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Abstract

Lifted inference approaches have rendered
large, previously intractable probabilistic in-
ference problems quickly solvable by han-
dling whole sets of indistinguishable objects
together.  Triggered by this success, we
show that another important Al technique is
liftable, too, namely linear programming. In-
tuitively, given a linear program (LP), we em-
ploy a lifted variant of Gaussian belief propa-
gation (GaBP) to solve the systems of linear
equations arising when running an interior-
point method to solve the LP. However, this
naive solution cannot make use of standard
solvers for linear equations and is doomed to
construct lifted networks in each iteration of
the interior-point method again, an operation
that can itself be quite costly. To address
both issues, we show how to read off an equiv-
alent LP from the lifted GaBP computations
that can be solved using any off-the-shelf LP
solver. We prove the correctness of this com-
pilation approac and experimentally demon-
strate that it can greatly reduce the cost of
solving LPs.

1 Introduction

Probabilistic logical languages, see [14, 11, 10] for
overviews, provide powerful formalisms for knowl-
edge representation and inference. They allow one to
compactly represent complex relational and uncertain
knowledge. For instance, in the friends-and-smokers
Markov logic network (MLN) [30], the weighted for-
mula 1.1 : fr(X,Y) = (sm(X) < sm(Y)) encodes that
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friends in a social network tend to have similar smok-
ing habits. Yet performing inference in these lan-
guages is extremely costly, especially if it is done
at the propositional level. Instantiating all atoms
from the formulae in a such a model induces a stan-
dard graphical model with symmetric, repeated po-
tential structures for all grounding combinations. Re-
cent advances in lifted probabilistic inference such
as [27, 12, 24, 33, 32, 8, 36, 16, 1] have rendered
many of these large, previously intractable problems
quickly solvable by exploiting the induced redundan-
cies. For instance lifted belief propagation (BP) ap-
proaches [33, 19, 1] have been proven successful on
several important Al tasks such as link prediction, so-
cial network analysis, satisfiability and boolean model
counting problems. They automatically group nodes
and potentials of the graphical model into supernodes
and superpotentials if they have identical computa-
tion trees (i.e., the tree-structured “unrolling” of the
graphical model computations rooted at the nodes).
Lifted BP then runs a modified BP on this lifted (com-
pressed) network.

Triggered by this success, in particular of lifted BP
approaches, we show that another important Al tech-
nique is liftable, too, namely linear programming. In-
deed, at the propositional level, considerable attention
has been already paid to the link between BP and
linear programming. This relation is natural since the
MAP inference problem can be relaxed into linear pro-
gramming, see e.g. [38]. At the lifted level, however,
the link has not been established nor explored yet. Do-
ing so significantly extends the scope of lifted inference
since it paves the way to lifted solvers for linear assign-
ment, allocation and flow problems as well as novel
lifted (relaxed) solvers for SAT problems, Markov de-
cision problems and maximum aposteriori (MAP) in-
ference within probabilistic models, among others. To
illustrate this, consider an extension of the friends-
and-smokers MLN [30] to targeted advertisement [7].
Suppose we want to serve smoking-related advertise-
ments selectively to the smoking users of a website
and advertisements not related to smoking, e.g. sport
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Figure 1: Computing an advertisement delivery sched-
ule: Number of variables in the lifted and ground LPs
(left) and measured time for solving the ground LP
versus time for lifting and solving (right).

ads, to the non-smoking users, as to maximize the ex-
pected number of advertisements that will be clicked
on. Companies make considerable revenue through ad-
vertising, and consequently attracting advertisers has
become an important and competitive endeavor. As-
sume that a particular delivery schedule for advertise-
ments is defined by the matrix show(AType,U) > 0 de-
noting the number of times that advertisement of type
AType is to be shown on a web site to a particular user
U, who may be a smoker with a certain probability, in a
given period of time (e.g. a day). Assume further that
we know the probability click(AType, UType) that ad-
vertisement of AType will be clicked on if shown to
a person type UType € {Sm,NonSm}. We model the
overall probability of an advertisement of certain type
to be clicked on by a given user, as the expectation
click(AType,U) :=

