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Abstract

Graph partitioning algorithms play a central role
in data analysis and machine learning. Most use-
ful graph partitioning criteria correspond to opti-
mizing a ratio between the cut and the size of the
partitions, this ratio leads to an NP-hard problem
that is only solved approximately. This makes
it difficult to know whether failures of the algo-
rithm are due to failures of the optimization or to
the criterion being optimized.

In this paper we present a framework that seeks
and finds the optimal solution of several NP-hard
graph partitioning problems. We use a classical
approach to ratio problems where we repeatedly
ask whether the optimal solution is greater than
or less than some constant - λ. Our main insight
is the equivalence between this “λ question” and
performing inference in a graphical model with
many local potentials and one high-order poten-
tial. We show that this specific form of the high-
order potential is amenable to message-passing
algorithms and how to obtain a bound on the op-
timal solution from the messages. Our exper-
iments show that in many cases our approach
yields the global optimum and improves the pop-
ular spectral solution.

1 Introduction

Graph partitioning is the problem of dividing the vertices
of a graph into sets, minimizing the number (or weight)
of edges between sets (the cut), while penalizing for “too
small” sets. Graph partitioning has many applications start-
ing from clustering genes, through optimizing financial
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Figure 1: Graph partitioning. (a) Minimal cut yields a bad
partition of the graph. (b) The global optimum of average
cut, found using our method.

problems and parallel scientific computing to image seg-
mentation.

Although there are an exponential number of graph par-
titions, finding the minimum cut of a graph, without size
considerations, is a well-studied problem and efficient al-
gorithms exist for solving it. However, the minimum cut
criteria favors cutting small sets of isolated vertices in the
graph (Wu and Leahy, 1993, Shi and Malik, 2000), as can
be seen in Figure 1. To avoid this unnatural bias for parti-
tioning out small sets of points, other measures that involve
optimization on some attribute (e.g. the size) of the sets, in
addition to the size of the cut, are usually used. Probably
the most well known out of them is normalized cut (Shi and
Malik, 2000). Normalized-cut seeks to maximize the sim-
ilarity within the sets while minimizing the dissimilarity
between the sets. Other measures include size-normalized
cut (or average cut) that maximizes the sizes of the sets,
and the Cheeger cut. The optimization function of these
3 mentioned measures, and of many other graph partition-
ing measures, is NP-hard to solve. This NP-hardness of
the problem yielded approaches that try to find other sim-
ilar criteria that are easy to optimize. Hochbaum (2010)
showed that a variant of normalized-cut can be solved in
polynomial time and achieves good image segmentation.
However, most approaches try to tackle this hardness by
solving a relaxed version of the problem, for example us-
ing spectral methods. Solving the relaxed problem usually
leaves us with a big interval in which the optimal solution
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can be found. This makes it difficult to know whether fail-
ures of the algorithm are due to failures of the optimization
or to the criterion being optimized.

In this paper we develop a framework to find the optimal
solution for graph partitioning problems that are ratios of
the form f(x)/g(x) where f(x) is the cut size and g(x)
is a function of the size of the partitions. We use a clas-
sical approach where we repeatedly solve the λ question:
minxf(x) − λg(x). The answer to the λ question tells us
whether the optimal solution is better than λ or not. Our
main insight is that we can solve the λ question efficiently
using recently developed techniques for Markov Random
fields (MRFs) with high order potentials (HOPs) (Tarlow
et al., 2010, Rother et al., 2007, Weiss et al., 2007). We
show that the specific form of the HOP is amenable to mes-
sage passing and show how to derive a bound on the opti-
mal solution from the messages. Our experiments show
that message passing often succeeds in solving the λ ques-
tion in short time. Using a bisection algorithm over λ we
succeed in improving the bounds on the optimal solution
and in some examples to find it.

