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Abstract

In human movement learning, it is most com-
mon to teach constituent elements of complex
movements in isolation, before chaining them
into complex movements. Segmentation and
recognition of observed movement could thus
proceed out of this existing knowledge, which
is directly compatible with movement gener-
ation. In this paper, we address exactly this
scenario. We assume that a library of move-
ment primitives has already been taught, and
we wish to identify elements of the library in
a complex motor act, where the individual
elements have been smoothed together, and,
occasionally, there might be a movement seg-
ment that is not in our library yet. We em-
ploy a flexible machine learning representa-
tion of movement primitives based on learn-
able nonlinear attractor system. For the pur-
pose of movement segmentation and recogni-
tion, it is possible to reformulate this rep-
resentation as a controlled linear dynamical
system. An Expectation-Maximization algo-
rithm can be developed to estimate the open
parameters of a movement primitive from the
library, using as input an observed trajectory
piece. If no matching primitive from the li-
brary can be found, a new primitive is cre-
ated. This process allows a straightforward
sequential segmentation of observed move-
ment into known and new primitives, which
are suitable for robot imitation learning. We
illustrate our approach with synthetic exam-
ples and data collected from human move-
ment.

Appearing in Proceedings of the 15" International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2012, La Palma, Canary Islands. Volume XX of JMLR:
W&CP XX. Copyright 2012 by the authors.

761

1 Introduction

When trying to automatically observe and interpret
complex human movement sequences, the ability to
segment complex movements into simple action units
plays an important role. While in many vision appli-
cations like surveillance the focus lies solely on iden-
tifying and classifying these action units, in imitation
learning we also want to be able to reproduce the ob-
served movement. Thus, when performing movement
segmentation and recognition for the purpose of imi-
tation learning it is important to use a movement rep-
resentation that is suitable for both recognition and
reproduction of movement.

Our work addresses exactly this issue. The larger goal
of our research is to bootstrap autonomous learning
robots by imitation learning, i.e., to teach robots by
demonstrating motor skills, which the robot can sub-
sequently refine by autonomous trial-and-error learn-
ing. For this, we adopt the assumption that complex
movement skills are composed from action units, also
called movement primitives [1]. Furthermore, we as-
sume that a library of movement primitives exists, that
comprises useful motion segments that have been pre-
viously taught in isolation. This is in contrast to many
existing approaches, e.g., based on statistical meth-
ods [2, 3]. Typically it is hard to extract behaviorally
meaningful movement primitives from observed move-
ment by just using statistical analysis. As a result,
it is often not straight forward to generate movement
given a desired task with such primitives.

Thus, in this research, our goal is to recognize primi-
tives from a library in a complex movement sequence.
A typical problem in this scenario is that temporally
adjacent primitives have been smoothed together, such
that clear demarcation points for segmentation are not
easy to find. Another issue arises when encountering
unknown primitives, that have not been stored in the
library. This work presents a segmentation framework
that can handle both of these issues.
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After giving a brief literature review in the next sec-
tion, present our movement segmentation strategy 2.
In Section 3 and 4 we introduce the mathematical and
algorithmic details of our approach. Finally, Section 5
presents an evaluation of our approach.

1.1 Related Work

As indicated in the introduction, movement segmenta-
tion algorithms have to deal with different constraints
and requirements depending on the application. In
general the approaches to movement generation can
be grouped into two main categories. The first cat-
egory consists of methods that perform segmentation
without the use of pre-trained motion primitive mod-
els, [4, 5, 6, 7]. As discussed above, the lack of a
library to perform the segmentation usually leads to
extraction of primitives that are not easily usable to
generate movements for a desired task. Furthermore,
these approaches utilize representations of movement
primitives that usually do not facilitate movement re-
production on a robot.

The second major category comprises of approaches
that use pre-trained motion models and perform
movement segmentation with simultaneous movement
recognition, an approach prevalent in the vision com-
munity, [8, 9, 10]. More details on movement segmen-
tation in the vision community is given in [11]. While
these approaches are using some form of library to seg-
ment and recognize movements, they have been pro-
posed for vision applications and thus do not consider
the capability of movement reproduction as a require-
ment. Thus, the representations for activity under-
standing only subserve the subsequent classification
algorithms, and do not relate to movement generation
on a robotic system.