Z click(AType, UType) - prob(UType,U) .
UType

where prob(UType,U) is the probability that a user
is a smoker obtained by running inference in the
friends-and-smokers MLN. We can express the ex-
pected number of clicks for any schedule X as
2_atype 2y Prob(AType, U) - show(AType, U). Our goal
now is to find the schedule that maximizes this expec-
tation. However, companies typically enter into con-
tracts with advertisers and promise to deliver a cer-
tain number quota(AType) of advertisements of any
type, >, show(AType,U) > quota(AType). Moreover,
if a certain user visits the site only visits(U) times
per day, our daily delivery schedule should not ex-
pect to serve more than visits(U) advertisements to
them, >,. . show(AType,U) < visits(U). Thus, we
would like to find the schedule that maximizes the
expected number of clicks with respect to these con-
straints. This is a linear program and, since we can
exploit symmetries within the friends-smokers MLN; it
is intuitive to expect that we can also do so for solving
this linear program. As a sneak preview, we illustrate
in Fig.1 that this is indeed the case — compression and
efficiency gain are achieved when processing the linear
program with our method. To show why and how this
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can be done is exactly the focus of the present paper.
Specifically, our contribution is the first application of
lifted inference techniques to linear programming.

To start, we note that the core computation of Bickson
et al’s [4] interior-point solver for LPs, namely solv-
ing systems of linear equations using Gaussian belief
propagation (GaBP), can be naively lifted: replacing
GaBP by Ahmadi et al.’s [1] lifted GaBP. In fact, this
naive approach may already results in considerable ef-
ficiency gains. However, we can do considerably bet-
ter. The naive solution cannot make use of standard
solvers for linear equations and is doomed to construct
lifted networks in each iteration of the interior-point
method again, an operation that can itself be quite
costly. To address both issues, we show how to read
off an equivalent LP from the lifted GaBP computa-
tions. This LP can be solved using any off-the-shelf
LP solver. We prove the correctness of this compila-
tion approach, including a lifted duality theorem, and
experimentally demonstrate that it can greatly reduce
the cost of inference.

To do so, we proceed in three main steps. Step (S1)
motivates our approach by briefly reviewing LPs and
lifted GaBP and showing how to use lifted GaBP for
solving LPs. Step (S2) argues that we can read off an
equivalent system of linear equations, called lifted lin-
ear equations, from the computations of lifted GaBP,
thus avoiding to run a modified (Ga)BP. Finally, step
(S3) shows that this result can be extended to read-
ing off a single LP only, the lifted LP, thus avoiding
the time-consuming re-lifting in each iteration. Before
concluding, we present our empirical evaluation on two
different AT tasks.

2 (S1) Solving LPs by Lifted GaBP

A primal linear program LP is a mathematical pro-
gram of the following form:

MmaXy c’'x

st. Ax=b, x>0,

wherex € R",c € R",b € R™ and A € R™*", m < n.
We will also denote a LP in primal form as the tuple
LP = (A,b,c). Every primal LP has a dual linear
program LP of the form
miny, bly st. ATy <c,

where strong duality holds, namely, if x* and y* are
optima of both LP and LP, ¢"x* = bTy*. A well-
known approach for solving equality-constrained LPs,
i.e., LPs in primal form is the primal barrier method,
see e.g. [28], that is sketched in Alg. 1. It employs the
Newton method to solve the following approximation
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to the originial LP:
maXg,, cI'x—p Z::1 log
st. Ax=Db.

At the heart of the Newton method lies the problem
of finding an optimal search direction. This direction
is the solution of the following set of linear equations:

X2 AT] [Ax c+puXlte
A 0[]~ 0 )
——

=N

=:d =:f

where Ax is the Newton search direction, X is the di-
agonal matrix diag(x) and AT is a vector of Lagrangian
multipliers that are discarded after solving the system.

