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Abstract

Inference in probabilistic graphical models
can be represented as a constrained opti-
mization problem of a free-energy functional.
Substantial research has been focused on
the approximation of the constraint set, also
known as the marginal polytope. This pa-
per presents a novel inference algorithm that
tightens and solves the optimization prob-
lem by intersecting the popular local poly-
tope and the semidefinite outer bound of the
marginal polytope. Using dual decomposi-
tion, our method separates the optimization
problem into two subproblems: a semidefi-
nite program (SDP), which is solved by a
low-rank SDP algorithm, and a free-energy
based optimization problem, which is solved
by convex belief propagation. Our method
has a very reasonable computational com-
plexity and its actual running time is typ-
ically within a small factor (≤10) of con-
vex belief propagation. Tested on both syn-
thetic data and a real-world protein side-
chain packing benchmark, our method sig-
nificantly outperforms tree-reweighted belief
propagation in both marginal probability in-
ference and MAP inference. Our method is
competitive with the state-of-the-art in MRF
inference, solving all protein tasks solved by
the recently presented MPLP method [19],
and beating MPLP on lattices with strong
edge potentials.
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1 Introduction

Probabilistic graphical models are widely used for rea-
soning about complex distributions and for modeling
problems in computer vision, computational biology
and many other real-world applications. Graphical
models provide a factorized representation of the com-
plex distribution into local potential functions accord-
ing to graph structures. Two different inference tasks
for graphical models have been widely used and exten-
sively studied. One is to find the assignment of all vari-
ables that jointly maximize the probability defined by
the model. This is often referred to as the maximum
a-posteriori (MAP) assignment. The other is to ob-
tain marginal probabilities of a given set of variables.
For arbitrary graphs, both tasks are computationally
challenging as they may require summation of, or enu-
meration over exponential number of assignments.

Although exact inference problems are known to be
NP-hard, various empirically successful approximate
algorithms have been suggested. Many algorithms for
both inference tasks can be unified in the framework
of convex optimization with the variational principles.
There are two key ingredients in these algorithms, a
convex surrogate of the free energy and a tractable
convex outer bound of marginal polytope. Several
convex surrogates such as tree-weighted free energy
and convex free energy have been studied [24, 8].
Various tractable convex outer bounds, such as lo-
cal polytope and semidefinite outer bound, have been
proposed. Based on the local polytope, several effi-
cient message passing algorithms have been studied
and achieved great success in practice, such as con-
vex belief propagation, MPLP and tree-weighted be-
lief propagation [24, 8, 6]. However the local polytopes
are not tight for hard MAP inference tasks and many
other cases of interest. Semidefinite outer bounds have
also been proposed for MAP inference [21] and for
log-determinantal entropy approximation with binary
Markov random fields [22]. Semidefinite program-
ming (SDP) algorithms have great potential in solving
hard graphical models, especially for MAP inference
where no integral solution of linear programming re-
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laxation could be found. A large number of SDP-based
rounding algorithms have also been studied in theoret-
ical computer science. They are proved to be tighter
than linear programming relaxation and effective for
many hard combinatorial optimization problems, such
as MAXCUT, unique games and binary quadratic pro-
gramming. Interestingly, these three problems can all
be represented as MAP inference problems in graph-
ical models. Empirically, a major issue for SDP ap-
proaches is the expensive computational cost of solving
these convex optimization problems. Most interior-
point-based algorithms for SDPs cannot scale well to
graphs with hundreds of nodes, which makes this ap-
proach impractical for many real-world applications.

