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Abstract

The deep Boltzmann machine is a powerful
model that extracts the hierarchical structure
of observed data. While inference is typi-
cally slow due to its undirected nature, we
argue that the emerging feature hierarchy is
still explicit enough to be traversed in a feed-
forward fashion. The claim is corroborated
by training a set of deep neural networks on
real data and measuring the evolution of the
representation layer after layer. The analy-
sis reveals that the deep Boltzmann machine
produces a feed-forward hierarchy of increas-
ingly invariant representations that clearly
surpasses the layer-wise approach.

1 Introduction

One of the most interesting features of neural net-
works is their ability to extract meaningful abstrac-
tions of data without being explicitly taught to do so
(Hinton and Salakhutdinov, 2006; Guyon et al., 2011).
Hopefield networks (Hopfield, 1982) and Boltzmann
machines (Ackley et al., 1985; Hinton and Sejnowski,
1986) are theoretically able to find solutions that make
very efficient use of the statistical information con-
tained in the data. In the general case, the solution
learned by these algorithms is unsuited for direct use
in a feed-forward classifier as the prediction typically
depends on the state of the hidden variables, thus re-
quiring an iterative algorithm to infer them.

A common approach to alleviate the need for itera-
tive inference is to decompose the architecture into a
sequence of simple feed-forward submodules that are
learned one after the other. Example of practical algo-
rithms include the deep belief network (Hinton et al.,
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2006) and the stacked auto-encoder (Bengio et al.,
2007) where layers are learned one after the other and
stacked on top of each other. In this approach, learn-
ing is made easier and inference can be performed in
a feed-forward manner since the hidden units of each
layer can be evaluated immediately from the visible
units. Unfortunately, the layer-wise approach is lim-
ited by its greedy training procedure and its inability
to combine top-down and bottom-up signals, making
it hard to build a coherent feature hierarchy.

In this paper, we argue that it is not necessary to build
the feed-forward feature hierarchy explicitly as it is
done by the layer-wise approach. Instead, the feature
hierarchy arises naturally from the structure of the
neural network, even if the latter is undirected. By
constraining the Boltzmann machine into a hierarchy
of multiple layers, the so-called deep Boltzmann ma-
chine (Salakhutdinov and Hinton, 2009) learns a hier-
archy of increasingly invariant feature extractors that
is explicit enough to be traversed in a feed-forward
fashion, without requiring to infer the initial state of
the hidden layers.

This claim is corroborated by training a deep Boltz-
mann machine and a deep belief network on real data
and comparing the layer-wise evolution of the repre-
sentation in each of them. More specifically, we mea-
sure how the underlying abstract concepts converge
progressively towards the leading components of the
representation as we integrate more and more layers
(Montavon et al., 2011). The analysis reveals that the
deep Boltzmann machine outputs a feed-forward hi-
erarchy of increasingly invariant representations that
outperforms the more classical layer-wise approach.

2 Background

In this section, we first give some background on the
deep Boltzmann machine and the deep belief network.
Then, we introduce a method based on kernel PCA to
analyze how the representation is formed layer after
layer in these deep networks.

In the following lines, the sigmoid function is defined
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as sigm(z) = ﬁ, the relation a ~ b denotes that the
variable a is drawn randomly from a Bernoulli distribu-
tion of parameter b and (-) p,, denotes the expectation
operator with respect to a probability distribution Px.

2.1 Deep Boltzmann Machine (DBM)

The deep Boltzmann machine (DBM, Salakhutdinov
and Hinton, 2009) is an undirected network of units
organized in a layered structure. Its two-layer version
is composed of visible units = € {0,1}%* intermedi-
ate hidden units y € {0,1}?" and top hidden units
z € {0,1}92 where (v,y) and (y,z) form two bipar-
tite graphs whose edges are respectively represented
by matrices W and V. A DBM is depicted in Figure
1 (left). In order to simplify the equations, we do not
write biases. The energy of the network is given by

E(x,y,20)=-y Wz —2z"Vy

where § = (W, V) are the parameters of the system.
The following probability is associated to each visible
vector x:

Zy,z eXp(—E(gg Y, z; 9))
Zx,v,( exp(iE(X7 v, Cv 0))

p(a;0) =

From the probability distribution above, the alternate
Gibbs sampler
{z ~ sigm(W y), z ~ sigm(Vy)}
y ~ sigm(Wz + V' 2)
can be derived. The derivative of the log-likelihood of

the observed data with respect to the model parame-
ters takes the simple form

0log p(z)

T = <.’£yT>data — <CUyT>model
Ologp(x
%T() = (2 data = (Y2 Jmodel

where ()data are the data-dependent statistics ob-
tained by sampling the model conditioned on the
visible units clamped to the data and (.)model are
the data-independent statistics obtained by sampling
freely from the model. The equilibrium is reached
when ()model & (.)data, that is, when the model ap-
proximates the data distribution well. The learning
algorithm will tend to lower the energy of the network
near the data points and to raise it elsewhere, creat-
ing ravines in the energy landscape representing the
learned input distribution.

In order to estimate data-dependent statistics, it
is common to run a mean-field approximation with
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Figure 1: On the left, diagram of a two-layer deep
network. On the right, different sampling methods:
(a) a feed-forward pass on the network starting from a
data point, (b) a single alternate Gibbs sampler on all
layers and (c) one alternate Gibbs sampler per layer.

z clamped to the data (Salakhutdinov and Hinton,
2009), that is, computing alternatively

z = sigm(Vy)
y =sigm(Wz + V' 2)

until convergence.

On the other hand, in order to estimate data-
independent statistics, it is common to run a Markov
chain Monte Carlo (Neal, 1993) on the network, that
is, running continuously the alternate Gibbs sampler
described before on a set of free particles. This ap-
proach is illustrated in Figure 1b. This stochastic ap-
proximation procedure is typically run in background
of the learning algorithm (Tieleman, 2008).

2.2 Feed-Forward DBM (DBM-FF)

We use the term “feed-foward DBM” (or DBM-FF) to
denote the simple fact of traversing the trained DBM
in a feed-forward manner. The feed-forward pass is de-
picted in Figure la. From a data point z, we compute
sequentially y = sigm(Wx) and z = sigm(Vy).

2.3 Deep Belief Network (DBN)

The deep belief network (DBN, Hinton et al., 2006)
can be seen as a modified version of the DBM where
top-down feedback is disabled. The absence of top-
down feedback implies that the intermediate units can
be inferred directly from the input and that data-
dependent statistics can be collected directly by run-
ning a feed-forward pass on the network, that is,
x ~ data, y = sigm(Wz) and z = sigm(Vy). Data-
independent statistics are obtained by running a sep-
arate Markov chain Monte Carlo on each layer of the
network. In the first layer, we compute alternatively
x ~ sigm(WTy) and y ~ sigm(W=z). In the second
layer, we compute alternatively 3’ ~ sigm(V T z) and
z ~ sigm(Vy'). This approach is depicted in Figure
lec.
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2.4 Layer-Wise Analysis of Deep Networks

We present a method introduced by Montavon et al.
(2011) that measures how the representation evolves
layer after layer in a deep network. The method is
based on the theoretical insight that the projection of
the input distribution onto the hidden units of each
layer provides a function space that can be thought of
as a respective representation and feature extractor.

The method aims to characterize this function space
by constructing for each layer a kernel that approxi-
mates the implicit transfer function between the input
and the layer and measuring how much these kernels
“match” the task of interest. The approach is theo-
retically motivated by the work of Braun et al. (2008)
showing that projections on the leading components of
the implicit kernel feature map (Scholkopf et al., 1998)
obtained with a finite and typically small number of
samples n are close with essentially multiplicative er-
rors to their asymptotic counterparts. In the following
lines, we describe the principal steps of the analysis:

Let X, T be a data set of n samples where X are the
inputs and T are the labels. Let

frae froeo fi()

be a deep network made of L layers. We build a hier-
archy of increasingly “deep” kernels

koo(z,2") = ko (z,2")

kro(2,2') = ko (fi(x), fi(a"))

kL,U(iE,SE/) = ’io(fL S ofl(x)afl/ o-~-of1(m’))

that subsume the mapping performed by more and
more layers of the deep network and where k, is a
RBF kernel of scale 0. For each kernel k;,, we can
compute the empirical kernel K , of size n x n and its
eigenvectors ul{o, ..., up', sorted by decreasing magni-
tude of their respective eigenvalues. The matrix

Uld,a = (ull,a‘ cee ‘UE{U)

spans the d leading kernel principal components of em-
pirical kernel.

