∈ {1 . . . d}. A sufficient condition for
this to hold is that A>B = 0, where 0 denotes the T × S
matrix of zeros. At first sight this condition does not seem
sufficient, since a>

t bs = 0 imposes orthogonality only on
at and bs. However, since this condition holds for every
choice of t and s in their range and the matrix U is orthog-
onal, it implies that the subspace spanned by the principal
tasks is orthogonal to the subspace spanned by the auxil-
iary tasks. Consequently, it must be the case that there
is an orthogonal matrix U ′ and matrices A′, B′ such that
W = U ′A′, V = U ′B′ and [A′, B′] has the desired struc-
ture. Thus, we can use the square of the Frobenius norm of
A>B as the second regularization term2, that is,

Ψ(A,B) = ‖A>B‖2F . (5)

We now make the change of variable [W,V ] = U [A,B]
in a way similar to Section 2.2 and derive the equivalent
problem

inf E(W,V ) +R0(W,V,D)

s.t. W ∈ Rd×T , V ∈ Rd×S , (6)
D � 0, tr (D) ≤ 1,

where E(W,V ) = Epr(W ) + Eaux(V ) and

R0(W,V,D) = γ tr
(
D−1(WW>+V V >)

)
+λ‖W>V ‖2F.

Note that unlike the standard multi-task optimization prob-
lem (3), problem (6) is nonconvex due to the ‖W>V ‖2F
term in the regularizer R. To overcome this drawback, we
add a strongly convex function to the regularizer. A natu-
ral choice, which we consider here, is to add a multiple of
the squared Frobenius norm of the parameters. That is, we

2Another valid choice would be the `1-norm of the vector
formed by the entries of matrix A>B, see [25]. However, the
Frobenius norm, besides being differentiable and easier to deal
with, seems more appropriate in our context, since it drives all
the inner products towards zero, whereas the `1-norm does not
prevent some of the inner products from being large.
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consider the optimization problem

inf E(W,V ) +R0(W,V,D) + ρ(‖W‖2F + ‖V ‖2F)
(7)

s.t. W ∈ Rd×T , V ∈ Rd×S , D � 0, tr (D) ≤ 1

where ρ is a positive parameter. The following result,
whose proof can be found in the appendix, establishes a
condition under which problem (7) is convex.

Theorem 3.1. If ρ >
√
E(0,0)λ

2 then problem (7) is convex.

We solve problem (7) by alternating minimization, see Al-
gorithm 1. For fixed W,V the optimal D is given by

D(W,V ) =
(WW> + V V >)

1
2

tr (WW> + V V >)
1
2

. (8)

We note, in passing, that if we substitute the right hand
side of this expression in the regularizer appearing in the
objective function of problem (7), we obtain the following
function of W and V

γ‖[W,V ]‖2tr + ρ(‖W‖2F + ‖V ‖2F) + λ‖W>V ‖2F
where ‖ · ‖tr denotes the trace norm, that is the `1 norm of
the vector of singular values. The first two terms in the right
hand side of the above expression are similar to a matrix
version of the elastic net regularizer [26]. For this reason,
we will refer to the learning method solving problem (7)
as orthogonal multi-task learning elastic-net (OrthoMTL-
EN).

Returning to the Algorithm, we observe that, for fixed D,
the regularizer separates across tasks. Indeed, using ele-
mentary properties of the trace of matrix products, it fol-
lows that

R(W,V,D) =
T∑

t=1

w>
t (γD−1 + ρI + λV V >)wt

+ tr((γD−1 + ρI)V V >)

=
S∑

s=1

v>
s (γD−1 + ρI + λWW>)vs

+ tr((γD−1 + ρI)WW>).

Thus, the minimization over W (resp. V ) can be carried
out independently across the tasks since the regularizer de-
couples when D and V (resp. W ) are fixed.