The main contribution of this paper is to propose
an approximate inference algorithm for probabilistic
graphical models that combines convex belief propaga-
tion and semidefinite programming in a scalable way.
Our algorithm uses the intersection between the local
polytope and the semidefinite constraint as a strong
outer bound of the marginal polytope. In addition, our
algorithm employs a dual decomposition technique to
separate the hard optimization problem into two slave
problems: a convex free-energy functional optimiza-
tion and a semidefinite programming (SDP) optimiza-
tion with a small number of linear constraints. The
convex free-energy functional optimization is solved
efficiently by convex belief propagation and the SDP
problem is solved using a low-rank SDP algorithm with
low computational costs. Like convex belief propaga-
tion or message passing algorithms for linear program-
ming relaxations, this low-rank SDP algorithm is able
to take advantage of the sparsity of underlying graph
structures, thus making the optimization substantially
more efficient. We also study several rounding schemes
for MAP inference based on the low-rank SDP solu-
tion. Tested on both synthetic data and a real-world
protein side-chain packing benchmark, our algorithm
significantly outperforms tree-reweighted belief prop-
agation for both marginal probability inference and
MAP inference. Our algorithm also outperforms the
pure SDP method for MAP inference, i.e. our syn-
ergised algorithm is indeed better then each of its
parts. With SDP rounding schemes, our algorithm
can solve all the instances in the protein side-chain
packing benchmark to optimal solutions. Our algo-
rithm is comparable to the state-of-the-art method on
the protein side-chain packing problem and better on
a difficult synthetic data set. Our algorithm has a very
reasonable running time, within a small factor (usually
≤ 10) of convex belief propagation.

2 Related Work

Current popular inference algorithms including tree-
weighted belief propagation [25, 24] and convex be-

lief propagation [8] are based on the local polytope.
With a convex surrogate of the free energy, the algo-
rithms have nice convergence guarantees and are of-
ten computational inexpensive since they exploit the
structure of the underlying graphs. However, message
passing algorithms still suffer from the looseness of lo-
cal polytope, especially for challenging MAP inference
tasks. To tighten the local polytope, high-order poly-
tope has been proposed. In particular, the adaptive-
augmented Kikuchi proposed in [19] for MAP infer-
ence has been proved to be effective empirically. Cou-
pling with a message passing algorithm from linear
programming relaxation, this method gradually tight-
ens the local polytope to a partial Kikuchi polytope
with triplets. This method is practically efficient, since
LP-based message passing scheme can take advantage
of the sparsity of the underlying graphs.

Another direction for MAP inference is to use different
outer bounds (i.e., relaxations) of the marginal poly-
tope, e.g., semidefinite outer bound. Semidefinite pro-
gramming (SDP) has been used for both marginal and
MAP inference tasks [22, 21]. SDP-based rounding al-
gorithms have also been extensively studied for hard
combinatorial optimization problems, such as MAX-
CUT, unique games, constraint satisfaction programs
[7, 15, 16], and demonstrated stronger theoretical per-
formance than LP-based rounding. Although SDP has
been shown to be superior over message passing algo-
rithm with local polytope, SDP usually has an expen-
sive computational cost, which prevents it from being
widely used in practice. Other relaxations have also
been proposed, such as quadratic programming and
second order cone programming [18, 13] for MAP infer-
ence. Although these relaxations can be solved much
more efficiently than SDP, unfortunately [11] they are
no better than LP relaxation for MAP inference.

Very recently, low-rank techniques have been proposed
to efficiently solve SDP [4], by substituting the posi-
tive semidefinite matrix with a low-rank factorization.
This technique has already been applied to many ma-
chine learning problems including clustering, embed-
ding and collaborative filtering[3, 12, 10]. We combine
this low-rank technique with convex belief propaga-
tion so that our inference algorithm can solve the op-
timization problem very efficiently. In particular, with
the solution of the low-rank technique, SDP rounding
schemes can be directly applied to MAP inference.

3 Problem Setting

Consider a joint distribution over a pairwise discrete
undirected graphical model, or Markov random fields,
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q(x1, x2, ..., xn) =
1

Z

∏

i

φi(xi)
∏

(i,j)∈E
ψi,j(xi, xj) (1)

where φi and ψi,j are the potential functions over node
i and edge (i, j) ∈ E; Z is the partition function. With
the variational principle, we seek to find a distribution
p to minimize the KL-divergence between p and q. By
expanding KL(p ‖ ∏i φi

∏
i,j∈E ψi,j), our objective is

to find the minimizer of an energy functional or free
energy,

F (p) = −H(p) +
∑

i,xi

θi(xi)p(xi)

+
∑

(i,j)∈E,xi,xj

θi,j(xi, xj)p(xi, xj)

The term H(p) = −∑x p(x) ln p(x) is the entropy
and θi = − lnφi and θi,j = − lnψi,j . By minimiz-
ing F (p) over the probability simplex P = {p : p ≥
0,
∑
x p(x) = 1}, we obtain the actual distribution

p∗ = q and − lnZ = F (p∗). The probability sim-
plex P is also known as the marginal polytope. The
optimization problem has a unique optimal solution,
since both F (p) and P are convex.