2 Notations and Preliminaries

The set of points in an arbitrary feature space are repre-
sented as a weighted undirected graph G = (V,E), |V | =
n, where the vertices (or nodes) of the graph are the points
in the feature space, and edges are formed between pairs
of nodes. The weight on each edge, w(i, j) = wi,j , is a
function of the similarity (or affinity) between nodes i and
j. We use the notations d(i) =

∑
j wi,j for the sum of

edges of node i and deg(i) as the degree of vertex i. We
define as the neighbors of i, Nei(i), the set of nodes that
are connected to i by an edge. The Laplacian of the graph
is defined as L = (D −W ), where D is a n × n diagonal
matrix with d on its diagonal, andW is a n×n symmetrical
matrix with W (i, j) = wi,j .

The graph can be partitioned into two disjoint sets,
A,B s.t A∪B = V, A ∩ B = ∅ by simply remov-
ing edges connecting the two parts. The degree of
similarity between these two parts can be computed
as the total weight of the edges that have been re-
moved. In graph theoretic language, it is called the cut:
cut(A,B) =

∑
i∈A,j∈B wi,j . We will use the indicator

vector x ∈ {0, 1}n to indicate to which group each node
belong and get cut(x) =

∑
i,j xi(1− xj)wi,j .

2.1 Ratio Optimization Problems for Graph
Partitioning

We can find in several graph partitioning measures 2 op-
posite goals: The first is minimizing the cut and the sec-
ond is maximizing some property of the sets (e.g. their
size). Usually these two goals are combined to one ratio

Figure 2: The λ Question.

optimization problem. We mention here graph partitioning
measures which are ratio problems:

1. Average cut cut(x)‖x‖ + cut(x)
(n−‖x‖) =

n∗cut(x)
‖x‖(n−‖x‖)

2. Normalized cut cut(x)∑
i|xi=0 di

+ cut(x)∑
i|xi=1 di

=
∑
i di∗cut(x)∑

i|xi=0 di
∑
j|xj=1 dj

3. Cheeger cut cut(x)
min(‖x‖,n−‖x‖) .

2.2 The λ Question

We use a classical approach (Hochbaum, 2010) for max-
imizing a fractional objective function with positive de-
nominator (see figure 2). Given a problem of the form:
minx

f(x)
g(x) , we reduce it to a sequence of calls to an oracle

that provides the answer to the λ-question: Is minx f(x)−
λg(x) less than, greater than or equal to 0? If the answer
is equal to 0, the optimal solution to the original fractional
problem is λ and the same x∗ that minimizes f(x)−λg(x)
minimizes also the fractional objective function. If the an-
swer is less than zero, then the optimal solution has a value
smaller than λ and otherwise, the optimal value is greater
than λ (that is because f(x) − λg(x) < 0 ⇔ f(x)

g(x) < λ

given that g(x) > 0). Assuming we have an initial upper
bound U , and lower bound L on the optimal solution, we
can use a bisection method to find the optimal solution. Us-
ing the bisection method we can get as close as ε to the op-
timal solution solving O(log(U−Lε )) times the λ-question.
Therefore, if the linearized version of the problem, i.e. the
λ-question, is solved in polynomial time, then so is the ratio
problem.

3 The λ Question as a MRF

Although the λ question gets rid of the ratio
minxf(x)/g(x) and replaces it with the simpler form
minxf(x) − λg(x) we are still faced with minimizing
over x and the number of possible values of x is still
exponential in the graph size. The fundamental insight
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Figure 3: The Graphical Model. We have pairwise poten-
tials for pairs of nodes with edge between them and a global
node, the α node. The α node is connected to all the other
nodes and is a cardinality potential.

behind our algorithm is that we can efficiently solve the
λ question by using message passing algorithms with
tractable high order potentials.

In order to solve the λ question for the three
cut problems mentioned above, we need to find
argminx∈{0,1}n,‖x‖>0 cut(x) − λg(x). Notice that we
have turned to finding the argument that minimize the ob-
jective function since we will need it to get the parti-
tioning. Defining the potentials: φα(x) = −λg(x) and
ψi,j(xi, xj) = 1[xi 6= xj]wi,j we can rewrite it as:

x∗ = arg min
x∈{0,1}n

∑

<i,j>

ψi,j(xi, xj) + φα(x) (1)

We can formulate this optimization problem using a graph-
ical model over binary random variables {xi}ni=0. We de-
fine the MRF with the above potentials (see Figure 3 for
graphical view):

P (x) ∝
∏

<i,j>

exp(−ψi,j(xi, xj)) exp(−φα(x)) (2)

We wish to find x∗ = argmaxx P (x). In principle we can
use any inference algorithm for MRFs, but note that for the
bisection algorithm to work, it is not enough to solve the
λ question approximately. We need an algorithm that can
give a rigorous bound on the optimal solution.