We remark that the alternating process decreases the ob-
jective function in problem (6) and hence is guaranteed to
converge in objective value. One may modify the pertur-
bation analysis in [2] to show that, under the hypothesis of
Theorem 3.1, the iterates of the algorithm converge; a de-
tailed discussion will be presented in a longer version. Note

Algorithm 1 Orthogonal Multi-Task Learning (Or-
thoMTL)

Input: training sets {(xti, yti)}mi=1 , {(x′si, y′si)}mi=1 , t ∈
{1, . . . , T}, s ∈ {1, . . . , S}.
Parameters: regularization parameters γ, λ, ρ, toler-
ance parameter tol
Output: regression matrices W = [w1, . . . , wT ] and
V = [v1, . . . , vS ], d× d positive definite matrix D
Initialization: set D = I

d
while ‖W −Wprev‖ > tol or ‖V − Vprev‖ > tol do

for t = 1 . . . T do
compute the minimizer wt ∈ Rd of the function
m∑
i=1

L(yti, w
>xti) + w>

(
γD−1 + ρI + λV V >

)
w

end for
for s = 1 . . . S do

compute the minimizer vs ∈ Rd of the function
m∑
i=1

L(y′si, v
>x′ti) + v>

(
γD−1 + ρI + λWW>

)
v

end for

set D =
(WW>+V V >)

1
2

tr(WW>+V V >)
1
2

end while

also that we may still apply Algorithm 1 to approximately
solve Problem (7) for an arbitrary choice of the parameters
γ, λ, ρ. In this case, however, the objective is not guarantee
to be convex and, so, the algorithm is only guaranteed to
converge to a stationary point.

In practice our numerical experiments indicate that the al-
gorithm converges in less than 20 iterations. Each W or
V update can be executed very quickly by computing each
column vector independently. For example, for the square
loss this consists in solving a linear system of d equations.
However if d > m, one may solve an equivalent dual prob-
lem, see e.g. [18]. Other loss functions, such as the hinge
loss can be handled similarly. Finally, the D step requires
the computation of a matrix square root, which we solve by
singular value decomposition.

4 Experiments

In this section, we present numerical experiments to test
our method on one synthetic and two real datasets. In all
experiments we compare the following methods:

• OrthoMTL-EN: this is our method (cf. problem (7)).

• OrthoMTL-C: this is like OrthoMTL-EN but with pa-
rameter ρ set according to Theorem 3.1. This way
problem (7) is guaranteed to be convex.

• OrthoMTL: this is like OrthoMTL-EN but with pa-
rameter ρ = 0.
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• Ridge Regression: this standard method corresponds
to the choice λ = γ = 0 and can be interpreted as
learning the tasks independently.

• MTL: this is the multi-task feature learning method of
[2] and corresponds to the choice of ρ = λ = 0.

• MTL-2G: this approach consists in applying the
method of [2] to each of group of tasks separately.

In the figures below, to ease the visualization of the results,
only the best five methods are reported. We use the same
setting of parameters for all experiments and all algorithms:
we perform 5-fold cross-validation to tune the value of the
regularization parameters, whenever those were treated as
free parameters. We considered the values of γ = 10k

with k ∈ {−4, . . . , 2}, λ = 10k, with k ∈ {4, . . . , 7} and
ρ = 10k with k ∈ {−2, . . . , 2}.
Finally, in all experiments we have trained all learn-
ing methods using the square loss function L (y, z) =

(y − z)2 , y, z ∈ R.

4.1 Synthetic Data

We can use synthetic data to test whether Algorithm 1 finds
the right solution on data that satisfy the prior orthogonality
assumptions. To this end, we have created a dataset consist-
ing of 20 tasks, 10 of them belonging to the first subset and
the remaining ones to the second subset (T = S = 10).
The data is in a d = 100 dimensional space. From these
100 dimensions, only the first 5 are useful for the first sub-
set of tasks and the following 5 are useful for the second
subset. Finally, the remaining 90 dimensions are not im-
portant at all. In this synthetic dataset, every task is repre-
sented as either (w1t, . . . , w5t, 0, . . . , 0), t = 1, . . . , 10 or
(0, . . . , 0, w6s, . . . , w10s, 0, . . . , 0), s = 1, . . . , 10, where
each parameterwit is chosen randomly from a uniform dis-
tribution, U(0, 0.1).

We build a set of n = 1000 instances, Z ∈ Rd×n, so that
every element of matrix Z is sampled from the uniform dis-
tribution on the unit interval. The training set is composed
of a random subset of m instances, for different values of
the sample size m = 10, 15, . . . , 50, and the test set is
composed of the remaining instances. For every task t, we
generate the output yt as yt = Zwt + ηt, where ηt ∈ Rm
and ηti ∼ N(0, 1), i = 1, . . . n. Finally we apply an or-
thogonal rotation to Z by sampling an orthogonal matrix U
randomly from the Haar measure and set X = UZ.