The Fractional Free Energy and The Local
Polytope

When the graph has cycles, the entropy term H(p)
is computationally intractable. The satisfaction of
the marginal polytope P is also intractable. The
widely-used approximation methods for this optimiza-
tion problem are based on (1) decomposition of H(p)
into local entropy terms; and (2) approximation of P
by simpler convex outer bounds, such as local marginal
consistency constraints. The true marginal distribu-
tions p(xi) and p(xi, xj) are replaced by ”belief” bi(xi)
and bi,j(xi, xj). The global entropy is decomposed into
local terms involved with nodes and edges. Fractional
free energy with entropy approximation has the form:

∑

i,xi

θi(xi)p(xi) +
∑

(i,j)∈E

∑

xi,xj

θi,j(xi, xj)p(xi, xj)

−
∑

(i,j)∈E
ci,jH(bi,j)−

∑

i

ciH(bi)

ci and ci,j are counting numbers of local entropy terms.
For trees, the setting of ci,j = 1 and ci = 1− di where
di is the degree of node i, is exact and known as the
Bethe free energy.

The probability simplex is replaced by a local polytope
L(b) defined below:

L(b) =





∑
xj
bi,j(xi, xj) = bi(xi),∀(i, j) ∈ E

bi,j(xi, xj) ≥ 0,
∑
xi,xj

bi,j(xi, xj) = 1

Moreover, when the underlying graph is a tree, the
local polytope is equal to the probability simplex or

marginal polytope. As a result, the Bethe free energy
problem is both exact and convex for a tree-structured
graph.

For general graphs with cycles, the Bethe entropy is
an approximation of the true entropy. Also, the local
polytope is an outer bounds of the marginal polytope.
So there is not guarantee of the minimizer of the Bethe
free energy problem. From the optimization point of
view, the Bethe free energy is no longer convex for a
graph with cycles. As a result, the fixed point of the
sum-product algorithm is only a local minima of the
optimization problem.

By some clever ways of setting counting numbers c,
the fractional free energy can be convex [9, 14]. In
this work, we assume that we have a set of ci, ci,j and
a nonnegative constant ε such that the optimization
problem is convex.

min
b∈L(b)

∑

i,xi

θi(xi)b(xi) +
∑

(i,j)∈E,xi,xj

θi,j(xi, xj)b(xi, xj)

−ε
∑

(i,j)∈E
ci,jH(bi,j)− ε

∑

i

ciH(bi)

If ε = 1, we obtain the inference problem for marginal
probability estimation. By taking ε→ 0, the problem
becomes MAP inference, whose solution is the joint
assignment of all variables xi such that the probability
defined by the model is maximized.

Semidefinite Outer Bound

Assume for each node i, xi ∈ 1, 2, ...,m. Then
MRF can be seen as a distribution over a (n × m)-
dimensional binary vector. Because the covariance
matrix of this binary vector is positive semidefinite,
it is not hard to show that the marginal polytope
M(b) is contained within a semidefinite constraint
set {b ∈ Rnm+nm(nm−1)/2 : M(b) � 0} [22]. See
the detailed definition in 2. M(b) � 0 is equiva-
lent to the condition of semidefinite positiveness of
a covariance matrix by Schur’s complement theorem.
For convenience, the row and columns of M(b) are
indexed by {0} ∪ {(i, xi)}. It is worth noting that
bi,j(s, u) = bj,i(u, s) and for each node i and assign-
ment s 6= t, the cross term bi,i(s, t) is always zero and
bi,i(s, s) = bi(s), since there can be only a unique as-
signment to the variable associated with this node.

4 Intersecting local polytope and
semidefinite outer bound

In [23], it has been shown that the semidefinite outer
bound and local marginal consistency polytope are in-
comparable. That is, neither semidefinite outer bound
nor local polytope is tighter than the other one. There-
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M(b) =




1 b1(1) · · · bi(s) · · · bj(t) · · · bn(m)

b1(1) b1(1) · · · b1,i(1, s) · · · b1,j(1, t) · · · b1,n(1,m)
...

...
...

...
...

bi(s) bi,1(s, 1) · · · bi(s) · · · bi,j(s, t) · · · bi,n(s,m)
...

...
...

...
...

bj(t) bj,1(t, 1) · · · bj,i(t, s) · · · bj(t) · · · bj,n(t,m)
...