Our approach as well as the work described in [12]
falls into the second category, as we use a library
of movement primitives to perform the segmentation
and recognition of movement sequences. In [12] one
could augment the proposed generative model with pre
trained movement primitives in the form of dynamical
systems. However, it is not clear whether an instance
of a primitive with different orientation and scaling
could be recognized or generated by the underlying
representation. We differ by utilizing a movement
primitive representation that can both recognize and
generate a family of movement trajectories for a given
primitive. Furthermore, we show that this representa-
tion helps identify good segmentation point choices in
case we encounter an unknown primitive that cannot
be matched to a primitive in the library. As a result
we are not only able to segment movement sequences
with known movement primitives, but are also capable
of updating the library with new primitives.
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2 Segmentation using a Movement
Primitive Library

This work approaches the problem of movement seg-
mentation by assuming that a library of movement
primitives £ = {0M ... 00 oM} exists,
where ©(™) represents the set of all parameters needed
to identify the m’th primitive. Given an observed tra-
jectory Y = {y1,¥2,...,y7}, our goal is to recognize
which of the primitives from £ are present in Y and
where the switching points between these primitives
are. Furthermore, if the trajectory Y contains a thus
far unknown primitive, we wish to learn the parame-
ters ©(M+1) of this new primitive and update the li-
brary to include @M+1) - grew — pold |y @(M+1) - Ry
nally, we tackle the segmentation problem in a sequen-
tial manner, so that we do not need to know the num-
ber N of motion primitives Y = [Y(), Y®) YV
that are present in Y. Thus, segmentation proceeds
in the following steps:

Step 1: Candidate Points for Segmentation:
The first step of our algorithm is to identify poten-
tial segmentation points of trajectory Y. Given Y,
the velocity profile V, and acceleration profile V can
be computed. We can identify possible segmentation
points by finding minima in the velocity and/or accel-
eration profile, which is motivated by studies of human
movement [11]. Here we look at the combination of V
and V, h(t) = v(t)? + 0(t)2. We then identify all lo-
cal minima of h(t) as hypothetical segmentation points
H = {ho,h1,...,hk}, where K is the number of local
minima in h(t).

Step 2: Matching: Given H we attempt to sequen-
tially recognize motion primitives from the library. We
assume that Y7 corresponds to the starting point of
the first segment. Then for each h € H we find the
parameter set ©() in £ that has the highest likeli-
hood of producing Y7.;,. Thus, we obtain K likelihood
values [, one for each hg. Is the largest likelihood
value above a threshold l,,;,, maxg(lx) > lmin, then
the corresponding hy is chosen as segmentation point.
This point then also forms the new starting point of
the following segment and we can repeat this matching
procedure. The difficulty of this step lies in the fact
that we cannot assume that one of the h € H corre-
sponds to the actual end point of the current segment.
Rather, we have to assume that the current primitive
has been smoothed together with the following primi-
tive, a phenomenon addressed as co-articulation in the
behavioral literature [13]. Thus we need a recognition
algorithm and a movement representation which are
suitable for recognition of partially observed motions,
an issue that we address in the next Section.
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Step 3: New Segment: If no confident match can
be found, we have to find the segmentation point that
allows creating a new primitive with the highest sta-
tistical confidence, and update the library. The diffi-
culties and details of this part are described in Section
4. Finally Step 2 or Step & are repeated until the end
of the trajectory has been reached.

Before going into algorithmic details of the movement
recognition, we briefly explain a movement represen-
tation that facilitates this segmentation procedure.

3 Linear Dynamic System
Formulation of Dynamic Movement
Primitives

Dynamic Movement Primitives (DMPs) were sug-
gested in [14] as a representation to encode move-
ment trajectories in terms of the attractor dynamics of
weakly nonlinear differential equations. For instance,
for a 1 DOF system, the equations are:

2T = a.(B:(9 —p) — 2) + sf(x)
p/T==z (1)

T/T = —ax

with the nonlinear function

N

> viwix

fla) = =F—
2 Vi

where
P; = exp ( — hy(x — ci)Q)

are exponential basis functions with center ¢; and
bandwidth h;, and

_9—Do

s — g — Do
gfit — Po, fit Ag

is a scaling factor.