We measure how good a representation is with respect
to a certain task by measuring whether the task is
contained in the leading principal components of the
representation. The prediction and reconstruction er-
ror are computed respectively as the residuals of the
projection on the d leading kernel principal compo-
nents:

. T
er(l,d) :H}}HHT_UZL?UUZ(?U T||i“ (1)

. T
€xX (lv d) = H}Tln HX - Ulc,loUlE,lo' X||2F (2)

Curves (e(l,0),...,e(l,d)) represent how well the task
can be solved as we add more and more principal com-
ponents of the data distribution. These curves can be
interpreted as learning curves since the number of ob-
served kernel principal components d closely relates to
the amount of label information given to the learning
machine. When d is small, we are in the zero-shot
learning regime where the model is asked to generalize
from very few observations. On the other hand, when
d is large, we reach the other extreme case where label
information is abundant, and where the representation
has to be rich enough in order to encode any subtle
variation of the learning problem. These curves can
be summarized into one scalar by measuring the area
under them:

er(l) == er(l,d) 3)
d=1
ex(l) = % > ex(l,d) (4)

.
Il
—

These aggregated errors are used to compare the layer-
wise evolution of the representation in different deep
networks.

3 Theoretical Motivations

In this section, we attempt to theoretically motivate
the use of deep Boltzmann machines to learn a feed-
forward feature hierarchy. The advantages and draw-
backs of competing approaches are summarized in Ta-
ble 1. In particular, we argue that the DBM does a
better job than the DBN at organizing the solution
into a coherent hierarchy of increasingly invariant rep-
resentations.

3.1 Building the Invariance

In a deep Boltzmann machine, the learning algorithm
encourages the top layer and the input layer to coop-
erate rather than compete in order to model the data
distribution since both layers participate to the recon-
struction of the intermediate layer. Indeed, the Gibbs
sampler samples the intermediate units as

y ~ sigm(Wz 4+ V' z).

As a consequence, the top units can specialize on as-
pects of the underlying data distribution that are com-
plementary to the raw input representation and very
importantly that do not necessarily retain all informa-
tion of the input representation. The fact that top
units do not need to retain all information contained
in the input is the key factor for building the invari-
ance as the irrelevant pixel variations will typically be
filtered out in the feed-forward pass.
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Figure 2: Illustration of the evolution of the represen-
tation in a DBM and a DBN as predicted by our the-
ory. The global training procedure of the DBM forces
the solution to organize in a hierarchy of increasingly
invariant feature extractors while the DBN oscillates
layer after layer between abstract and raw representa-
tions.

DBM DBM-FF DBN
Feed-forward No Yes Yes
Layer-wise coherence  Yes Yes No
Degree of invariance  High High Low

Table 1: Characteristics of the three models of inter-
est. The approach advocated in this paper (DBM-FF)
combines the speed of feed-forward processing with the
ability of deep Boltzmann machines to build a coherent
hierarchy of increasingly invariant representations.

On the other hand, the deep belief network is not able
to build the same level of invariance as the DBM. In-
deed, the input and top layers must independently re-
construct the intermediate layer, which implies that
low-level concepts will tend to be propagated to the
top of the feature hierarchy instead of being filtered
out.

3.2 Preventing Layer-Wise Oscillations

In a deep belief network, layers are agnostic to the ab-
stract representations that could be developed in the
upper layers. In order to model the data distribu-
tion well, the learning algorithm must therefore build
a hidden representation that is the best possible com-
plement of the input representation. Indeed, from the
perspective of the Markov chain Monte Carlo, visible
and hidden layers cooperate in order to protect them-
selves from each other and stay confined along the data
manifold.

