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Theorems

Appendix A The adversarial
distribution in
RSVM2(σ)

In general there is no probability distribution p(x̄|x)
that attains the optimal value of the adversarial max-
imization problem (Equation 6 in the paper). How-
ever, the optimum is achieved as a limit over a se-
quence of distributions as described next. We shall
assume wlog that the smallest ball that contains the
set of vectors w is centered at zero and has radius
r = maxȳ ‖wȳ‖ (Every set w can be shifted by trans-
lation to such a set, and the construction can be ex-
tended accordingly). In other words, we can assume
0 ∈ conv{wȳ : ‖wȳ‖2 = r}, with r = max

ȳ
‖wȳ‖.

There are λȳ that satisfies.∑
λȳwȳ = 0

with
∑
λȳ = 1 and λȳ ≥ 0. Additionally λȳ 6= 0 iff

‖wȳ‖2 = r. We proceed to define a set of distributions
pγ(x̄|x), each parameterized by a value γ > 0. The
distribution pγ(x̄|x) has non zero mass only on L+ 1
points, and is defined as follows:

pγ(x|x) = 1− γ

pγ

(
σ
wȳ

rγ
+ x|x

)
= λȳγ , ∀ȳ

It is easy to see that pγ(x̄|x) is a valid distribution.
To see that pγ(x̄|x) satisfies the constraints in S`2 note
that:

Epγ(x̄|x)(x̄) = (1− γ)x+
∑
λy 6=0

σλȳ
wȳ

r
+ λȳγx = x

Epγ(x̄|x)(‖x− x̄‖2) =
∑
λy 6=0

λyσγ
‖wy‖2
rγ

= σ

Finally, we want to show that as γ → 0 we obtain
the optimal value of the adversarial problem. To show
this, note that when γ is sufficiently small the loss
`(
σwȳ
rγ + x, y;w) is given by

`

(
wȳ

rγ
+ x, y;w

)
= eȳ,y + ∆wT

ȳ

(
σ
wȳ

rγ
+ x

)
We can now write the loss corresponding to pγ(x̄|x)
and take the limit γ → 0.

Epγ(x̄|x)(`(x̄, ȳ;w)) =

(1−γ)`(x, ȳ;w)+γ
∑
λȳ 6=0

λȳ

(
eȳ,y + ∆wT

ȳ

(
σ
wȳ

rγ
+ x

))
γ→0−→ `(x̄, ȳ;w)+σ

∑
λy 6=0

λy∆wȳ
T wy

r
= `(x, ȳ;w)+σ‖wy‖2

We obtained the optimum value of the adversarial
maximization problem (see Theorem 3.1), and thus
the limit of pγ corresponds to the optimal adversary.

In case w is not centered around zero, note that by
our proof the optimal adversary is given by

Ep(x̄|x)(`(x, y,w)) = σmin
β

max
ȳ
‖wȳ − β‖+ `(x, y,w)

The β that solves this optimization problem, will be
the center of the smallest ball containing the set of
vectors wȳ. The construction of pγ is similiar. Note
also that the optimization problem we are considering
( Eq. 13) will converge to a set w, centered at zero.

Appendix B

Appendix B.1 Proof of Theorem 3.5

Theorem. RSVM2
2(σ) is equivalent to the problem

min.
wy ;αi;βi;γi

1

n

∑
i

αiσ + αi‖xi‖2 + xi
Tβi + γi s.t.

∀ȳ
[

αId 1
2

(
βi −∆iwȳ

)
1
2

(
βi −∆iwȳ

)T
γi − eyi,ȳ

]
� 0.

Proof. Our starting point is,

max.
p∈P

Ep(x̄|x)[`(x̄; y;w]

s.t. Ep(x̄|x)[x̄] = x , Ep(x̄|x)[‖x̄− x‖22] = σ

which is equivalent to,

max.
p∈P

Ep(x̄|x)[`(x̄; y;w]

s.t. Ep(x̄|x)[x̄] = x , Ep(x̄|x)[‖x̄‖22] = σ + ‖x‖22

As before, given a labeled example (x; y), we define
∆wȳ = wȳ −wy. The dual of the last problem is

min. ασ + α‖x‖22 + βTx+ γ

s.t. αx̄T x̄+ βT x̄+ γ ≥ eȳ,y + ∆wT
y x̄ ∀ȳ∀x̄

In the above, each constraint is quadratic in x̄, where
α is the coefficient of the quadratic term. We note that
α > 0, since otherwise, the constraints will be violated.
Hence we replace the infinitely many constraints with
a constraint on the point that achieves the minimum
value and get the equivalent problem:

min. ασ + α‖x‖2 + βTx+ γ

s.t. γ − ey,ȳ − (β−∆wȳ)T (β−∆wȳ)
4α ≥ 0 ,∀ȳ



Moving to the Schur complement we obtain the fol-
lowing problem,

min. ασ + α‖x‖2 + βTx+ γ

s.t.