These equations encode a point attractor at the move-
ment target g, and p,p,p = Z are position, velocity,
and acceleration of the movement trajectory. In gen-
eral, it is assumed that the movement duration 7 and
goal position g are known. Thus, given 7 and g, the
DMP is parameterized by weights w = (wy, ..., wn)T
of a function approximator f which can be trained to
represent the shape of any smooth movement. During
this fitting process, the scaling variable s is set to one,
and the value of Ag, the difference between goal g and
start state pg, is stored as a constant for the DMP.
Details can be found in [14]. It should be noted that
DMPs have useful invariance properties from dynamic
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systems theory, i.e., the parameters w remain the same
if a movement is scaled in space or time. Thus, DMPs
represent a family of movements, not just one instance,
and primitive libraries can be rather compact.

In our problem of movement segmentation and
movement recognition, the parameter roles are re-
versed. We are given a library of DMPs L =
M .. et . oM} where M is the number
of movement primitives in the library and ©(") =
{w(m™)  Ag(™}. Assuming we know which primitive
has generated a partially observed motion Y, we can
plug the corresponding w and Ag in (1), but are left
wondering about which value to use for 7 and g. We
would like to determine these values such that the dis-
tance between the trajectory P produced by (1) and
the observed trajectory Y is minimal.

To accomplish this goal, we realize that the original
DMP can be reformulated in form of a linear dynam-
ical system, with 7 and g as the key system param-
eters. As a result, the estimation of 7,¢ becomes a
system identification problem, and the similarity mea-
sure between Y and P is given through the likelihood

p(Y|7,g).
3.1 Reformulation

The DMP equations can be discretized using Euler
discretization with time step At, resulting in

Ty = —Qp T 1T At + 241

2t = (02 (B2(9 — pr—1) — 2ze—1) + sf(24-1))7 AL + 241
Pt = 21T At +pr1

Next, we formulate the discrete time DMP as a linear
dynamical system with inputs and Gaussian noise. Let

S; = (zt pt)T be the (hidden) state of the primitive
and y; the observed trajectory point at time step t.
We can write the stochastic DMP as

si = Aysi_1+Ass;_ 17+B T w1 +e
y = Csi+u

where € ~ N(0,Q) and v ~ N(0,R). The state tran-
sition matrices A; and A, are defined as

10 —a, At —a.f, At
Al:(o 1)’A2:(aAt ag )

The control input matrix B and the observation ma-
trix C are set to

B= (%), c=(0 1
(o

and the control input u; is computed as

Uy = azﬁzg + sf(xt)'
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Note that the phase variable z is not part of the state
s¢ and only influences the input wuy.

3.2 Parameter Estimation

The parameters of the stochastic DMP formulation are
given by

aall - {Wv Aga7_197 A17 A2a Bv Cv Q7 R}

However, the state transition, control input, and ob-
servation matrices are fixed and do not depend on the
problem setting. Furthermore, we assume that the
weights w and the value of Ag are known for prim-
itives in the library. Thus the open parameters that
can influence the likelihood of observing a trajectory
Y are

0={r9,QR}

The goal is to estimate these parameters given an ob-
served trajectory Y = {y;}~ ; using maximum likeli-
hood estimation. Because the model has hidden vari-
ables S = {s;}7_, we use an Expectation Maximiza-
tion algorithm to estimate these variables.

The complete data log likelihood is given by:

Inp(Y, 8|7, g) = Inp(s1)+
T
Zlnp(st|st717 Ala A27B7ut71a Q7T79)+
t=2
T
Zlnp(yt‘sta Ca R)

t=1

Taking the expectation of the complete-data log likeli-
hood with respect to the posterior p(S[Y, #°'?) defines
the function

Q(6,6°'%) = Egjgora [ lnp(Y, S|6)],

which we want to maximize with respect to 6. The
maximum likelihood solution of all parameters in 6
can be found analytically. Taking the derivative of
Q(0,6°'?) with respect to 71 and solving for 7, yields