Recently, Bickson et al. [4] have identified an impor-
tant connection between barrier methods and proba-
bilistic inference: solving the system of linear equa-
tions (1) can be seen as MAP inference within a
pairwise markov random field (MRF) over Gaussians,
solved efficiently using Gaussian Belief Propagation
(GaBP). Specifically, suppose we want to solve a lin-
ear system of the form Nd = f where we seek the
column vector d such that the equality holds. Bick-
son et al. have shown how to translate this prob-
lem into a probabilistic inference problem. Given the
matrix N and the observation matrix f, the Gaus-
sian density function p(d) ~ exp(—id'Nd + f'd)
can be factorized according to the graph consisting
of edge potentials 1);; and self potentials ¢; as follows:
p(d) o< [Tin ¢i(di) [1;; ¥ij(dis dj), where the poten-
tials are Tﬁzj(dz,d]) = exp(—%diNijdj) and ¢z(d1) =
exp(—%Niidf + b;d;). The edge potentials v;; are
specified for all (i,7) s.t. N;; > 0. Computing the
marginals for d; gives us the solution of Nd = f. As
an illustration reconsider targeted advertisement from
the previous section. Instantiating the problem for two
people Alice and Bob gives us the following LP:

maxx ZUE{a,b} prob(Sm,U) - click(SmAd, U)

+ prob(NonSm, U) - c1lick(SpAd, U)

show(SmAd, a) + show(SmAd, b) > q(SmAd),
show(SpAd, a) + show(SpAd, b) > q(SpAd)
show(SmAd, a) + show(SpAd, a) < visits(a),
show(SmAd, b) + show(SpAd,b) < visits(b).

(2)

s.t.

’

Weiss et al.’s Gaussian belief propagation (GaBP) can
be used for inference [37]. GaBP sends real-valued
messages along the edges of the graph. Since p(x)
is jointly Gaussian, the messages are proportional
to Gaussian distributions A (uij,Pigl) with precision
Py = —N%PK;

Pn; = Pi + ZkENb(i)\j P

and mean fi;; = —PiglNijui\j where

0 O U b W N
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Algorithm 1: Primal Barrier Algorithm

Input: A, b, c, x°, x°, v, stopping criterion

Output: x* = argmax x| Ax=b,x>0} clx

k + 0;

while stopping criterion not fulfilled do
Compute Newton direction Ax by solving (1);
Set step size t by backtracking line search;
Update xF+1 = x* +t. Ax;
Choose pF+1 € (0, u*);
k+—k+1

return x”;

_ p-1(p. .~
HiNg = Pi\]. (Pn'/iii + ZkENb(i)\j Pki,uki)

for i # j and P; = Ny and fi; = b;/Ni;. Here,
Nb(i) denotes the set of all the nodes neighboring
the ith node and Nb(7) \ j excludes the node j from
Nb(7). All messages P;; are initially set to zero. The
marginals are Gaussian probability density functions
N(,uhPifl) with precision P; = Pj; + Zker(i) Py
and mean p; = Pijl (Piiﬁn- + Zker(i) Pkiuki). If the
spectral radius of the matrix N is smaller than 1 then
GaBP converges to the true marginal means (d = p).
We refer to [3] for details. Although already quite effi-
cient, many graphical models produce inference prob-
lems with symmetries not reflected in the graphical
structure. Lifted BP variants can exploit this struc-
ture by automatically grouping nodes (potentials) of
the graphical model G into supernodes (superpoten-
tials) — we denote by g ~ ¢’ that the nodes/factors
g and ¢’ have been compiled together into the same
supernode/superfactor — if they have identical com-
putation trees (i.e., the tree-structured unrolling of the
graphical model computations rooted at the nodes).
This compiled graph G is computed by passing around
color signatures in the graph that encode the mes-
sage history of each node. The algorithmic details of
color passing are not important for this paper, we re-
fer to [19]. The key point to observe is that the very
same process also applies to GaBP (viewing “identi-
cal” for potentials only up to a finite precision), thus
leading to the LGaBP algorithm introduced by Ah-
madi et al. [1], which runs a modified GaBP on the
lifted graph. The details of the modified GaBP are
not important. We only note that messages now in-
volve counts, denoted by f, that essentially encode how
often the message (potential) would have been used by
GaBP on the original network G. For instance, P;;
becomes now