A classical approach for obtaining bounds on the optimal
solution in such problems is linear programming relax-
ations (e.g. Wainwright and Jordan, 2008) but it is easy
to show that due to the high order potential φα(x), even
a first-order LP relaxation will have an exponentially large
state space. Instead we follow a number of recent works:
Tarlow et al. (2010), Weiss et al. (2007), Werner (2007),
Globerson and Jaakkola (2007) in which message passing
is used to solve the dual of the LP relaxation.

3.1 Convex Belief-Propagation Message Passing

We use the “default” convex belief propagation (BP) mes-
sages from Weiss et al. (2007, 2011). These are based on
approximating the joint entropy of all variables with a com-
bination of entropies over single variables and pairs of vari-
ables: H ≈ ∑

i ciHi + cαHα +
∑
<ij>Hij +

∑
iHiα.

We choose ci = −deg(i)
2 , cα = −n + 1 , where deg(i)

is the degree of node i. It can be shown that this com-
bination yields a convex entropy approximation. Substi-
tuting these constants into equations 6.18-6.20 from Weiss
et al. (2011), using ρi = 2

deg(i)+2 , Fi,j = exp(−ψi,j) and
Fα = exp(−φα) we get the following message passing and
beliefs equations:

mi→j(xj) = max
xi

Fi,j(xi, xj)Fi(xi)
ρi

mα→i(xi)
∏

k∈Nei(i)\j
mρi
k→i(xi)m

ρi−1
j→i (xi) (3)

mi→α(xi) =

F ρii (xi)
∏

k∈Nei(i)
mρi
k→i(xi)m

ρi−1
α→i (xi) (4)

mα→i(xi) = max
x\xi

Fα(x)
∏

k 6=i
mk→α(xk) (5)

bi(xi) = F ρii (xi)mα→i(xi)
∏

k∈Nei(i)
mρi
k→i(xi) (6)

bα(x) = Fα(x)
∏

j

mj→α(xj) (7)

bij(xi, xj) = Fij(xi, xj)
bi(xi)bj(xj)

mj→i(xi)mi→j(xj)
(8)

biα(x) =
bi(xi)bα(x)

mα→i(xi)mi→α(xi)
(9)

Given the messages and beliefs after each iteration we can
compute the labeling of xi as described in Kolmogorov
(2006): We order the nodes by the value of their maximal
belief in descending order, let S(i) be this order. We then
go by this order over the nodes choosing label x∗(t)i that
maximizes:

x
∗(t)
i = argmax

xi
Fi(xi)m

(t)
α→i(xi)

∏

S(j)<S(i)

Fij(xi, xj)
∏

S(j)>S(i)

m
(t)
j→i(xi) (10)
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Figure 4: Energy and lower bound as a function of the iteration of the BP. (a) energy reached a value below zero → the
λ chosen is greater than the optimal solution (b) bound reached a value above zero → the λ chosen is smaller than the
optimal solution (c) the bound coincides with the energy→ we have found the global optimum.

Using this computed labeling, x∗(t) , we can infer the prob-
ability (and the energy) after each iteration. It is shown in
Weiss et al. (2007) that at each iteration we can compute
the bound on the optimal solution:

Pr(x) ≤ 1

z

∏

i

∏

j∈Nei(i)
maxxi,xj (

b
(t)
ij (xi, xj)

b
(t)
i (x)

)
1
2

maxxFα(x)
∏

i

b
(t)
i (xi)

m
(t)
α→i(xi)

= B(t) (11)

If this bound coincides with the energy of our current x∗(t)

then we know we have found the global optimum.