>

'Note that the phase variable x; is not part of state s;
although z: depends on 7. However, one can show that the
inclusion of x; in s; with the assumption of no noise on x4,
leads to the same update equation for 7.
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Table 1: Step 2: Matching

e Given
— set of possible segmentation points H
— likelihood threshold pmin

first data point Y7 of new segment

— library of primitives @ = {©(™}M_,

e for each hy € H

— for each primitive in library
* execute EM on Yi.,, to optimize pa-
rameters 7™ (™) and compute log
likelihood 1™ = Inp(Y 1.4, |00™)
— find the most likely primitive for point hy :

_ 1(m)
M,k = arg max,, [,

e find most likely segmentation point hg«, k* =

arg max l,(em’"l)
k

e if l,gf’"l) > lmin, then match : my, x+ found,
otherwise execute Step 3.

where ¥, and 35 are given through

T
Xy = Z {Tr(AZE[sisi_1)) +E[s{ |Bug—1—

t=2
Tr(E[s 15 |ATAs) —E[s, 1]  ATBu,_,}
T
22 = Z {T’I"(]E [St_lsf_l]AgAg)—‘r
t=2

2E [stTfl] AQTBut,l + uZ:lBTBut,l}.

Optimizing for g results in the update g = 1(3,) 7153,
with

T
~ T~
E ut_lB But_l,

Yy =
t=2
T

24 = ZﬁtleT(St — Alst,1 — AQStflT)
t=2

N X

ur = f(Agt) + . 8:

To compute the maximum likelihood estimation of 6,
the following expectations are needed:

E[St—l] = 81
E[St—lstT—l] =

E[Stsf_l] =

& ol
cov(si—1,8t—1) +81—18;_4

COU(S,:7 St_1) + étéz_l .

The estimates of the state and covariance matrices
are calculated through Kalman smoothing. Given the
ability to optimize a partially observed trajectory for
it’s duration 7 and goal position g, we can realize the
matching step as described in Table 1.
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4 Updating the Library

In the case that none of the primitives in the library
can satisfactorily fit any of the potential segments, we
have to assume that we are observing a new primitive.
Thus, it is necessary to determine the parameters of
this new primitive and include them in the library.
Given a trajectory, the DMP formulation in (1) al-
lows computing the weights w with weighted linear
regression. In order to do so, two problems need to
be addressed. First, it is not clear which of the possi-
ble segmentation points to use. Second, when trying
to compute the maximum likelihood estimate of the
weights w, the duration 7 and goal position g need to
be known — however it can not be assumed that the
segmentation point h is the true goal position of the
underlying primitive.

4.1 Trajectory Completion

The second issue is readily taken care of by assum-
ing that the segment point is close to the trajectory
of a trajectory, and thus it is plausible to assume that
we are close to the true goal of the current primitive.
As a result the phase variable x should have a small
value?. Note, the value of the phase variable z(t) at
time step t depends on the duration 7. More specif-
ically, it holds z(t) = exp(—a,7 At t). Thus, by as-
suming that the switch between current primitive and
the next one happens at a small value of z(t) = 7,

we can solve n = exp(—a,7 At t) for 7, resulting

in the estimate of the true duration 7 = —iogA(?)t.

Given this estimate, we can infer at what time step
T the trajectory should converge to the goal. While
there are infinitely many possibilities to fill the miss-
ing data points, we know that DMPs are designed
such that the velocity as well as the acceleration pro-
file smoothly converge towards zero at the end of a
movement. Hence, we complete the velocity profile
V =Y using spline interpolation with boundary con-
ditions v(T) = 0,9(T) = 0. The completed velocity
V' profile is integrated to obtain the completed trajec-
tory Y, and with that the estimate ¢ of the true goal
position. Given the estimates 7 and g, the weights w
can be computed as follows: Evaluate the values of the
phase variable z(t),t = 1...T, from (1) compute the
regression target fiqrget(z(t)) using the observed and
completed Y, V,V, then estimate the weights w such
that the error J = S (frarget(z(t)) — f(2(1)))? is
minimized — more information on how to fit DMPs to
data can also be found in [14].

