The adversarial stochastic shortest path problem with unknown transition probabilities

A Extended dynamic programming: technical details

The extended dynamic programming algorithm is given by Algorithm 2.

Algorithm 2 Extended dynamic programming for finding an optimistic policy and transition model for a given
confidence set of transition functions and given rewards.

Input: empirical estimate P of transition functions, L; bound b € (0, 1JI*1AI reward function r € [0, 1]I¥IAL
Initialization: Set w(xy) = 0.
For|=L-1,L—-2,...,0

1. Let k = |Xj41] and («F, 3, ..., x}) be a sorting of the states in Aj4; such that w(z}) > w(xd) > -+ > w(z}).

2. For all (z,a) € &} x A

(a) P*(z3|z,a) = min{f’(x’{\m,a) +b(x,a)/2, 1}
(b) P*(x¥|x,a) = P(z¥|z,a) for all i = 2,3,... k.
(c) Set j =k.
(d) While ), P*(z}|z,a) > 1 do
i. Set P*(x}|z,a) = maX{O, IS P*(xﬂaj,a)}
i, Set j=j — 1.
3. For all z € &
(a) Let w(z) = max, {r(z,a) + >, P*(¢'|z,a)w(a’)}.
(b) Let n*(x) = argmax, {r(z,a) + >, P*(a'|z,a)w(z’)}.

Return: optimistic transition function P*, optimistic policy 7*.

The next lemma, which can be obtained by a straightforward modification of the proof of Theorem 7 of Jaksch
et al. (2010), shows that Algorithm 2 efficiently solves the desired minimization problem.

Lemma 6. Algorithm 2 solves the mazimization problem (5) for P = {P : |[P — P|, < b}. Let S =

_01 |X|[ X141 denote the mazimum number of possible transitions in the given model. The time and space
complezity of Algorithm 2 is the number of possible non-zero elements of P allowed by the given structure, and
so it is O(S|A|), which, in turn, is O(|A||X|?).

B The detailed bound

Theorem 1 is a simplified version of the following, more detailed statement.
Theorem 2. Assume n < (|X||A|])"" and T > |X||A|. Then the expected regret of FPOP can be bounded as
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In particular, assuming T > (|X||A|)?, setting
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and § = 1/T gives

e[S utm)] < 2uiwiay e () (i (2 1)

T?|X
+ (\/§+ 1) LIX|\/T|Alln w + L|X|\/2T In(LT) + 3 L.

The theorem can be obtained by a trivial combination of Lemmas 2, 3, and 5. The only complication is that in
the last term of Lemma 2 we apply the bound

z_: In (JA||A]) < Lln ('XI[Al) .

1=0
C Proof of Lemma 1
Let us fix an arbitrary € X and let [ = [,.. The statement follows from the following inequality due to Weissman

et al. (2003) concerning the distance of a true discrete distribution p and the empirical distribution p over m
distinct events from n samples:

Pllp -l > ] < (2" — 2) exp (_"> .

As now we have |X; 1| distinct events, we get that setting

X||A
€= \/4|Xl+1| IHW
n
for some fixed n € [1,2,...,¢t] yields

_ 2/ ;11| In TELA d
HP2(|xva) —P(|£C,G)H1 2 \/ n Ni(x’a) = s W

Using the union bound for all possible values of N;(z,a), all (z,a) € X x A, alli=1,2,..., Ky (note that for
the bound, we have used the very crude upper bound 7' > Ky for simplicity) and the fact that the confidence
intervals trivially hold when there are no observations with probability 1, we get the statement of the lemma. [

D Proof of Lemma 3

Let
(04(Y),T'(Y)) = argmax {W(Rt,l + YﬂT,P)}
well, PEP;(,)
and
Fi (YY) =W(r, oY), T (Y)).
Clearly,
= Ft(Yi(t))
and

Vi = Ft(Yi(t) + ’f't).
Now let f be the density function of Yjy and Fj) denote the o-algebra generated by all random variables
before epoch Ei(T).4 We have

Eﬁﬂﬁww}ZAwway+nﬁ@My=A; Fy(y)f(y —re)dy

| XAl
fly—r) fly—r4)
S?? f(y) fy)

4Note that Y is generated independently from the history up to epoch i(t).