_p. k pk .
Ppj = Pii + Zkes(i) il + <Zk€Nb(i)\i,j i Pri)

where Nb(7)\14,j denotes all neighbours of supernode i
without ¢ and j. The additional sum encodes the mes-
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sages between different nodes of the same supernode
S(7). For details, we refer to [1]. Consider the follow-
ing variant of (2) introducing symmetries by adding
one more person into the domain:

maxsx ZUG{ \ }prob(Sm,U) - click(SmAd, U)

+ prob(NonSm, U) - c1ick(SpAd, U) (3)
s.t. show(SmAd, p) > q(SmAd),

D (ane; ShoW(SmAd,p) > q(SmAd)

how(SpAd, p) > q(SpAd
D e ane; SBOW(SPA,P) > q(SpAd),

show(SmAd, a) + show(SpAd, a) < visits(a),
show(SmAd, b) 4+ show(SpAd, b) < visits(b),
show(SmAd, c) 4 show(SpAd, c) < visits(c).

Suppose we know as in the previous example that Al-
ice is a smoker. For the others, however, we have no
evidence. Thus they have identical cost in the objec-
tive and, due to the symmetric constraints, they are
equal at the optimum. This is exactly what can be
exploited by LGaBP.

Fig. 2 shows two ways to compute the solution of (1)
in a single step of the log barrier method for the linear
program given above. The first way (shown with dot-
ted lines) constitutes of converting the matrix N and
the vector f of our linear system (shown upper-left)
into the corresponding MRF (shown below it). This
MREF is lifted by color passing and by computing the
marginals using LGaBP we obtain the solution of the
linear system. From the picture it can be seen that
lifting would group together the nodes corresponding
to those who are indistinguishable in the MLN. The
second way, outlined with solid lines, and its benefits
are explained in the following.

3 (S2) Lifted Linear Equations

Recall that the modified GaBP sends messages involv-
ing counts. This suggests that we are actually run-
ning inference on a misspecified probabilistic model.
We now argue that this is actually the case. Specifi-
cally, we show that the lifted problem can be compiled
into an equivalent propositional problem of the same
size. The resulting set of lifted linear equations can be
solved using any standard solver, including GaBP. To
see this, we start by noting that LGaBP computes a
lifted, i.e., compiled version r € R¥ of the solution vec-
tor x with £ < n. The ground solution can be recov-
ered as x = Br where B encodes the partition induced
by the ~ relation due to the color passing. It can be
read off from the lifted graph G as follows: B;; = 1
if z; belongs to the j-th supernode of G, and B;; = 0
otherwise. The matrix B has full column rank. Thus,
when solving Ax = b using LGaBP, we find r such
that ABr = b . Multiplying by the left pseudoinverse
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Figure 2: Lifted solving of the targeted advertisement
LP with three persons. The dotted lines trace the
LGaBP solution, whereas the solid lines follow the pro-
cedure in (S2). (best viewed in color)

of B, i.e., (BTB)~!B” on both sides, one obtains
(B'B)"'B"ABr = (B'B) " 'B'b. (4)

The matrix Q := (BTB)"!BTAB is the well-known
quotient matrix [18] of the partition B of A. Interest-
ingly, a similar idea has been used to optimize Pager-
ank computations [2]. We state without proof that for
the case of GaBP models, the partitioning of the nodes
by color-passing corresponds to the so-called coarsest
equitable partition of the graph. A defining charac-
teristic of equitable partitions is that the following
holds [17]:

AB =BQ. (5)

Thus, Q is invertible if A is invertible. To see this, let
u be an eigenvector of Q, i.e., Qu = Au. Multiplying
from the left by B gives BQu = ABu. Plugging in
(5), this can be rewritten to ABu = ABu . Now, if A
is invertible, all its eigenvalues are non-zero. By the
above the eigenvalues A of Q are also non-zero; Q is
invertible.