22 is 1 at the start of a movement and decays mono-

tonically to 0, which is approximately reached after the
movement duration 7
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4.2 Selection of Segmentation Point

It now remains the question which segmentation point
of X = {hg,h1,...,hi} to choose. In theory, we can
perform the procedure of the previous paragraph for
each h € H, resulting in a set of possible weight pa-
rameters {wy,wa,..., Wk }. However, if one were to
choose the wj, that results in the smallest normalized
error IYfilrzkl’ where |Y7.5, | is the number of data points

for the k’th segmentation point, one would end up
preferring shorter trajectories. This is similar to the
model selection problem in typical regression settings,
where the use of more parameters leads to better fit-
ting results and thus higher likelihood values. Just
that in our setting, the number of parameters is fixed,
but the length of the trajectory varies, and with that
the number of data points for fitting varies as well.
The shorter a trajectory, usually the better it can be
fit using a fixed number of basis functions. Similar to
the typical regression model selection problem, we can
turn to a Bayesian treatment of linear regression to
find the optimal segmentation point A € H for a fixed
number of basis functions.

In the following, let Y denote the target values of our
regression problem and X the input values. Without
loss of generality, assume that the segment starts at
Y1. Then the normalized log model evidence, as a
function of segmentation point h, is given by E(h) =
Inp(¥iin)  The joint probability is given through
p(Y, X, w,5;a) =p(Y|X,w, 8;a)p(w, 8; ), where it
is assumed that the value of the hyperparameter « is
known. Furthermore, the prior distribution over the
weights w is modeled through an isotropic Gaussian
with zero-mean, and the prior distribution over preci-
sion parameter [ is given through a Gamma distribu-
tion, resulting p(w, 8) = N (w|0, 371So) Gam(B|a,b),
with Sy = a~'I. The model evidence p(Y1.) is ob-
tained by integrating out the parameters w, 3

p(Yinla) = / / p(Y 1l X, w, B; a)p(w, ; a)dw dp.

Given «, the integral can be solved analytically, result-
ing in a model evidence value for each plausible seg-
mentation point. To incorporate the fact that we do
not have any useful prior information for the weights
w, we choose a very small value for @ which leads
to a broad uninformative prior distribution over the
weights. Finally, we need to consider that part of the
log model evidence is the sum of errors of all data
points. Thus, the more data points the larger the ab-
solute error, and the log model evidence Inp(Y1.4, )
decreases. Because of that we normalize the evidence
with the number of data points hy in a trajectory piece
Yi.p, to obtain the average per data point log model ev-
idence. The segmentation point A € H is then chosen
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Figure 1: (a) Observed 2D trajectory with all plausible segmentation points h € H shown as red dots; the segments

are semi-circle, semi-circle, squiggle, line, semi-circle in this example; (b)-(f) the bottom plot shows the current partial

trajectory considered for segmentation.

The red dot indicates the starting point of current segment, the green dots

indicate the possible segmentation points. The plot above, depicts the normalized log likelihood of the best match in £

for each plausible switching point. In (c¢), no match in £ can be found, thus the normalized log model evidence (of both

dimensions) is used to determine the segmentation point.

as

Inp(Yip,)

h = arg max E(h)) = arg max
k k b

5 Experiments

In this section we first present some results on some
synthetic drawing data and then on some human move-
ment data. The experiments consist of a training and
testing phase. In the training phase, recorded motions
that correspond to predefined primitives were used to
create the library. First the average weights of each
primitive were computed using weighted linear regres-
sion. Then, given these averaged weights, and the true
values for 7 and ¢ the observation noise matrices are
learned using the EM algorithm, similar to Section 3.2,
only 7, g are fixed, and R is updated. Also, we initial-
ize the values 7(™ and g™ to the mean duration and
goal position of the training instances for primitive
m. For both data sets, each movement primitive is
parametrized by 20 weights.

5.1 Baseline Evaluation

In order to perform a baseline evaluation, we also im-
plemented a recognition and segmentation algorithm
based on Dynamic Time Warping (DTW). Here, the
library was created by randomly picking one of the
recorded training instances of each primitive m and
storing that trajectory as primitive m. The segmenta-
tion procedure is essentially the same as described in
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Section 2. Possible segmentation points H are found
as described in Step 1. Then for each possible seg-
mentation point hy € H, the trajectory piece Yi.p, is
matched against each primitive m in the library using
Dynamic Time Warping resulting in a distance value
dk,m. This distance value is the normalized warping
distance and serves as deciding factor: The combina-
tion of hj and primitive m that results in the smallest
distance dy, ., is chosen to provide a segmentation point
and recognition result.