We have repeated the described experiment 750 times for
each value of m. The results can be seen in Figure 1.
MTL-2G performed comparably to Ridge Regression and
MTL. All of our methods performed better than both Ridge
Regression and MTL. OrthoMTL-C gives the best results,
followed by OrthoMTL-EN and OrthoMTL. We have ap-
plied a paired t-test to check whether the difference be-
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Figure 1: Synthetic data: Comparison between Ridge
Regression, MTL [2], OrthoMTL, OrthoMTL-C and
OrthoMTL-EN.

tween OrthoMTL-C and OrthoMTL-EN and either Ridge
Regression or MTL is equal to 0 and obtained a p-value
below 10−7 for training set sizes below 45.

4.2 Real Data

Next, we tested the model with two real datasets. In both
datasets we have two groups of supervised learning tasks
so that the tasks belonging to one group are unrelated to
the remaining ones.

4.2.1 JAFFE Dataset

The first experiment considered the Japanese Female Facial
Expression (JAFFE) database [14]. It is composed of 213
images of 10 subjects displaying a range of expressions,
like those shown in Figure 2 (top). There are 7, mutually
exclusive emotion classes that need to be detected. The
classes are: “happiness”, “sadness”, “surprise”, “anger”,
“disgust”, “fear” and “neutral”. Given an unlabeled image,
the objective is to predict the emotion expressed in it.

We represented an input image in the following manner.
First we extracted the face from the background. To this
end, we used the OpenCV implementation of Viola and
Jones face detector [22] to detect the face and eyes in the
image. After that, we rotated the face so that the eyes
are horizontally aligned. Finally, we rescaled the face to a
200× 200 size image. In order to obtain a descriptor of the
textures of the image we used the Local Phase Quantiza-
tion (LPQ) [16]. Specifically, we divided every image into
5× 5 non overlapping regions. We computed the LPQ de-
scriptor for each region and we created the image descrip-
tor by concatenating all the LPQ descriptors. Finally we
applied Principal Component Analysis to extract as many
components as necessary to describe 99% of the data vari-
ance. After this process, we obtained a descriptor with 203
attributes for each image.
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Figure 2: Sample images taken from the JAFFE dataset.
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Figure 3: JAFFE dataset: Comparison between Ridge Re-
gression, MTL, MTL-2G, OrthoMTL and OrthoMTL-EN.

As discussed in the introduction, we can assume that the
features which are useful for recognizing the emotion are
different from those which are useful for recognizing the
identity of the subject. Therefore, it seems appropriate to
apply our method when the principal tasks are those related
to predicting the emotion and the auxiliary tasks are those
related to the prediction of the identity. Each task discrim-
inates one class from the others (one versus all), so that we
have 7 tasks in the first group (one for each emotion) and
10 tasks in the second group (one for each actor).

We have carried out two experiments with this data set. In
the first one we select randomly m instances as training set
and use the remaining ones as test set. We run the exper-
iments for different values of m so that we can plot the
learning curve. The experiments were executed 200 times
and the results are shown in Figure 3.

As we see, both OrthoMTL-EN and OrthoMTL outperform
the other approaches, the improvement being more evident
when the training set is small. This is reasonable since the
prior information that we have (the emotion tasks are un-
related to the identity tasks) makes a significant difference
when the training set size is smaller. We have applied a
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Figure 4: Tasks correlation matrix learned by different
methods: OrthoMTL-EN (top left), OrthoMTL (top right),
MTL-2G (middle left), MTL applied only to the emotion
tasks (middle right) and Ridge Regression (bottom), Red
(resp. blue) denotes high (resp. low) intensity values.

paired t-test between our methods and either MTL, MTL-
2G and Ridge Regression, obtaining always a p-value be-
low 10−3 for any value of m. This result supports the hy-
pothesis that the differences between both approaches are
significant. In this experiment, OrthoMTL-C (not shown in
the plot) performed comparably to Ridge Regression.

We also report in Figure 4 the task correlation matrix
[W,V ]>[W,V ] learned by the different methods. As it can
be seen, the off-diagonal blocks of this matrix, which are
formed by the inner products between tasks of different
groups, are much smaller than the elements in the diagonal
blocks, which correspond to inner products between tasks
in the same group. This effect is more pronounced in the
case of our methods, indicating that they can take advan-
tage of the information contained in the auxiliary tasks.