Since we only deal with invertible matrices, both
Ax =b and (4) have a unique solution, and when
solving (4) to obtain r, then x = Br is the solution
of Ax = b. Since Q € R¥*¥ one obtains a problem
of size equal to the size of the lifted LGaBP graph.
Finally we note that BB is a diagonal matrix where
each entry on the diagonal is the (strictly positive)
count of the respective supernode. Thus, we can di-
rectly compute (BTB)~! and may also solve

B”ABr = B'b. (6)

instead of solving (4). In other words, instead of lift-
ing a solver for sets of linear equations, we lift the
equations themselves and employ any standard solver.
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Reconsider the targeted advertisement of the previ-
ous section and the solution of the linear system using
LGaBP. Applying (6) to the problem of computing the
Newton step for this program yields the second path
of Fig. 2.

4 (S3.1) Lifted Linear Programming

Are there also lifted linear programs? That is, can
we even avoid computing a set of lifted equations in
each iteration of the barrier method and instead au-
tomatically compile the original LP into an equivalent
LP that can be significantly smaller? In this section,
we show that this is the case. For instance, (3) can
automatically be compiled into (2).

Consider the linear system
Agv =co (7)

I, AT c
AT and ¢g = bl where

I, and I,, are identity matrices of size n and m. We
call this system the skeleton of the Newton search di-
rection equation (1). The following Lemma says that
the ~ relation induced on v when solving the skeleton
using LGaBP, denoted as ~y, is valid for solving (1) in
all iterations of the barrier method applied: if v; ~5 v;
then x* :x? for k=0,1,2,3,....

with Ay =

Lemma 4.1 Let x° be an interior point of a linear

program LP such that 29 = x? if vi ~s vj. Then
for all iterations k of the barrier method it holds that
7 7"

Proof We are proving this in two steps. First, we
prove that if ¢ ~; j for two variables ¢ and j then
1 ~y j for any ~ relation produced by running the bar-
rier method using LGaBP. Assume we are running the
barrier method solving (1) using LGaBP. The MRFs
constructed for all iterations k differ only in the self
potentials ¢, which in turn are completely specified by
the X = diag(x) =: n and ¢ + uX " !e =: m vectors.
The edge potentials are not changing over the itera-
tions of the barrier method. Consequently, the vectors
n and m also determine the lifting produced in each
iteration k since they encode the color signatures of
the nodes after one iteration of the color passing. So,
as long as n; = n; respectively m; = m; for all ¢ and
j with ¢ ~p 7, color-passing will result in a ~ relation
that respects i ~p j, i.e., if i ~ j then i ~, j. By
design, however, this holds for the ~j.

Now, in the second part, we prove that using ~, pro-
duces the same solution vector. We prove this by in-
duction on k. For k = 0, this holds by choice of the
initial feasible point. For k& — k+1, consider two nodes
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¢ and j with ¢ ~, j. First, ¢; = ¢; by construction of
the skeleton. Second, z¥ = xf is true due to the induc-
tion hypothesis. Thus, ¢; = ¢; + u% =c;+ ,u% = ¢;.
This proves the induction step for the ¢ + uX~'e val-
ues. In a similar way we can prove this for the —pX 2
values. Thus, the search direction vector Az respects
the partition induced by ~s. O

Due to the lemma, we have identified a partitioning
that is loop invariant of Alg. 1. We now show that a
subset of it can be directly applied to the matrix A
and the vector b of a primal LP.

We have already established that instead of running
LGaB we may also simply solve (6) using any standard
solver for systems of linear equations. When doing so,
the solution of the original problem is given as x =
Br. We now have to impose the following restriction:
when building the lifted graph of LGaBP, we leave the
first n variables ungrouped, even if the lifting tells us
some of them should be grouped together. Clearly, this
might result in loss of efficiency, although it does not
affect the correctness of the LGaBP result. However,
as we show below, it helps to derive a “relaxed” version
of (6), which is of particular interest to us since it
reveals how a lifted linear program can be constructed.
The restriction can be translated to the equations by
writing the block matrix B as

I 0

B = 0 Bum

: (®)

so that the result of the LGaBP computation is ex-
pressed as
Ax

At

I 0
0 By

r. (9)