Note, that while we can also define some threshold
on dj ., to identify situations when unknown primi-
tives are encountered, it is not clear how to choose the
segmentation point when no primitive in the library
fits. There are no constraints that could help identify
a suitable choice hy € H, making a purely sequential
segmentation strategy when the library is incomplete
unsuitable. Thus, we have chosen to test our proposed
algorithm with a complete and incomplete library. For
segmentation with a complete library, the update step
(Step 3) is not needed, and we can easily compare to
the DTW approach.

5.2 2D-Data

To demonstrate the functionality of our algorithm, we
present results on some toy data. Using a digitizing
tablet, we recorded 3 simple shapes - semi-circle, line
and squiggle - in different configurations, resulting in
a library of 10 primitives. For each of these prim-
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# of correctly
segmented sequences

# of correct
segmentation points

# of correctly
classified segments

baseline DTW - complete library 10 (of 20) 80 (of 100) 82 (of 100)
stochastic DMP - complete library 19 (of 20) 98 (of 100) 98 (of 100)
| stochastic DMP - incomplete library | 17 (of 20) \ 96 (of 100) \ 96 (of 100) ‘

Table 2: Segmentation Results

itives 10 instances are used to train the parameters
©(™) | For testing purposes, another 5 instances were
retained to generate random primitive sequences by
first randomly selecting 5 primitives (duplication pos-
sible), then randomly selecting values for duration and
goal position of each segment, and finally concatenat-
ing them to obtain a sequence. These sequences were
smoothed using a butterworth filter to assure that no
obvious segmentation points appear. For the segmen-
tation experiment with an incomplete library one of
the 5 primitives in the testing sequence was randomly
chosen to be deleted from the library. An example of
this can be seen in Figure 1. The cyan dotted line
indicate the trajectory parts of the primitive that was
deleted from the library. We now start with the first
data point as start position and try to sequentially de-
termine the segments in Y. The first segment is readily
determined as can be seen in Figure 1b. For efficiency
reasons, only segmentation points h € H are consid-
ered that would produce a trajectory length within the
interval of [30; 300], inspired by the fact that most hu-
man movement durations are in the range of 0.3 to 3
seconds. Clearly, hy has the highest likelihood and is
thus chosen as segmentation point, and thus forms the
new starting point of the next segment. We also know
which primitive in the library generated this highest
likelihood, such that we segmented and recognized the
first part of the trajectory. For the next segment, none
of the possible segmentation points produces a normal-
ized likelihood value above our threshold ,,,;,, = —3.0,
thus no confident match could be found. Hence, the
model evidence obtained through Bayesian linear re-
gression is used to chose one of the possible switching
points, and the parameters of this new primitive are
learned and included in the library. Segments 3 and 4
can again be confidently matched against a primitive
in £. The last segment can now be recognized as the
newest member of L.

We have performed the segmentation first with a com-
plete and then with an incomplete library, for 20 ran-
domly concatenated sequences, each sequence consist-
ing of 5 segments. Additionally, we have also tested the
DTW approach on these sequences for the complete 1i-
brary case. The results are shown in Table 2. The first
column shows, how many sequences were correctly seg-
mented, with all primitives being correctly recognized.
In the second column we see how many of the 100 seg-
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mentation points were correctly chosen, and in column
three how many of the 100 segments correctly recog-
nized. Note, that these two numbers need not be the
same, as segments can still be correctly classified even
when their segmentation point has been chosen sub
optimally, or the other way around.

While the DTW approach only manages to segment
half of the sequences flawlessly, we can see that the
stochastic DMP approach does perform very well when
the library is complete as well as when it is incomplete.
This indicates, that the stochastic DMP approach is
suitable for recognition and segmentation. Further-
more, the update of the library seems to perform very
well. Compared to the complete library experiment
only 2 more segments were wrongly classified and 2
more segmentation points wrongly chosen. Also, in
5 of the 20 sequences, the primitive that was deleted
from the library appeared two or more times in the
sequence, as indicated in Figure 1. For all these se-
quences the library was updated when the new primi-
tive was encountered first, and then correctly classified
as this new primitive later in the sequence.