...
...

...
...

bn(m) bn,1(m, 1) · · · bn,i(m, s) · · · bn,j(m, t) · · · bn(m)




(2)

fore, we expect to have a tighter outer bound by inter-
secting them. We add the semidefinite constraint into
the standard convex free energy functional optimiza-
tion problem as follows.

min
b

∑

i,xi

θi(xi)b(xi) +
∑

(i,j)∈E

∑

xi,xj

θi,j(xi, xj)b(xi, xj)

−ε
∑

(i,j)∈E
ci,jH(bi,j)− ε

∑

i

ciH(bi)

s.t. b ∈ L(b),M(b) � 0

For notational simplicity, we use F (b) denote the ob-
jective in the above optimization problem.

Although the optimization problem is convex, com-
plicated constraints and nonlinear objective function
make it very challenging to solve. Interior-point meth-
ods or conditional gradient methods fail to solve even
moderate sized instances of this problem with reason-
able runtime.

Dual Decomposition

Here we present a dual decomposition approach to
separate the semidefinite constraint from the local
marginal polytope. The dual decomposition methods
for linear programming relaxations can be found in
[20]. Typically, in dual decomposition, the slave prob-
lems and the master problem have to be defined ac-
cording to the Lagrangian dual of the original opti-
mization problem. Separate optimizations of the slave
problems are assumed to be easy. The master prob-
lem will act as the controller or coordinator to pass
information among slave problems.

Introducing a set of auxiliary variables, we transform
the above optimization problem into:

minb(1)∈L(b),b(2) F (b(1)) +G(b(2))

s.t. b(1) = b(2)

Here G is an indicator function of the semidefinite con-

straint, which is also convex.

G(b) =





0, ∃B � 0, B0,0 = 1,

∀i, xi bi(xi) = Bi,i(xi) = B0,i(xi),
∀i, j, xi, xj bi,j(xi, xj) = Bi,j(xi, xj)

∞, otherwise

where each row and column of matrix B is indexed
by {0} ∪ {(i, xi)}. It can be shown that this reformu-
lated problem is equivalent to the original optimization
problem.
The Lagrangian dual L(v) of the above problem is as
follows.

min
b(1)∈L(b),b(2)

{F (b(1)) +G(b(2)) + vT (b(1) − b(2))} =

min
b(1)∈L(b)

{F (b(1)) + vT b(1)}+ min
b(2)
{G(b(2))− vT b(2)}

Therefore, two slave problems are defined as
f1(v) = minb(1)∈L(b){F (b(1)) + vT b(1)}, and f2(v) =

minb(2){G(b(2)) − vT b(2)}. The master problem over
the dual variable v is L(v) = maxv{f1(v) + f2(v)},
which is convex and can be solved by projected sub-
gradient method. Assume that b(1)∗ and b(2)∗ are the
solutions of f1(v) and f2(v) respectively. It is easy
to see that the subgradient of the master problem is
∇Lv = b(1)∗−b(2)∗. In this way, we decompose the dif-
ficult optimization problem into two easier slave sub-
problems.

The overall projected subgradient algorithm is shown
in Algorithm 1. αt is the step size of subgradient,
which could be set in a number of ways. We use the
same scheme proposed in [17], which adjusts the step
size according to the primal-dual gap and works well
in practice. The algorithms for the two slave problems
are described in the next subsections.

Convex Belief Propagation

The first slave problem f1(v) = minb(1)∈L(b){F (b(1)) +

vT b(1)} is the standard convex free-energy functional
optimization problem in variational inference, which
can be solved by many algorithms, e.g. convex belief
propagation, MPLP and tree-reweighted belief propa-
gation. In this work we use the convex belief propa-
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Initialization: v = 0

while not converged do

1. Obtain b
(1)∗
t = arg minb F (b) + vT b by convex

belief propagation algorithm;

2. Obtain b
(2)∗
t = arg minbG(b)− vT b by low-rank

SDP algorithm;

3. Update αt;

4. Update v = v + αt(b
(1)∗
t − b(2)∗

t );

end

Output: b∗ = 0.5(b(1)∗ + b(2)∗)

Algorithm 1: Dual Decomposition

gation algorithm to optimize with local beliefs bi and
pairwise beliefs bi,j , as shown in Algorithm 2.