Figure 4 shows the usual behaviors of the energy and bound
as a function of the iteration of the BP.

3.2 Tractable High Order Potentials

Our MRF includes pairwise potentials -
exp(−ψi,j(xi, xj)) and a n order potential - exp(−φα(x)).
Naively computing messages using max product message
passing algorithm for n-order potential takes O(2n). But
examining the global factor φα(x) for the three cases
discussed above shows that both the computation of
the messages and the computation of the bound can be
performed in polynomial time:

1. Average cut cut(x)
‖x‖ + cut(x)

(n−‖x‖) = n∗cut(x)
‖x‖(n−‖x‖) . Here

the global factor α is a cardinality based potential, i.e.
all partitions that have the same size have exactly the
same global factor φ(x1, . . . , xn) = f(

∑
i xi). For

cardinality-based potentials, it can be shown that all
the n messages outgoing from this potential and the
bound can be computed in O(n log n) (Tarlow et al.,
2010).

Let us look more carefully on how we compute the
second part of the bound from equation 11 (the first
part, i.e. the one that involves the pairwise beliefs, can

be computed in O(|E|) that in a sparse graph turns to

O(n)). We want to find maxxFα(x)
∏
i

b
(t)
i (xi)

m
(t)
α→i(xi)

=

maxxFα(x)
∏
i v

(t)(xi). In the general case this
computation requires O(2n), the number of different
possibilities for x, but in the case where Fα(x) is a
cardinality potential we will now show how to com-
pute it in O(n log n). Moving to log space and plug-
ging in the global factor of average cut we get:

max
x

λ ‖x‖ (n− ‖x‖) +
∑

i

v(t)(xi) =

max
k

λk(n− k) + max
x s.t ‖x‖=k

∑

i

v(t)(xi) (12)

Notice that the last maximization in equation 12 re-
sembles the famous knapsack problem (e.g. see Cor-
men (2001)): Given k we wish to pick a set of nodes
such that their total weight equals k and will maximize
the total value. This is a special case of the knapsack
problem since all the weights are equal, using sorting
we can solve it in O(nlogn).

2. Normalized cut cut(x)∑
i|xi=0 di

+ cut(x)∑
i|xi=1 di

=
∑
i di∗cut(x)∑

i|xi=0 di
∑
i|xi=1 di

. Here the global factor α

is a weighted-cardinality based potential, where
the weights are the degrees of the nodes -
φ(x1, . . . , xn) = f(

∑
i dixi). In a similar way

to the way we developed equation 12 it can be shown
that for computing the bound we need to solve

max
d

λd(
∑

i

di − d) + max
x s.t

∑
i xidi=d

∑

i

v(t)(xi)

(13)
This is again a knapsack problem: we wish to find a
set of nodes whose total weight is d and maximize the
overall value. Without any constraints on the weights,
this problem is intractable, but if we assume the affini-
ties (and hence the weights) are integers, then we can
use dynamic programming as in Cormen (2001), to
solve the bound (and the messages in a similar way)
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in O(n2D) where D is the maximal degree of a node
in the graph.

3. Cheeger cut cut(x)
min(‖x‖,min(n−‖x‖) . Here again this is a

cardinality based potential so messages and bound can
be computed in O(n log n) (Tarlow et al., 2010).