Since layer 0 represents the pixels well, layer 1 will
complement the pixels well. When training the sec-
ond module, since layer 1 complements the pixels well,
layer 2 will complement the complement of the pixels
well, that is, represent the pixels themselves well. Ex-
trapolating to more layers, an oscillation phenomenon
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may occur where layers 0,2,4, ... represent the pixels
well and layers 1,3,5,... represent the complement
to the pixels well. The effect is depicted in Figure
2 where the representation learned in absence of top-
down feedback oscillates layer after layer between raw
and abstract representations.

On the other hand, in the deep Boltzmann machine,
such oscillations are likely to disappear. Indeed, there
is no reason anymore for the top layer to resemble the
input layer since the input, intermediate and top layers
are all cooperating in order to model the data distribu-
tion. From the perspective of the Markov chain Monte
Carlo, input and top units are now cooperating in or-
der to protect themselves from intermediate units and
stay confined along the data manifold. Input and top
units are therefore unlikely to be similar as it would
be a waste of capacity.

4 Experiments

In order to verify experimentally the arguments put
forward in Section 3, we train a two-layer deep Boltz-
mann machine and a four-layer deep belief network on
data subsets of 2500 samples. The analysis described
in Section 2.4 is performed on each trained deep net-
work. In our analysis, we consider the linear kernel and
the set of Gaussian kernels with scale corresponding to
the 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2 and
0.5 quantiles of the distribution of pairwise distances.
The kernel empirical feature map is built using the
same 2500 samples used to train the deep network.
The small number of samples comes from the hard
constraint imposed by the high computational cost of
kernel PCA. However, we observe that training a deep
network on 2500 samples only is sufficient to highlight
the benefits of cross-layer cooperation over the stan-
dard layer-wise approach.

For each deep architecture, visible and hidden units
are binary. Hidden layers contain 400 units each. The
hyperbolic tangent nonlinearity is used instead of the
sigmoid. Weights and biases are initialized to zero
except for the input bias which is initialized as b =
tanh ™ ((z)gata). The mini-batch and the number of
particles of the training algorithm is set to 25, the
learning rate is set to n = 107° and the L2 weight
penalty is set to A = 0.04. We consider the following
two data sets (some samples are shown in Figure 3):

e Handwritten characters recognition: The
data set has been collected by van der Maaten
(2009) and consists of 40134 handwritten charac-
ters of size 56 x 56 along with their label (A-Z; 0-
9). The task is a 36-class classification task where
the label must be predicted from the raw pixel
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Figure 3: The handwritten characters recognition data
set is composed of images of size 28 x 28 representing
characters. The spoken words recognition data set is
composed of spectrograms of size 28 x 28 represent-
ing words and where 28 mel-frequency coefficients are
taken at 28 evenly distributed time steps.

Handwritten characters recognition
DBM(-FF)

DBN
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Spoken words recognition
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Figure 4: Example of filters learned by the deep net-
works (visualized by linear projection to the input). In
the DBN, filters are alternatively global and local, sug-
gesting that the representation is not evolving mono-
tonically from the pixel to the abstract representation.
On the other hand, filters learned by the DBM evolve
from local features to global features.
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representation. In our experiments, we subsample
the characters by a factor two leading to 28 x 28
binary images. The resulting 784-dimensional sig-
nal is fed as input to the deep network.

e Spoken words recognition: The data set is
based on the Dialect-SA subset of the TIMIT
speech corpus! consisting of two sentences of re-
spectively 11 and 10 words read by 630 differ-
ent speakers and labeled with their corresponding
phonemes and words. We consider a small vo-
cabulary task that consists of discriminating be-
tween the 21 words of the subset, leading to a data
set of 13230 samples (21 words x 630 speakers).
Samples are generated by evaluating the spectral
power at 28 mel-frequencies and 28 equidistant
positions in the word. The mel-frequency spec-
trum coeflicients are obtained by computing the
power spectrum on a 20 milliseconds Hamming
window and mapping the spectral coefficients on
the mel-scale using triangular overlapping win-
dows. The resulting (28 x 28)-dimensional real-
valued spectrum is whitened, binarized and fed
as input to the deep network.