Now we argue in a similar way as in the previous sec-
tion: if r is the lifted solution to (1), then BTNBr =

BTf, or
B) r =BT

(o

With (8) we can compute this system explicitly as

—puX—2 AT
A 0

c+puXle
0

—uX~-2 ATBy,

r =
BT A 0

. (10)

c+ que]

Note that BTINB is invertible since A has full row-
rank and the rows of BT, A are sums of disjoint sets
of the columns of A, thus By T A also has full row
rank. This means that the unique solution of (10) is
a solution of (1), even though B does not neccessarily
correspond to an equitable partition of N.
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LP Theorem 4.2 LP*
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Theorem 5.1

LP———LP*

Figure 3: Links between LPs and lifted LPs.

Now, consider the LP* = (BT,A,c, BT b) (note, the
fact that we compile the b-vector reveals why it is
present in the skeleton equation). We prove the fol-
lowing lifting theorem for primal LPs.

Theorem 4.2 For every linear program LP =
(A,b,c), there exists a linear program LP* =
(BT, A,B%,b, c) of smaller or equal size such that (1)
the feasible region of LP* is a superset of the feasi-
ble region of LP, (2) LP* has at least one solution in
common with LP, and (3) a common optimum to both
will be found by Alg. 1 given a suitable initial point.

Proof Let xq be a feasible solution of LP, i.e. Axy =
b. Mupltiplying B%, on both sides preserves equal-
ity. Thus, BY,Axq = BT, b. Therefore x is feasible
for LP*. This proves (1). Now, given an initial in-
terior point that preserves the lifting of the skeleton,
Eq. (1) for LP* is equivalent to (10) for LP in every
step of the primal barrier method due to Lemma 4.1.
That is, solving one step for LP* is equivalent to solv-
ing one step of LP using LGaBP since it obtains the
same search direction Ax (Eq. (9)). This proves (2).
Equality of both objective values also holds since the
objective functions of the two LPs are the same. This
proves (3). O

However, we have to be a little bit more careful. So
far, we have assumed the existence of an intial points
that preserves symmetries, i.e., the ~ relation. We
now justify this assumption.

Following Dantzig [9], we can always construct a mod-
ified version of LP, called by LP,, by adding an extra
variable x, associated with a very high cost R:

T

maxXy g, c'x— Rz,
st.  Ax+(b—Ax")z, =b,
x> 0,2, >0,

where " is any vector with positive components. This
LP has the following properties, see also [9]: (A) if R
is sufficiently high, then the set of optimal solutions
of LP, is the same as for LP, and (B) x = x*,z, =
1 is a wvalid feasible solution. Thus, one can choose
xzt = 1 which respects the symmetries of (7) for the
original LP. Moreover, it can be shown that (7) for
LP, has the same symmetries as for LP except that
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Algorithm 2: Lifted Linear Programming

Input: An inequality-constrained LP (A, b, c)
Output: x* = argmin g, ax<p) ¢ X

Construct the equality-constrained LP (A7, ¢, b);
Lift the corresponding skeleton equation (7) using
color-passing;

3 Read off the block matrix Bjy;

Obtain the solution r of the LP (AB,;,b,BT¢)
using any standard LP solver;
return x* = Br;

the extra variable z, will not be grouped with any
other variable.

5 (S3.2) Lifted Duality

Theorem 4.2 shows that for every linear program, we
can construct a possibly smaller linear program which
has the property that when solved by the primal bar-
rier method, or for that matter any other that main-
tains symmetries of this kind, will “simulate”, at least
partially, the use of lifted inference for the linear sys-
tem solution step, so that relifting in every iteration
can be avoided. The drawback of this method is that
since the feasible region of the new LP may be larger
than that of the original, it cannot be guaranteed that
if a solution is found under different conditions (e.g.,
different solver or a non-symmetric interior point), it
will still be valid for the original. As we show now,
this situation is remedied when working with inequal-
ity constrained LPs. So, how do the lifted versions of
LPs with inequality constraints look like? An elegant
way to see this is to consider the dual linear program
LP* of the lifted program LP*:

min,, (BY,b)Tw st. (BIL,A)Tw<c.