3.3 Tightening by Conditioning

As mentioned above, the message-passing algorithm we
use is equivalent to solving the dual of the linear program-
ming relaxation. When the LP relaxation is not tight, the
message-passing may converge to “tied beliefs”, when the
maximization for x∗i does not have a unique maximum and
the bound (Eq. 11) will not agree with Pr(x∗) (Eq. 2). Sev-
eral approaches to tightening the LP relaxation have been
proposed: Komodakis et al. (2007), Sontag et al. (2008),
Rother et al. (2007), Boros et al. (2006). We use a simple
algorithm adapted from the probing algorithm of Rother
et al. (2007), Boros et al. (2006). The basic idea is that,
for any function over a set of variables x, minxE(x) =
min(minxE(x|x(i) = 0),minxE(x|x(i) = 1)), so if we
cannot find minE(x) directly we can condition over one
of its nodes, fix it once to 1 and once to 0 and then solve
the new optimization problems. If we still did not solve
the original optimization problem (i.e. solved all the new
optimization problems) we can add more and more vari-
ables. In general if we condition over k nodes we have
2k−1(minus 1 because of the symmetry for binary vari-
ables) optimization problems to solve. Partial solutions (i.e.
for some of the conditioned problems) enable us to prune
some branches from this tree of conditioned problems. For
example, if we found minxE(x|x(1) = 0) but did not
find minxE(x|x(1) = 1) when we add another variable to
the conditioning we only need to solve minxE(x|x(1) =
1, x(2) = 0), minxE(x|x(1) = 1, x(2) = 1) since
minxE(x|x(1) = 0) = min(minxE(x|x(1) = 1, x(2) =
0),minxE(x|x(1) = 1, x(2) = 1)).

In order to choose which node to fix (after the first ran-
dom choice) we used the following heuristic: we compute
the entropy of the beliefs of each node after each full BP
run and choose the node that its total entropy is the largest.
That is, we try to fix the nodes most uncertain about their
labeling.

3.4 Algorithm Summary

We summarize our algorithm for finding the optimal solu-
tion for graph partitioning with fractional objective func-
tion in Algorithm 1. Please notice that in order to solve the
λ question we usually do not need to find Ẽ∗current exactly.
In order to know Ẽ∗current is below zero all we need is to
find a specific x(t) for which Ẽ(x(t)) < 0 (see Figure 4a).
The bound gives us this service from the other end (Figure
4b). We compute the current energy and bound efficiently

Algorithm 1
1: Ẽ(x;λ) = f(x)− λg(x)
2: λlower ← initial lower bound (default: 0)
3: λupper ← initial upper bound (default: guess x, f(x)g(x) )
4: while λlower + ε < λupper do
5: λcurrent =

λlower+λupper
2

6: Using convex BP with HOP and conditioning find:
Ẽ∗current=minx Ẽ(x;λcurrent)

7: if Ẽ∗current==0 then
8: λlower = λupper = λcurrent
9: else

10: if Ẽ∗current < 0 then
11: λupper = λcurrent
12: else
13: λlower = λcurrent
14: end if
15: end if
16: end while

every few iterations, usually, this allows us to terminate our
BP before its convergence. We will wait until convergence
when Ẽ∗current = 0, in this case we will know we have
found the optimal solution (Figure 4c). We emphasize that
without the bound we could answer the λ question only in
cases where we found an example for which Ẽ(x(t)) < 0 .

4 Experiments

We used our method to find the optimum of average cut
problem on several benchmark problems: from clustering
two dimensional points, through image segmentation to fi-
nancial optimization. In all the experiments the input was
the symmetric affinity matrix containing the affinities be-
tween each pair of data points. Our initial upper bound was
the spectral solution (using zero as a threshold on the sec-
ond smallest eigenvector of the Laplacian to partition the
points) and the lower bound was the second smallest eigen-
value (the Fiedler value). We also provided to the method
the required interval between the upper bound to the lower
bound, if we achieved it we announced we got to the opti-
mal solution1.

Notice that for a fixed λ our method has a random compo-
nent - the first conditioned variable. It might be that in two
runs using the same λ one run of the algorithm will answer
the λ question and the other will not. Because of that, if our
algorithm did not succeed to answer the λ question we do
3 more trials before terminating the entire run announcing
we failed to find the optimal solution.

1Using the bisection algorithm we cut by half the interval be-
tween the lower and upper bounds on each successful iteration.
Since the computer has limited accuracy we can announce that
we have found the optimal solution when the interval is small
enough.
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Though we did not put an effort in optimizing our code,
we mention here that running the experiments took from
several seconds (when the number of nodes, n was 25) to
several tens of minutes (n = 37, 376).

We have made the code to reproduce these results avail-
able online, it can be downloaded at http://www.cs.
huji.ac.il/~mezuman/code/avgcut.tar.