The Low-rank Algorithm for SDP

The second slave problem f2(v) = minb(2){G(b(2)) −
vT b(2)} is equivalent to the following standard SDP:

min
B

∑
i,xi

vi(xi)Bi,i(xi, xi) +
∑

i,j,xi,xj

vi,j(xi, xj)Bi,j(xi, xj)

s.t. B � 0, B0,0 = 1,∀i, xi Bi,i(xi, xi) = B0,i(xi)

This SDP has a linear objective and a fairly small
set of nm + 1 linear constraints. However, standard
SDP solvers cannot scale well to large nm (i.e., sev-
eral hundreds). The major reason is that they require
representing the complete positive semidefinite matrix
and thus, cannot exploit the sparsity of the underlying
graph structure. This is similar to the type of struc-
ture found in the LP resulting from the local marginal
relaxation, which is not exploited by generic methods,
but can be exploited by some specially-designed mes-
sage passing or belief propagation algorithms [26]. In
this work, we use a low-rank approach to solve the
second slave problem. Specifically, we use gradient
updates on a low rank factorization, which takes ad-
vantage of the graph sparsity, much in the same way
as belief propagation does.

The key idea is to substitute B = yyT into the above
optimization problem, where y is a (nm + 1) × r ma-
trix and r is the approximation rank. r can be much
smaller than nm + 1. This approach transforms the
original SDP into a quadratic programming optimiza-
tion problem. This transformation avoids the positive
semidefinite constraint on B, at the cost of a resulting
problem which is not convex. Nevertheless, at least
if r is sufficiently large, there are no local minima [5],
and even for moderate r it seems that the higher di-
mensional relaxation helps avoid local minima (see,
e.g. [12]). We then use the augmented Lagrangian

1) Set ĉi = ci +
∑
j∈N(i) ci,j , θ̂ = θ + v

2) For every i = 1, ..., n repeat until convergence:
∀j ∈ N(i), xi:

1. µj→i(xi) = ln
∑
xj

exp
{
θ̂i,j(xi,xj)+λj→i(xj)

εci,j

}εci,j

2. λi→j(xi) =
ci,j
ĉi

(
θ̂i(xi) +

∑
k∈N(i) µk→i(xi)

)

−µj→i(xi)

3) Obtain bi and bi,j :

bi(xi) ∝ exp

{
θ̂i(xi)+

∑
j∈N(i) µj→i(xi)

εĉi

}

bi,j(xi, xj) ∝ exp
{
θ̂i,j(xi,xj)+λi→j(xj)+λj→i(xi)

εci,j

}

Algorithm 2: Convex Belief Propagation

technique to solve this quadratic optimization prob-
lem.

L(y, λ, γ) =
∑
i,xi

vi(xi)yi(xi)
T yi(xi)

+
∑
i,j,xi,xj

vi,j(xi, xj)yi(xi)
T yj(xj)− λ0(yT0 y0 − 1)

−∑i,xi
λi,xi(yi(xi)

T yi(xi)− yT0 yi(xi))
+γ(yT0 y0 − 1)2 + γ

∑
i,xi

(yi(xi)
T yi(xi)− yT0 yi(xi))2

λ is the Lagrangian multiplier and γ controls the
penalty term for constraint violation. To minimize
L(y, λ, γ), we alternately optimize y and update λ, γ.
To optimize with respect to y, both objective and gra-
dient can be efficiently computed in O(|E|m2r), which
is comparable to the complexity of a message-passing
iteration in convex belief propagation. Interestingly,
the gradient step could be also seen as a message pass-
ing algorithm with r-dimensional vectors for each xi
passed along edges. We use limited-memory BFGS al-
gorithm to get a local optimal solution of y with little
extra memory cost. To update λ and γ, augmented
Lagrangian update is applied,





λ0 = λ0 − 2γ(yT0 y0 − 1)

λi,xi
= λi,xi

− 2γ(yi(xi)
T yi(xi)− yT0 yi(xi))

γ = γδ

where δ is a constant in (0, 1). In most cases, the
optimization converges within a few augmented La-
grangian steps. Finally, we recover the solution b(2)∗

from yi(xi). In our experiments, we used two aug-
mented Lagrangian steps with γ ∈ {50, 2000} and
found it works well in practice. Each Lagrangian step
usually takes about 20-200 steps to reach convergence
in our experiments.
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It is worth noting that [5] has shown that the global
optimal solution of a SDP problem can be obtained
if the rank r is sufficiently large, although the trans-
formed optimization problem is non-convex. Empiri-
cally, r can be much smaller than the bound and even
a small r can produce pretty good solutions.