In the second experiment, we have considered a transfer
learning problem with the aim of comparing OrthoMTL-
EN with the Bilinear Model proposed in [19]. A trans-
fer learning problem requires test instances for identities
which are not present in the training set. To do so, we have
used a leave-one-subject-out strategy. To tune the parame-
ters of the Bilinear Model we have also followed a cross-
validation process. We have run 10 times the whole process
(that is, each subject has been in the test set 10 times) and
the results are shown in Figure 5. The results show that our
approach clearly outperforms the Bilinear Model for this
dataset. The resulting p-value is below 0.01 supporting our
claim.
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Figure 5: JAFFE dataset: Comparison between Bilinear
Model and OrthoMTL-EN in a transfer learning experi-
ment – see text for description.

4.2.2 UNBC-McMaster Shoulder Pain Expression
Archive

As a final test, we apply our methods to the UNBC-
McMaster Shoulder Pain Expression Archive [13]. Dif-
ferently from the previous dataset, this data set contains
spontaneous facial expressions, i.e. it presents higher vari-
ability than stereotypical acted expressions. It contains 200
video clips of facial expressions of 25 patients who suffer
from shoulder pain. The facial expressions were captured
while the subjects were performing a series of active and
passive physical exercises. A label indicating the level of
pain felt by the patient is provided for each video frame in
each video clip. The dataset also provides 66 tracked land-
marks points of the face for each frame of each clip. Our
task here is to recognize if a frame of a clip shows a pain
expression (i.e., pain value bigger than 0) or not. Instead of
texture features, in this experiment, the attributes consist of
distances between provided landmarks points as shown in
Figure 6 (top).

Even though some people are more prone to feeling pain
than others, we still can assume that the task of detecting
pain is unrelated to the task of detecting a person’s iden-
tity. To test the algorithm, the experiments have been car-
ried out using a leave-one-subject-out protocol. At each
step, the frames from one patient were used as test set and
a percentage of 0.1%, 0.125%, . . . , 0.325% randomly se-
lected frames from the remaining 24 patients were used as
the training set. The process was repeated until all the sub-
jects had been used as the testing set once. The whole pro-
tocol was executed 30 times. The mean results (using Area
Under the Curve as a measure of accuracy) are reported in
Figure 6 (bottom).

As it can be noted, all of OrthoMTL-EN, OrthoMTL-C and
OrthoMTL perform significantly better than their competi-
tors (MTL and Ridge Regression). The advantage of our
methods is particularly clear in the case of OrthoMTL-
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Figure 6: Top: Landmark points and edges used to build
the attributes for the UNBC-McMaster Shoulder Pain Ex-
pression Archive (selected according to Figure shown in
[13]). Bottom: Comparison between Ridge Regression,
MTL, OrthoMTL-EN, OrthoMTL and OrthoMTL-C on
the UNBC-McMaster Shoulder Pain Expression Archive
Database.

EN which performs the best. OrthoMTL also performs
well, especially as the training set decreases: By applying a
paired t-test, we observe that when the training set is small,
m = 48 (corresponding to 0.1% of the number of available
frames), the difference between each of our methods and
both MTL or Ridge Regression is significant (p < 10−3)
and it remains still significant as the training set increases
to m = 140 (p < 0.025).

5 Discussion

We have addressed the problem in which two or more
groups of supervised learning tasks are unrelated in the
sense that they involve different linear discriminative fea-
tures of the input data. We have proposed a regulariza-
tion formulation which incorporates this information in the
learning method. The regularizer encourages both a low
dimensional representation and penalizes the inner product
between any pair of weight vectors of tasks from different
groups. The implication of this constraint is that we look
for common sparse representations within each group of
tasks and also that tasks from different groups share as few
features as possible. The method depends on three regu-
larization parameters. For special choices of these param-
eters, the method reduces to the multi-task feature learn-
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ing approach of [2] and to Ridge Regression (independent
multi-task learning).

At first sight it seems surprising that we can exploit one
group of tasks to improve learning of the other group. How-
ever, the fact that the two groups of tasks use different fea-
tures provides an implicit constraint about which features
could be used by each group, thereby helping the learn-
ing process. To validate this claim, we have presented
experiments on a synthetic and on two well-characterized
real datasets comparing our algorithm with Ridge Regres-
sion as a base line and with the linear multi-task feature
learning method of [2]. The experimental results indicate
that the proposed method consistently improves over the
other methods, supporting our hypothesis that taking into
account independence helps discriminate features for tasks
in different groups.