Clustering Two-Dimensional Data Points

The similarity between every pair of 25 two dimensional
data points was set to the exponent of the negative squared
distance between the points divided by σ2 = 6.25, that is,
wi,j = exp(

−‖xi−xj‖2
σ2 ). We used the same two dimen-

sional data points as in Frey and Dueck (2007). As can be
seen in Figure 5 our method got the the optimal average
cut.

Clustering Images Derived from Olivetti Face
Database

We took the data for the faces images from Frey and Dueck
(2007): “Each 64×64 face image from the first 100 images
in the Olivetti database was smoothed using a Gaussian
kernel with σ=0.5 and then rotated by -10°, 0° and 10°
and scaled by a factor of 0.9, 1.0 and 1.1 (using nearest-
neighbor interpolation), to produce a total of 900 images.
To avoid including the background behind each face, a cen-
tral window of size 50×50 pixels was extracted. Finally, the
pixels in each 50×50 image were normalized to have mean
0 and variance 0.1. The similarity between two images was
set to the negative sum of squared pixel differences”. The
input affinities to our method were the exponent of the sim-
ilarities between images, which was just described, divided
by σ2 = 1.69. In this experiment our method proved that
the solution received from the spectral method is the opti-
mal average cut by improving the lower bound. The best
average cut divided the 900 images to 810 images of differ-
ent people and 90 images of the same person. The results
can be seen in Figure 6.

Image Segmentation

Our next experiment was on images. Each pixel in the im-
age was a node in the graph and the weights of the edges
were computed using intervening contours (Leung and Ma-
lik, 1998) using the implementation provided by Cour et al.
(2010).

The first image we examined was a baby image (Figure 7d),
which was taken from Cour et al. (2010). When we used
the image in its original size (132x130) the optimal average
cut that was found using our method (Fig. 7a) was not good
for image segmentation - the cut separated 2 pixels from
all the other pixels. We must emphasize that these 2 pixels
are connected to the rest of the image. When we resized
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Figure 9: Finance256. The lower and upper bounds on the
optimal solution for average cut after each iteration of the
bisection algorithm. As can be seen our method succeeded
to improve the upper bound (found a better average cut than
the spectral one) but failed to improve the lower bound.

the image to half of its original size, our method found the
global optimum (Fig. 7b) that separated the baby from the
background (Fig. 7e). The spectral method also finds this
partition, but cannot prove that it is optimal as there is still
a gap between the spectral lower and upper bounds.

The second image we experimented on, ’a man with a
hat’ (Fig. 7f), was taken from the Berkeley segmentation
dataset (Martin et al., 2001). The image’s size was first
reduced to 160x107 pixels. Looking on the image segmen-
tation that we got (Fig. 7h) we can see that although the
optimal solution is 10% better in value than the spectral
solution, the differences are in only few pixels. This differ-
ence can merely be noticed (Fig. 7g).

To obtain a better measure of the success of our method, we
ran our method over the 200 training images of Berkeley
segmentation dataset, after resizing them to 100x67 pixels
(having total of 6,700 nodes). We compared the interval be-
tween the upper and lower bounds on the optimal solution
before using our method (i.e. using the spectral method)
and after using our method. For 59% of the images we
improved this interval finding for 88% of the images the
global optimum up to accuracy of 0.1, see Figure 8.

Financial Optimization

We downloaded the affinity matrix known as finance256
(its graph partition has application for financial optimiza-
tion), from The University of Florida Sparse Matrix Col-
lection (Davis et al., 1997). It is one of the graph partition-
ing benchmark problems experimented on by Dhillon et al.
2007. This problem contains 37, 376 nodes and 130, 560
edges. In this experiment we failed to find the optimal aver-
age cut, but did succeed to find a better cut than the spectral
solution and improve the upper bound, see Figure 9.
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Figure 5: Clustering two dimensional data points. (a) The lower and upper bounds on the optimal solution for average cut
after each iteration of the bisection algorithm. (b) The spectral solution for average cut for this problem. (c) The optimal
average cut found using our method