Theorem 1 [5] The local optima of the low-rank
method is the optimal solution of the original SDP,
if r ≥ maxr∈N̄{r : r(r + 1) ≤ 2M}, where M is the
number of linear constraints.

In addition to low computational complexity, an-
other advantage of the low-rank technique is that it
is a natural representation of SDP solution for so-
phisticated rounding schemes. Most SDP rounding
schemes require Cholesky decomposition of the resul-
tant PSD matrix, which has an high time complexity
of O(n3m3). The solution of low-rank technique can
be seen as a low-rank approximation of the Cholesky
decomposition and can be directly used for rounding.
Empirically, the performance of low-rank representa-
tion is expected to be very close to the complete ma-
trix representation, since the spectrum of the matrix
is usually highly dominated at its several largest com-
ponents.

5 Rounding Schemes for MAP
Inference

In linear programming relaxation setting, MAP infer-
ence can be solved by a convex max product algo-
rithm. Likewise, we could directly apply the convex
max product algorithm to solving the first slave prob-
lem. However, simply setting ε to 0 will cause the
first slave problem to not be strictly convex, causing
convex max product to sometimes get stuck in non-
optimal corners of the local polytope. To address this
issue, we use a smoothed convex belief propagation
algorithm by setting ε to a very small positive con-
stant number. Let OBJε denote the optimal solution
of the smoothed optimization problem and OBJ0 the
solution of non-smoothed version. By applying the in-
equality emax{xi} ≤ ∑n

i=1 e
xi ≤ nemax{xi}, we have

OBJε ≤ OBJ0 ≤ OBJε + εm lnn. Setting ε = δ
m lnn ,

we can get a δ-close solution to the first slave prob-
lem. After solving MAP inference via the above al-
gorithm, we can recover all b∗i,j(xi, xj) and b∗i (xi). If
the local belief b∗i (xi) is not integral, rounding schemes
can be applied to obtain optimal or near-optimal so-
lutions. The rounding techniques developed for SDP
relaxations of MAXCUT, unique games and constraint
satisfaction programs [7, 15, 16] can also be applied for
MAP inference.

Naive Randomized Rounding. For each node i, we
sample xi according to the probability distribution b∗i .

It can be shown that this naive rounding method works
well when the distribution is highly concentrated [2].
Probabilities of naive randomized rounding b∗i (s) =
yi(s)

T y0 could also be seen as the projected length of
yi(s) to a fixed direction y0.

Shifted Random Projection Rounding. Inspired
by recent theoretical work on MAX-2SAT [16], where
this more sophisticated rounding scheme was shown
to be necessary for obtaining approximation guaran-
tees, this method combines random projection round-
ing and naive rounding: Let w be an r-dimensional
random vector with i.i.d. normally distributed compo-
nents. Each xi is assigned to state s with the largest
((1 − β)y0 + βw)T yi(s), where β is a coefficient be-
tween 0 and 1. The optimal β can be determined by
enumerating a set of possible values between 0 and 1.
The theoretical bound for the expected performance of
spectral rounding and naive rounding [2] can be also
extended to this shifted random projection rounding
schemes.

6 Experiments

In this Section, we present an empirical evaluation
of our method, and a comparison with other meth-
ods, both on synthetic lattice problems, and on a real-
world protein side-chain packing benchmark. On the
synthetic data, we evaluate both marginal probabil-
ity inference and MAP inference. All the experiments
are performed on a computer with a single-core AMD
Opteron 2.4GHz CPU and 2G RAM.

Synthetic Lattice Problems. We generated 100
random instances of 10 × 10 grids with binary vari-
ables xi ∈ {0, 1}. Node potentials θi(xi) were drawn
from U [−0.05, 0.05] and edge potentials θi,j(xi, xj)
were drawn from U [−κ, κ], where parameter κ controls
the coupling strength.

First, we evaluated our method on the task of marginal
probability and partition function estimation, and
compared its performance to that of tree-reweighted
belief propagation (TRBP). Note that the recently
proposed MPLP method [19] does not immediately
lend itself to estimating marginal probabilities or the
partition functions1, nor does a straight-forward SDP
relaxation approach.