We choose these two data sets because they are par-
ticularly well suited for unsupervised learning in deep
networks. Indeed, handwritten characters or spoken
words are taken in a stereotypical pose, that is, cen-
tered and isolated, ensuring that the deep network fo-
cuses on modeling the object itself and not perturbing
elements such as neighboring speech or handwriting.

Also, these objects are believed to be generated by
latent variables that represent them more efficiently
than the raw input space. These latent variables are
moreover related to the pixels through a deep hier-
archy of abstractions that can only be modeled effi-
ciently by a hierarchy of multiple layers. For example,
a character is composed of strokes that are each com-
posed of pixels. Similarly, a spoken word is composed
of syllabes that are composed of phonemes that are
composed of formants that are composed of spectral
coefficients. In absence of complex deep structures in
the data, the deep network is not able to improve the
raw representation substantially.

5 Results and Discussion

Results are presented in Figure 5 and 6 and confirm
the capacity of the DBM to enable the emergence of
a representation that evolves uniformly from the raw
sensory input to more abstract concepts as we move
from the input to the top layer. Figure 5 shows that

'www.ldc.upenn.edu/Catalog/LDC93S1.html
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Figure 5: Layer-wise analysis of the DBM-FF (see Eq.
1 and 2). As we move to the top layers, the prediction
error decreases and the reconstruction error increases,
showing that the labels progressively replace the raw
input in the leading components of the representation.
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Figure 6: Layer-wise evolution of the representation
for each deep network (see Eq. 3 and 4) where curves
are normalized so that e(0) = 1. The second layer of
the DBM is approximated well by a single feed-forward
pass. Also, the abstraction is built faster than in a
DBN due to the better filtering of irrelevant factors of
variation and the absence of layer-wise oscillations.
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DBM

DBN

Figure 7: Covariance matrices between top-down and
bottom-up contributions on 100 units of the first
hidden layer (Wax(V T2))qata. The diagonal is less
marked for the DBM than for the DBN suggesting that
the concepts represented in the top layer of the DBM
have a certain degree of independence with respect to
the concepts represented in the input layer. Such sep-
aration of concerns between different layers could ex-
plain why the feed-forward approximation works well
in practice.

on both datasets, the DBM filters much of the pixel
information and keeps only the abstract concepts in
the leading components of the top representation. On
the other hand, the greedy layer-wise training prevents
the construction of a solution that makes efficient use
of all layers. This effect can be observed in Figure 6
where the DBN learns abstract concepts in the first
layer, but is unable to further improve the representa-
tion in the second layer.

A remarkable fact is that a single feed-forward pass
in the DBM (DBM-FF) is sufficient in order to ap-
proach the level of abstraction obtained by letting the
DBM converge to its stationary modes. This can be
observed in Figure 6 where the DBM-FF almost re-
joins the DBM in the second layer both in terms of
prediction and reconstruction error. The DBM-FF ap-
proach also outperforms the other feed-forward archi-
tecture of study (i.e. the DBN) in terms of number of
layers necessary to build the abstraction. This result
corroborates the capacity of the DBM to organize the
solution into a feed-forward hierarchy of increasingly
abstract feature extractors.

Our quantitative analysis is further supported by vi-
sual inspection of learned filters. Figure 4 shows that
the DBM builds a hierarchy of increasingly global fil-
ters. On the other hand, the first and the third lay-
ers of the DBN contain global filters but the second
and the fourth layers map the representation back to
something similar to the raw pixel representation. We
believe that this alternate mapping between pixel-like
features and global features relates to the layer-wise os-
cillations described before. Also, the higher degree of
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independence between top-down and bottom-up con-
tributions (see Figure 7) supports the claim that the
DBM better separates concerns across layers.