We show now that LP* is the lifted version of LP and
if w is a solution of LP* then y = B, w is a solution
to LP. In other words, we show a lifting theorem of
duality:

Theorem 5.1 (Lifted Duality) For every dual lin-
ear program LP = (AT, c,b) there exists an equiva-
lent dual linear program LP* = (ATBy,c,Bi/b) of
smaller or equal size, whose feasible region and optima
can be mapped to the feasible region and optima of LP.

Proof If w is a feasible solution of LP* then ¢ >
(BT, A)T'w = AT(Byw) = ATy. Thus, y = Byw is
a feasible solution of LP. Moreover, any optimum of
LP~ is an optimum of LP. To see this, let x,x*,y, w
be any optima of LP, LP*, LP and LP* respectively.
By strong duality it holds that ¢’x = by and c¢"x* =
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(BT, b)Tw. By Theorem 4.2 we have cTx = cTx*.
Therefore, bTy = (BY,b)Tw. O

Thus, if we want to lift an inequality constrained lin-
ear program, we can simply view it as the dual of some
primal program and apply Theorem 5.1. More impor-
tantly, however, the theorem tells us that the feasible
region of the lifted dual is a subset of the feasable re-
gion of the dual such that it countains at least one
optimum of the original problem. Thus, inequality-
constrained LPs can be solved by any LP solver as we
do not have to worry about initial points. This is sum-
marized in Alg. 2, which we call lifted linear program-
ming since using Theorems 4.2 and 5.1 the agorithm
can be applied to any form of LPs, cf. Fig. 3.

6 Illustrative Evaluation

Our intention here is to investigate the following ques-
tions: (Q1) Are there LPs that can be solved more
efficiently by lifting? (Q2) How much can we gain,
given that we sacrifice the coarsest lifting for the con-
struction of the lifted program. (Q3) How does lifting
relate to the sparse vs. dense paradigm. Is it only
making use of the sparsity in the LPs?

To this aim, we implemented lifted linear program-
ming within Python! calling CVXOPT? as LP solver.
All experiments were conducted on a standard Linux
desktop computer.

(Q1) Lifted MAP inference: As shown in previous
works, inference in graphical models can be dramat-
ically sped-up using lifted inference. Furthermore, a
relaxed version of MAP inference can be solved by lin-
ear programs using the well-known LP relaxation, see
e.g. [15] for details. Thus, it is natural to expect that
the symmetries in graphical models which can be ex-
ploited by standard lifted inference techniques will also
be reflected in the corresponding linear program. To
verify whether this is indeed the case we constructed
pairwise MRF's of varying size. We scaled the number
of random variables from 25 to 625 arranged in a grid
with pairwise and singleton factors with identical po-
tentials. The results of the experiments can be seen
in Figs. 4(a) and (b). As Fig. 4(a) shows, the number
of LP variables is significantly reduced. Not only is
the linear program reduced, but due to the fact that
the lifting is carried out only once, we also measure a
considerable decrease in running time as depicted in
Fig. 4(b). Note that the time for the lifted experiment
includes the time needed to compile the LP. This af-
firmatively answers (Q1).

'the implementation can be found at [25].
’http://abel.ee.ucla.edu/cvzopt/
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(Q2, Q3) Lifted MDPs: Another application of lin-
ear programs that we considered is the computation
of the value function in a Markov Decision Problem
(MDP). The LP formulation of this task is as follows
[22]:

maxy, 1Tv7 st. v, < cf + 'ijEQS pfjvj,
where v; is the value of state i, c¥ is the reward that
the agent receives when carrying out action k and pfj
is the probability of transfering from state ¢ to state j
by the action k. The MDP instance that we used is the
well-known Gridworld (see e.g. [35]). The gridworld
problem consists of an agent navigating within a grid
of n x n states. Every state has an associated reward
R(s). Typically there is one or several states with high
rewards, considered the goals, whereas the other states
have zero or negative associated rewards.