[
αId 1

2 (β −∆wȳ)
1
2 (β −∆wȳ)

T
γ − ey,ȳ

]
� 0 ,∀ȳ.

(1)
and the result is immediate.

Note that the dual of Eq. 1 is

max.
by ;cy ;ay

∑
ȳ ∆wȳbȳ +

∑
y 6=ȳ cȳ

s.t.
∑
y

[
aȳId bȳ
bȳ
T cȳ

]
=

[
σ + ‖x‖2 x
xT 1

]
[
aȳId bȳ
bȳ
T cȳ

]
� 0

Conceptually, we construct a probability distribution
over the labels p(·|x) such that for each point 1

cy
by we

give probability cy. (The positivity constraint implies
that cy = 0 will entail by = 0 hence there is no prob-
lem in dividing by cy). The constraints then can be
interpreted as

Ep(x̄|x)[x̄] = x and Ep(x̄|x)[‖x̄− x‖2] ≤ σ.

The expected loss Ep(x̄|x)[`(x̄; y;x)] has exactly the
optimal value of the problem. Furthermore, the opti-
mal value is an upper bound on the expected loss for
a probability that satisfies these constraints. Hence p
is the desired probability. At first sight, it seems that
this optimization problem requires us to solve for each
example point x an SDP with complexity that scales
with the dimension of x. In fact, the complexity of
each SDP problem (i.e. minimization of {αi,βi, γi}
for a given w) can be reduced to scale with the num-
ber of classes. Intuitively, this follows from the fact
that there is no point in putting adversarial noise on
the space orthogonal to the space spanned by w, hence
the adversarial problem can be solved in that space.

Appendix B.2 Proof of Theorem 3.6

Theorem. If y ∈ {1,−1} is binary, RSVM2
2(σ) is

equivalent to the problem

min.
w

1

n

∑
i

√
σ‖w‖2 + (1− ywTx)

2
+
(
1− ywTx

)
2

(2)

Proof. For simplicity we let y ∈ {1,−1}, and as noted
above, we also have 1

2w1 = − 1
2w−1 = w. The problem

of Eq. 1 becomes,

min. ασ + α‖x‖2 + βTx+ γ

s.t.

[
αId 1

2 (β + yw)
1
2 (β + yw)

T
γ − 1

]
� 0[

αId 1
2β

1
2β

T γ

]
� 0

As noted above, the variables of the dual problem be-
long to the simplex (and thus define a probability dis-
tribution). Since we assume σ > 0 this probability
measure can not be degenerate, hence the dual vari-
ables are not zero. By complementary slackness, at the
optimal values, the matrices used in the constraints of
the last problem cannot be of a full rank. Thus, using
the Schur complement again we obtain,

γ − 1

4α
βTβ =0

γ − 1− 1

4α
(β + yw)T (β + yw) =0.

We rewrite the problem and get,

min. α
(
σ + ‖x+ 1

2αβ‖
2
)

s.t. α = − 2yβTw+‖w‖2
4 ,

which is equivalent to the problem

min. α

(
σ +

(wT x+ 1
2αβ

Tw)
2

‖w‖2

)
s.t. yβTw = −2α+ 1

2‖w‖
2

We plug the value of yβTw into the objective and get,

min.
α

‖w‖2

(
‖w‖2σ +

(
ywTx− 1 +

1

4α
‖w‖2

)2
)
.

(3)
Setting to zero the derivative of the last problem with
respect to α we get,

‖w‖2σ +
(
ywTx− 1

)2 − ( 1

4α
‖w‖2

)2

= 0

Yielding,

‖w‖2

α
= 4

√
‖w‖2σ + (1− ywTx)

2
.

Plugging the last result back into Eq. 3 yields the de-
sired result.