5.3 3D-Data

We also tested our approach on some human move-
ment data. Specifically, we recorded the movement
sequence of 'moving to pour’ (A) milk into coffee,
'putting back’ (B) milk, reaching for’ (C) sugar, 'mov-
ing to pour’ (A) sugar into coffee, 'putting back’ (B)
sugar, ‘reaching for spoon’ (D), putting spoon in cup’
(E), ’stir’ (F) three times, ’taking out spoon’ (G)
and ’putting back’ (B) spoon. This movement se-
quence and the corresponding segmentation into the
underlying primitives can be seen in Figure 2a, where
each primitive is represented by a capital letter from
A — G. We obtained the 3D endeffector trajectory of
this movement sequence using the 3D Guidance trak-
Star system. The data was recorded with a sampling
frequency of 60Hz and the continuous movement se-
quences have a duration of 15 to 20 seconds. Further-
more, we recorded 10 instances of motions represent-
ing each of the 7 primitives iterated above, which we
used to create a library. Using this library we then
first segment the continuous movement sequence with
the complete library using the DTW approach and the
stochastic DMP approach. The result of this experi-
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Figure 2: (a) Ground truth (b) Segmentation results using DTW (c) Segmentation results using stochastic DMPs
(d) Segmentation results with stochastic DMPs and missing primitive B. In all plots, the blue, green and red

curves correspond to x,y and z trajectories, respectively.

ment can be seen in Figure 2b and 2c, respectively.
Clearly, the DTW approach is outperformed by our
proposed approach in both recognition and segmenta-
tion precision. Our approach correctly recognizes all
segments, and except one correctly identifies all seg-
mentation points. One segmentation point was chosen
to greedily - second stir motion (primitive F) — how-
ever in this case the parsing of the rest of the sequence
is not affected. Using our framework, the same se-
quence is segmented again after primitive B has been
deleted from the library, see Figure 2d. Now, when the
unknown primitive is encountered, it is learned and
stored in library as primitive N and later on correctly
recognized. As before, all the known primitives were
correctly identified and the same segmentation points
were chosen.

6 Discussion and Conclusion

We have presented a sequential movement segmenta-
tion and recognition framework based on a reformu-
lated version of Dynamic Movement Primitives. As
a result, observed trajectories can be segmented into
primitives and reproduced again with different dura-
tions, goals or starting positions. Furthermore, we
have shown that we can create new primitives in an
unsupervised fashion, a process that is guided by the
DMP design and leans on the Bayesian model evidence
framework.

For any given sequence of primitives, we expect our al-
gorithm to identify the known primitives (library), and
learn new primitives if no match in the library can be
found. Thus, if the primitives in the library are mean-
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ingful, then so are the segments that were identified as
these primitives. As for newly learned primitives, our
algorithm only considers segments that are meaningful
in the Dynamic Movement Primitive (DMP) frame-
work, as we only consider end points with small ve-
locity /acceleration and Bayesian Linear Regression to
choose the point that produces the largest model ev-
idence given a fixed number of basis functions. The
strong bias from the DMP framework ensures mean-
ingful primitives in the sense of what we know from
human arm movements.

Thus, the segmentation results mostly depend on the
library and with that it is in the users power to obtain
the segmentation results he/she prefers. If the user
wants a fine/coarse segmentation, the library should
consist of shorter/longer primitives, respectively. For
newly learned primitives, the user can define the num-
ber of basis functions that should be used. The more
basis functions the more complicated (longer) a new
primitive can be.

A limitation of our approach, as described in this pa-
per, is the fact that if one of the segmentation points
has been chosen incorrectly, the segmentation of the
rest of the trajectory can be very much affected. This
can happen especially when there are multiple good
choices either from the matching against the library
step or the bayesian segmentation point selection step.
This problem can be easily alleviated by using a Dy-
namic Programming approach to perform a backward
search. In this case, outputs of the matching step or
the new primitive creation step should be regarded as
rankings of segmentation points.
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