Admittedly, supervised fine-tuning may mitigate to a
certain extent the inconsistencies of the learned feature
hierarchy—in that case, the unsupervised pretraining
plays merely the role of a regularizer (Erhan et al.,
2010)—Dbut the label information is often scarce and
typically insufficient to significantly alter the unsuper-
vised representation.

We have observed that the solution learned by the
DBN exhibits layer-wise oscillations that prevent the
feature hierarchy from quickly extracting the problem
relevant subspace from the raw representation. We
have observed that the stateful nature of the DBM
does not prevent the learning algorithm from orga-
nizing the learned solution into a coherent feature hi-
erarchy. From these observations, we may speculate
that instead of attempting to build a stateless model
by decomposing the problem into feed-forward sub-
components, it is generally better to allocate effort
in determining what is the most appropriate neural
network structure for a specific problem and letting
the feed-forward hierarchy emerge naturally from the
undirected model.

References

David H. Ackley, Geoffrey E. Hinton, and Terrence J.
Sejnowski. A learning algorithm for Boltzmann ma-
chines. Cognitive Science, 9(1):147-169, 1985.

Yoshua Bengio, Pascal Lamblin, Dan Popovici, and
Hugo Larochelle. Greedy layer-wise training of deep
networks. In Advances in Neural Information Pro-
cessing Systems 19, pages 153-160, 2007.

Mikio L. Braun, Joachim Buhmann, and Klaus-Robert
Miller. On relevant dimensions in kernel feature

spaces. Journal of Machine Learning Research, 9:
1875-1908, Aug 2008.

Dumitru Erhan, Yoshua Bengio, Aaron Courville,
Pierre-Antoine Manzagol, Pascal Vincent, and Samy
Bengio. Why does unsupervised pre-training help
deep learning? Journal of Machine Learning Re-
search, 11:625-660, 2010.

Isabelle Guyon, Gideon Dror, Vincent Lemaire, Gra-
ham Taylor, and David W. Aha. Unsupervised
and transfer learning challenge. In Neural Networks
(IJCNN), The 2011 International Joint Conference
on, pages 793-800. IEEE, 2011.

Geoffrey E. Hinton and Ruslan R. Salakhutdinov. Re-
ducing the dimensionality of data with neural net-
works. Science, 313(5786):504-507, July 2006.

804

Geoffrey E. Hinton and Terrence J. Sejnowski. Learn-
ing and relearning in Boltzmann machines. Paral-
lel Distributed Processing: Fxplorations in the Mi-
crostructure of Cognition, 1:282-317, 1986.

Geoffrey E. Hinton, Simon Osindero, and Yee-Whye
Teh. A fast learning algorithm for deep belief nets.
Neural Computation, 18(7):1527-1554, 2006.

John J. Hopfield. Neural networks and physical sys-
tems with emergent collective computational abili-
ties. Proceedings of the National Academy of Sci-
ences, 79(8):2554, 1982.

Grégoire Montavon, Mikio Braun, and Klaus-Robert
Miiller. Kernel analysis of deep networks. Journal
of Machine Learning Research, 12:2563-2581, 2011.

Radford M. Neal. Probabilistic inference using Markov
chain Monte Carlo methods. Technical report, Uni-
versity of Toronto, 1993.

Ruslan Salakhutdinov and Geoffrey Hinton. Deep
Boltzmann machines. In Proceedings of the Inter-
national Conference on Artificial Intelligence and
Statistics, volume 5, pages 448-455, 2009.

Bernhard Schélkopf, Alexander Smola, and Klaus-
Robert Miiller. Nonlinear component analysis as a

kernel eigenvalue problem. Neural Computation, 10
(5):1299-1319, 1998.

Tijmen Tieleman. Training restricted Boltzmann ma-
chines using approximations to the likelihood gradi-
ent. In Proceedings of the 25th International Confer-
ence on Machine Learning, pages 1064-1071, 2008.

Laurens van der Maaten. A new benchmark dataset
for handwritten character recognition. Technical re-
port, Tilburg University, 2009.