At first we considered an instance of gridworld with a
single goal state in the upper-right corner with a re-
ward of 100. The reward of all other states was set
to —1. As can be seen in Fig. 4(c), this example can
be compiled to about half the original size. Fig. 4(d)
shows that already this compression leads to improved
running time. We now introduce additional symme-
tries by putting a goal in every corner of the grid.
As one might expect this additional symmetry gives
more room for compression, which further improves ef-
ficiency as reflected in Figs. 4(e) and 4(f). The two ex-
periments presented so far affirmatively answer ques-
tion (Q1). However, the examples that we have con-
sidered so far are quite sparse in their structure. Thus,
one might wonder whether the demonstrated benefit
is achieved only because we are solving sparse problem
in dense form. To address this we convert the MDP
problem to a sparse representation for our further ex-
periments. We scaled the number of states up to 1600
and as one can see in Fig. 4(g) and (h) lifting still re-
sults in an improvement of size as well as running time.
Therefore, we can conclude that lifting an LP is ben-
eficial regardless of whether the problem is sparse or
dense, thus one might view symmetry as a dimension
orthogonal to sparsity which answers question (Q3).
Furthermore, in Fig. 4(h) we break down the measured
total time for solving the LP into the time spent on lift-
ing and solving respectively. This presentation exposes
the fact that the time for lifting dominates the overall
computation time. Clearly, if lifting was carried out in
every iteration (CVXOPT took on average around 10
iterations on these problems) the approach would not
have been competitive to simply solving on the ground
level. This justifies that the loss of potential lifting
we had to accept in order to not carry out the lifting
in every iteration indeed pays off (Q2). Remarkably,
these results follow closely what has been achieved
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Figure 4: Experimental results (best viewed in color).

with MDP-specific symmetry-finding and model min-
imization approaches [26, 29, 13].

7 Discussion and Conclusion

We presented the first application of lifted inference
techniques to linear programming. The resulting lifted
linear programming approach compiles a given LP
into an equivalent but potentially much smaller LP by
grouping variables respectively constraints that are in-
distiguishable given the objective function and apply a
standard LP solver to this lifted LP. The experimental
results show that efficiency gains can be achieved.

Indeed, the link established here is related to
symmetry-aware approaches in (mixed-)integer pro-
gramming [23]. Howerver, they are vastly different
to LPs in nature. Symmetries in ILP are used for
pruning the symmetric branches of search trees, thus
the dominant paradigm is to add symmetry break-
ing inequalities, similarly to what has been done for
SAT and CSP [31]. In contrast, lifted linear program-
ming achieves speed-up by reducing the problem size.
Furthermore, state-of-the-art symmetry detection for
ILPs computes so-called orbit partition of the graph
whose colored adjacency matrix is the skeleton equa-
tion. This is a "graph isomorphism”-complete prob-
lem, whereas our approach detects symmetries in time
O(n?logn) [6]. Moreover, the orbit partition of a
graph is a refinement of the coarsest equitable par-
tition, thus our approach results in more compression.
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Regarding LPs, the work by Boedi et al. is probably
the closest in spirit [5]. They showed that the set of
combinatorial symmetries of the polytope that respect
the objective can be used for compression. However,
no polynomial algorithm for finding those symmetries
was presented; instead they fell back to orbit partition-
based methods in their experiments.

Given the current surge of interest in lifted inference,
probably the most promising avenue for future work is
to establish a similar strong link between MAP infer-
ence and LPs at the lifted level as it is known for the
ground level [38, 20, 15, 21, 34]. Since, random vari-
ables easily become correlated within complex appli-
cations by virtue of sharing propagated evidence, one
should develop approximate lifted LP approaches to
still gain compression. Exploring the close connection
to symmetry breaking in ILPs, CSPs, and MDPs and
how the ideas carry over to lifted LPs is a promising
future direction. Given the success of relational lan-
guages for probabilistic models, one should develop a
relational LP specification language and exploit it for
lifted linear programming. As lifting LPs itself is a ma-
jor advance, its application to other Al and machine
learning tasks and techniques such as regression and
experimental design is another important direction.
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