The left panel of Figure 1 shows the L1 error of
marginal probability estimation (for all i, xi) with re-
spect to the coupling strength, for both TRBP and
for our method. In these experiments, the damping

1T. Hazan recently presented in a workshop talk how
MPLP might be modified for marginal probability estima-
tion, but to the best of our knowledge this has never been
implemented, verified, and experimented with.
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factor for TRBP is set to 0.5 and we used a rank of
5 for the SDP updates in our method. For small κ,
the problem is easy for both TRBP and our method.
However, when the coupling strength increases, the er-
rors of TRBP increase dramatically, but our method
still obtains reasonably good results. We also show,
in the middle panel of Figure 6, the looseness of the
upper bounds on the partition function obtained in
these procedures. As can be seen, tightening the local
marginal constraints with the semi-definite constraint
indeed yields a tighter bound on the partition function
for the grid, especially with stronger edge potentials.

We now turn to MAP inference, where in addition to
TRBP we also compared with a “pure” SDP approach
(using only the semi-definite outer bound), solving it
with the same low-rank method used by our approach.
We compared the different methods’ ability to obtain
optimal integer assignments. The solutions of TRBP
are obtained by rounding the labels with maximal lo-
cal beliefs. For the pure SDP and for our combined
approach, we first experimented with the naive round-
ing (choosing the state with the highest belief). The
failure rates for the different approaches (over 100 ran-
dom instances) are shown in the right panel of Figure
6. As can be seen, when the coupling potentials are
weak, TRBP yields better results that the pure SDP
approach. However, when κ is large (i.e. the edge po-
tentials are strong), the semi-definite constraint is bet-
ter then the local marginal constraints used by TRBP.
In any case, our method, which combines the two con-
straints, even without any rounding, is always superior
to either TRBP or the pure SDP approach.

Randomized rounding can further increase the perfor-
mance of our method. We tested both the naive ran-
domized rounding, choosing the highest likelihood of
100 randomizations, and the shifted random projec-
tion rounding schemes with 100 random rounding for
each β ∈ {0, 0.1, 0.2, ..., 1}. The failure rates after us-
ing these randomized rounding schemes are also plot-
ted on the right panel of Figure 6. As can be seen,
the naive rounding decreases the failure rate signifi-
cantly, and with the shifted random projection round-
ing, we can find the optimal integer solution for all
grid instances. This result indicates that our random-
ized rounding schemes, especially the shifted rounding
scheme, is very effective in dealing with the difficult
cases on which linear programming relaxation does not
work well.

We also compared our algorithm with the state-of-the-
art MPLP algorithm with tightening [19] on these grid
graphs. We used Sontag’s implementation downloaded
from his website. We ran MPLP with at most 1000
tightening steps. Both triplets and neighboring blocks
are tested for tightening. This algorithm performs bet-

ter than our method when the coupling strength of the
graph is relatively small. But for graphs with strong
edge weights, our method solves about 10% more in-
stances than MPLP with tightening. What we see
here is that tightening by adding higher order local
marginal constraints, as in MPLP, and tightening by
adding a semi-definite constraint can each be advan-
tageous in a different regime. It is certainly conceiv-
able to use a combined approach for particularly hard
problems, using both higher order local marginal con-
straints and a semi-definite constraint, and perhaps
also iteratively adding higher order constraints as in
MPLP.

Finally, to show the accuracy and efficiency of low-rank
method in dealing with semidefinite constraints, we
compare our algorithm with a state-of-the-art interior-
point solver DSDP [1]. We tested both optimization
approaches on the second separated subproblem with
100 random instances, each of which is a 10× 10 grid
with κ = 2. We ran DSDP with tolerance = 10−4.
The averaged primal solution relative difference be-
tween DSDP and our low-rank SDP algorithm is less
than 0.1%, 0.05%, 0.02% and 0.01%, when 5-rank, 10-
rank, 20-rank and 50-rank are used, respectively. On
average, the running time of our low-rank SDP algo-
rithm is 11s for rank = 5, 15s for rank = 10, 27s for
rank = 20, 62s for rank = 50 respectively, while the
running time of DSDP solver is 642s. By contrast, the
running time of our TRBP implementation is 6s. For
most instances, the total running time of our algorithm
is less than 10 times that of TRBP.