/ Fo(y)f (y)dy < sup E [%] Fie)] -
RIXI[A| y,t
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Since f(y) = nexp (—77 Yoea y(x,a)) for all y = 0, we get

sup f(ii(;)) — exp (Qj()) < exp (1] X A]) .

Using e* < 1+ (e — 1)z for = € [0, 1], which holds by our assumption on 1, we get
E[vi] <E[ve] (1 +n(e = 1IX[A]).

Noticing that v; < L gives the result. O

E Proof of Lemma 4

We prove the statement by induction on [. For [ =1 we have

Z | (1) — ()| = ‘Pt(iﬂl\xoaﬂt(fﬂo)) - P(931|$0,7Tt($0))‘ < ay(xo,, m(x0)),

1
proving the statement for this case. Now assume that the statement holds for some I — 1. We have

fi(zr) — pe(z)
= Z (Pt(ﬂfz|$z—1, e (x1-1)) e (2i—1) — Plag|o_1, ﬂ't(Iz—l))Ht(Il—O)

Ti—1

= Z (f’t($1|$l1777t(3311)) (g (z1-1) — pe(21-1)) + (f’t(iﬂllmlqmt(ﬂflq)) - P(éﬂzl:ﬂzflﬂt(xzq))) Nt($z1)>7

Zi—1

and thus

Zlut 1) — pe()|

<y (Pt(xlm_l,m(xz_l)) a(1-1) = pe(w-2)] + |Pa@ilerr, mi(e1)) = Plaifo, mo(ai-)| ut(ml_ﬁ)

L1,T1—1
=3 l(@i1) = (o) + Y pe(@i Z‘Pt zi|zi—1, e (2i-1)) — (lexzfl,m(xzfl))‘
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k=0 €X) Ti—1
proving the statement. O

F  Proof of Lemma 5

We start by some arguments borrowed from Jaksch et al. (2010). Let n;(x, a) be the number of times state-action
pair (x,a) has been visited in epoch E;. We have

a) = ini(az,a).

For simplicity, let K7 = m be the number of epochs. By Appendix C.3 of Jaksch et al. (2010), we have

ém = (\/§+1) Non(z,a),
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and by Jensen’s inequality,

ZZIJ“& (Va+1) VIATAT.

Now fix an arbitrary 1 <t <T. We have

L-1
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and
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That is, we need to bound Zle Y eex, [Be(T) — pi ()]

Setting a;(z,a) = Hlat(\;v, a) — P(-|z, a)Hl for all (z,a) € X x A, the conditions of Lemma 4 are clearly satisfied,

and so

-1
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Now, by Lemma 1, we have with probability at least 1 — § simultaneously for all k that
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For the second term on the right hand side of (9), notice that (,ut (zg) — 1 { mxk}) form a martingale difference
xk =

sequence with respect to {U;}7_; and thus by the Hoeffding—Azuma inequality and a; < 2, we have

with probability at least 1 — /L. Putting everything together, the union bound implies that we have, with
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probability at least 1 — 2§ simultaneously for all i =1,..., L,
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< (va+1)L \/TA| (|X|> T"Y(SHAl F X /2T 1n§
= (Vi+1)|xh/Ti4 ln%-ﬂ)d 2Tln§ (10)
where in the last step we used Jensen’s inequality for the concave function f(x,y) = v/zy(a + Inz) with param-

eter a > 0 and the fact that Z,S;& |Xe| =X —1 < |X].

Summing up for all I = 0,1,...,L — 1 and taking expectation, using that v;(m;) — v; < L and (10) holds with
probability at least 1 — 24, finishes the proof. O