Overall, our results indicate that our method performs best
when all regularization parameters are tuned by cross val-
idation. A simplified setting of the method, in which only
two parameters are tuned, also provides improved results
over the method of [2] and Ridge Regression. We have
also discussed a special setting of our method, which leads
to a convex optimization problem. Our experimental re-
sults in this setting are encouraging though not conclusive:
We obtained good results on the synthetic dataset and one
real dataset but no improvement was observed on the other
real dataset.

The work presented here can be extended in different di-
rections. On the theoretical side, it would be valuable to in-
vestigate whether the improved generalization performance
of the method could be supported by a statistical analysis.
When the auxiliary tasks are known a priori such a result
would follow from the analysis in [15]. However when
both the primary and auxiliary tasks need to be estimated
from data, the above problem remains to be understood. On
the practical side, it may be valuable to explore the applica-
tion of our approach in the context of hierarchical classifi-
cation where recent work has considered the incorporation
of orthogonal constraints [25]. The ideas presented here
could also be applied to matrix completion problems such
as those arising in the context of collaborative filtering.

A Appendix

In this appendix we present the proof of Theorem 3.1. We
define the function

Ω(W,V ) =
1

2

(
‖W‖2F + ‖V ‖2F + α‖W>V ‖2F

)
.

The proof is based on the following lemma3.

3We also refer to [25] for a similar result for the regularizer
Ω(W,V ) = ‖W‖2F +‖V ‖2F +α‖W>V ‖1. See also our remarks
preceding equation (5).

Lemma A.1. Assume that ‖W‖2F + ‖V ‖2F < R2. Then the
function Ω is convex on this domain provided that α < 2

R2 .

Proof. We will compute the Hessian matrix H of function
Ω and establish that it is positive semidefinite in the domain
of interest, whenever α ≤ 2

R2 . From calculus we find that

H(W,V ) =

[
A(W,V ) C(W,V )
C(W,V )> B(W,V )

]

where

Ati,t̂j(W,V ) =
∂2Ω(W,V )

∂wti∂wt̂j
= (δij + α

∑

s

vsivsj)δtt̂

Bsi,ŝj(W,V ) =
∂2Ω(W,V )

∂vsi∂vŝi
= (δij + α

∑

t

wtiwtj)δsŝ

Cti,sj(W,V ) =
∂2Ω(W,V )

∂wti∂vsj
= α(〈wt, vs〉δij + vsiwtj).

The matrix H is positive semidefinite if, for every X ∈
Rd×T and Z ∈ Rd×S it holds that
∑

tij

XtiAti,tjXtj+
∑

sij

ZsiBsi,sjZsj+2
∑

stij

XtiCtisjZsj ≥ 0

where t ∈ {1, . . . , T}, s ∈ {1, . . . , S} and i, j ∈
{1, . . . , d}. In matrix notation we obtain

‖X‖2F +‖Z‖2F +α‖X>V +W>Z‖2F +2α〈W>V,X>Z〉F.

Discarding the middle term and using Cauchy-Schwarz in-
equality, we bound from below the above quantity by

‖X‖2F + ‖Z‖2F − 2α‖W>V ‖F‖X>Z‖F.

Next, using the inequality 2‖X>Z‖F ≤ ‖X‖2F+‖Z‖2F, we
have the lower bound

(‖X‖2F + ‖Z‖2F)(1− α‖W>V ‖F).

The result follows.

Proof of Theorem 3.1. We first use equation (8) and rewrite
problem (7) as an optimization problem in W and V only.
Specifically, we obtain the objective function

f(W,V ) = E(W,V ) + γ‖[W,V ]‖2tr
+ λ‖W>V ‖2F + ρ(‖W‖2F + ‖V ‖2F)

where ‖ · ‖tr denotes the trace norm, that is the `1 norm of
the vector of singular values.

Since the function f is continuous and grows at infinity, it
has a minimum. Moreover, if the pair (Ŵ , V̂ ) is a mini-
mizer then f(Ŵ , V̂ ) ≤ f(0, 0), which readily implies that
‖W‖2F+‖V ‖2F ≤ E(0, 0)/ρ. The result now follows by ap-
plying Lemma A.1 withR2 = E(0, 0)/ρ and α = λ/ρ.
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