Protein side-chain packing. The goal of protein
side-chain packing is to predict the side-chain rotamer
positions of each amino acid by minimizing a given en-
ergy function. For consistency with many other meth-
ods in the literature, we use Rosetta energy function
for side-chain packing. The side-chain packing prob-
lem can be formulated as a MAP inference problem of
Markov random fields. In [26], the authors show that
TRBP can find the optimal MAP assignment for 339
out of 369 test instances. For the most challenging 30
instances, the optimal solutions of LP relaxation are
fractional. We tested our algorithm on these 30 chal-
lenging instances with rank 10 in low-rank technique.
We also tested our algorithm with higher rank, e.g. 20
and 30, and didn’t find much difference in the resulting
assignments.

The primal objective values achieved by our algorithm
are better than or equivalent to TRBP for all the 30
instances. Meanwhile, our algorithm can solve 26 in-
stances to optimal without any rounding. The primal
objective values of the other 4 instances are within a
gap of 0.5% of the optimal energy. In contrast, the
averaged gap of tree-reweighted belief propagation is
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Figure 1: Experiments on a 10x10 grid. Left: average L1 errors of TRBP and our algorithm for marginal
probability estimation. Middle: average looseness of the resulting upper bound on the log partition
function. Right: failure rates of MAP inference for TRBP, pure SDP, MPLP and our algorithm without
and with the different rounding schemes. A method is considered “successful” on an instance if it yields
the optimal integer solution.

Table 1: Averaged performance of low-rank SDP on the second SDP subproblem on 100 random grid
graphs. The subproblems are generated after the first decomposition step.

Method DSDP LRSDP-5 LRSDP-10 LRSDP-20 LRSDP-50
Running Time 642s 11s 15s 27s 62s

Relative Errors(%) 0 0.1 0.05 0.02 0.01

3.0% and the maximal gap is 10.2%. By generating
100 random samples with shifted rounding schemes for
each β ∈ [0, 0.1, 0.2, ..., 1.0], our algorithm can solve all
the 30 instances to optimal. We also observed that 15
of the 30 instances can be solved to optimal within 6
iterations of updating the dual variable v in the master
problem.

It has been reported in [19] that an adaptive-
augmented Kikuchi method (MPLP with tightening)
can also solve all the 369 protein side-chain packing
instances. This method uses a linear programming re-
laxation with triplets to gradually tighten local poly-
tope into a partial Kikuchi polytope and then employs
a message passing algorithm to find the MAP assign-
ment. The running times of the MPLP algorithm are
between 1 minute and 1 hour with 9 minutes as the
median. Our method has running times between 3
minutes and 1.8 hours with 13 minutes as the median.
The low-rank SDP step alone costs 34% of the overall
running time. Our code is implemented with Matlab,
we expect that the running time of our algorithm will
be significantly reduced if implemented with C/C++.
A pure SDP algorithm has also been proposed for pro-
tein side-chain packing [2]. However, this method uses
only a semidefinite constraint but not the local poly-
tope and works for only very small proteins. No large-
scale experiments are conducted to test this SDP al-
gorithm.

7 Conclusion

We proposed a new algorithm for two inference tasks
on graphical models. Our approach obtains a tighter
outer bound on the marginal polytope by intersecting
two relaxations: the local polytope and the semidefinte
outer bound. With the dual decomposition framework,
we separated the optimization problem into two slave
problems, a SDP solved by a low-rank SDP algorithm,
and a free-energy functional optimization problem
solved by convex belief propagation. Our algorithm
shows superior performance over tree-reweighted be-
lief propagation on both synthetic data and a protein
side-chain packing benchmark. Our method is compet-
itive with the state-of-the-art MPLP method, solving
all protein tasks solved by MPLP, and beating MPLP
on latices with strong edge potentials. The lattice
experiments demonstrate that our proposed method
and MPLP are incomparable and are each advanta-
geous in different regimes, suggesting a combined ap-
proach could be particularly advantageous. In future
work we expect to apply dual decomposition meth-
ods to high-order graphs, mainly the Kikuchi polytope
for tightening the marginalization constraints as well
as the Lasserre hierarchy for tightening SDP relax-
ations. In addition, other rounding schemes will also
be investigated for MAP inference, e.g. SDP rounding
schemes based on Grothendieck’s inequality for integer
quadratic programming.
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