1 2 3 4 5 6 7

7

7.5

8

8.5

9
x 10

−7

iteration

a
v
e
ra

g
e
 c

u
t

 

 

upper bound

lower bound

a b c

Figure 6: Clustering Images Derived from Olivetti Face Database. (a) The lower and upper bounds on the optimal solution
for average cut after each iteration of the bisection algorithm. (b) Random sample of 25 faces from the larger part of the
cut (810 images). (c) Random sample of 25 faces from the smaller part of the cut (90 images).
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Figure 7: Image Segmentation. The lower and upper bounds on the optimal solution for average cut at each iteration of
the bisection algorithm, for the (a) original and (b) resized baby images and (c) ’a man with a hat’ image. (d) Baby input
image (e) Segmentation result on the resized image (f) ’A man with a hat’ input image. Segmentation results using: (g) the
spectral method (h) our method .
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Figure 8: Statistics on the success of our method to find the global optimum of average cut. The statistics were done on
180 resized images from Berkeley segmentation dataset. Histograms showing the differences between the upper and lower
bounds for average cut when using (a) spectral method - SP (b) our method - BP. (c) BP interval vs. SP interval, points
below the diagonal are images for which our method decreased the upper-lower bounds interval.

2d Points Faces Baby Baby (small) Man Finance
Cour et al. (2010) code for normalized-cut (ncut) 3.5e-01 4.3e-03 1.0e-03 9.8e-04 1.9e-04 9.9e-02

ncut using the partitioning from average cut 3.6e-01 7.8e-07 4.2e-06 9.8e-04 1.4e-04 2.3e-03
ratio 104.40% 0.02% 0.42% 100.00% 72.63% 2.33%

Table 1: Comparison of the normalized cut value achieved using the spectral method (using the code from Cour et al.) and
using the partition found for average cut using our method.

Normalized cut

As mentioned above, when the affinities are integers, our
framework allows solving the normalized cut. For the case
when the affinities are not integers, we experimented with
simply using the average cut algorithm since it has been
shown, e.g by Soundararajan and Sarkar (2001), that aver-
age cut and normalized cut often have very similar results.
We compared our results to the spectral method that di-
rectly attempts to approximately optimize the normalized
cut (Shi and Malik, 2000). As can be seen in Table 1, usu-
ally, when the spectral average cut was improved using our
method the same partitioning also improved the spectral
normalized cut.

5 Discussion

In this paper we presented a new framework to find the
global optimum of graph partitioning problems. The ba-
sic building blocks of our method are: (1) Linearizing a
ratio problem to get the λ question (Hochbaum, 2010). (2)
Convex message passing algorithm with a bound on the ob-
jective function (Weiss et al., 2007).(3) Efficient MAP in-
ference with high order potentials (Tarlow et al., 2010).(4)
Tightening linear programming relaxation using condition-
ing. (Rother et al., 2007, Boros et al., 2006). By using tools
from graphical models we were able to efficiently answer
the λ question and provably find the global optimum for
fractional graph partitioning problems.

For some of the experiments we have conducted, the sim-

ple conditioning algorithm we have used did not tighten the
LP relaxation enough: our convex BP method converged
to beliefs with “ties”. Specifically, when we conducted
experiments on larger images (e.g. 240x160 pixels, 38k
nodes) conditioning on only few (up to 10) variables was
not enough and we got beliefs with ties. We plan to deal
with these cases by adapting ideas from Sontag et al. (2008)
who tighten the relaxation by adding an explicit treatment
for "frustrated cycles" (i.e. 3). In our problems, we have
found that no frustrated cycles exist between nodes that
correspond to datapoints, so we need to modify the algo-
rithm in Sontag et al. (2008) to deal with the high order
potential. We also plan to improve our conditioning and
probing techniques (Rother et al., 2007).

We established a framework to find the global optimum of
graph partitioning problems. This framework should now
be used to examine the true compatibility of graph parti-
tioning algorithms to the application they were used for.
We hope that questions like: “Is the fault in the graph-
partitioning criteria (e.g. normalized cut) or is the fault in
the relaxation (e.g. the spectral solution)?”, will now be
answered.
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