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1 Connection with Main Text

In Section 2.2 of the main text, we introduce how to
calculate pi from hypothesis testing. We feel this may
not interest the common AISTATS community, and
therefore we did not give many details. Here we give
more details by using two hypothesis testing examples.
One example is the two-proportion z-test for binary
features (e.g. the simulations in Section 3 of the main
text), and the other is logistic regression with likeli-
hood ratio test for GWAS data (e.g. the application
in Section 4 of the main text).

In Section 3 of the main text, we compare our al-
gorithm with elastic net. For elastic net, we set
the α parameter (the tradeoff parameter between l1
penalty and l2 penalty) to be 0.5. Readers may won-
der whether the α parameter will make a difference.
Here, we also show the results for the other choices of
α parameter in the elastic net penalty.

2 Two-proportion z-test

Suppose that we are trying to identify whether a bi-
nary featurei is relevant to the binary response variable
Y ∈ {0, 1} with the empirical counts from data shown
in Table 1.

Table 1: Empirical counts at featurei with a binary
response variable Y .

featurei = 0 featurei = 1 Total

Y = 1 u0 u1 u
Y = 0 v0 v1 v
Total n0 n1 n

F+
i denotes the random variable of the featurei in the

positive samples. F−i denotes the random variable of
the featurei in the negative samples.

F+
i ∼ Bernoulli(P

+
i ), F−i ∼ Bernoulli(P

−
i ). (1)

P+
i and P−i are the population probability that

featurei is 1 in the positive and negative population,
respectively. Accordingly, P̂+

i and P̂−i are sample-

based version of P+
i and P−i . We can calculate P̂+

i

and P̂−i from Table 1 as

P̂+
i =

u1
u
, P̂−i =

v1
v
. (2)

The test statistic for featurei is

Si =
P̂+
i − P̂

−
i√

V ar(P̂+
i − P̂

−
i )
. (3)

Si is approximately normally distributed with variance
1 and mean δi , where

δi =
P+
i − P

−
i√

P+
i (1−P+

i )

u +
P−

i (1−P−
i )

v

. (4)

δi is termed the non-centrality parameter. Under the
null hypothesis H0 of no association, Si is approxi-
mately standard normally distributed. Under alter-
native hypothesis H1, Si is approximately normally
distributed with variance 1 and some nonzero mean
δi. For any given significance level, the power of the
test is entirely determined by the absolute value of the
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non-centrality parameter. For a given sample set, the
larger |δi| we have, the larger the power of the test is.

With hypothesis testing, we usually set pi to be 1 if
the absolute value of the test statistic is greater than
or equal to some threshold ξ (for example, the crit-
ical value at a certain level) and 0 if otherwise. We
term the pi (from such a “hard” method using some
threshold) pHi ,

pHi =

{
1, if |Si| ≥ ξ,
0, otherwise.

If we know δi, we will also know the probability den-
sity function of Si under H1 (denoted as fSi|H1

) as
well as the probability density function of Si under
H0 (denoted as fSi|H0

). By Bayes’ rule, we can set

pBi =
1

αfSi|H0
(si) + 1

, (5)

and

α =
P (H0)

fSi|H1
(si)P (H1)

. (6)

However, in most of the cases δi is unknown to us,
but we can use its data-driven version δ∗i by replac-
ing P+

i and P−i in (4) with the sample probabilities

P̂+
i and P̂−i (as (2)). This step has a flattening ef-

fect on calculating pi because it assumes the values
of the test statistic for relevant features are uniformly
distributed. Therefore, we introduce an adaptive pro-
cedure for calculating pi by

pi = γpHi + (1− γ)pBi , (7)

where 0 ≤ γ ≤ 1. We choose ξ in pHi to be the test
statistic that makes pBi be 0.5 in (5). In addition, we
also need to specify P (H0)/P (H1) which can be given
from prior knowledge.

3 Logistic Regression with Likelihood
Ratio Test

Many GWAS applications employ logistic regression
followed by a hypothesis test to identify associated
SNPs. A first step builds a logistic regression model
(in (8)) to predict disease from each SNP individually;
in such a model the SNP is coded by two indicator vari-
ables, one for heterozygous carrier of the minor allele
(X1) and one for homozygous carrier of the minor al-
lele (X2). In other words, we convert AA into “X1=0,
X2=0”, AB into “X1=1, X2=0”, and BB into “X1=0,

X2=1” where A stands for the common allele at this
locus and B stands for the minor allele. The dichoto-
mous response variable Y is coded as 1 for cases and
0 for controls.

log
P (Y = 1|X1, X2)

1− P (Y = 1|X1, X2)
= β0 + β1X1 + β2X2. (8)

In the second step, a hypothesis test is performed to
test the fit of each logistic model and to return a P-
value for each SNP. In the test, the null hypothesis
H0 is that the SNP is not associated, namely β1 and
β2 are zeros. The alternative hypothesis H1 is that
the feature is associated, namely either β1 or β2 are
nonzero. Finally, SNPs are ranked by the P-values.
The likelihood ratio test is the most commonly used
method, and the test statistic is

S = 2(logL1 − logL0), (9)

where logL1 and logL0 are the log-likelihood underH1

and H0 respectively. Under H0, the test statistic has
an asymptotic χ2 distribution with 2 degrees of free-
dom. Under H1, the test statistic has an asymptotic
non-central χ2 distribution with 2 degrees of freedom.
The rest of the calculation of pi is the same as in the
binary feature case, namely using formulas (5), (6) and
(7).

4 More Simulations

In Section 3 of the main text, we compare our al-
gorithm with elastic net. For elastic net, we set
the α parameter (the tradeoff parameter between l1
penalty and l2 penalty) to be 0.5. Readers may won-
der whether different α parameter will make a differ-
ence. Here, we show the results for the other choices
of α parameter in the elastic net penalty.

For the first set of experiments, we set n = 500, h =
1000, m = 5, ti uniformly distributed on the interval
(0.8, 1.0), π = {0.025, 0.05}, and rr = {1.1, 1.2, 1.3}.
For elastic net, we try 4 values for α, namely 0.2, 0.4,
0.6, and 0.8. The ROC curves are shown in Figure 1.
The precision-recall curves are shown in Figure 2.

For the second set of experiments, we set n = 500,
h = 1000, π = 0.05, rr uniformly distributed on
the interval (1.1, 1.3), m = {2, 5, 10}, and ti uni-
formly distributed on the interval (τ, 1.0) where τ =
{0.5, 0.8, 0.9}. For elastic net, we try 4 values for α,
namely 0.2, 0.4, 0.6, and 0.8. The ROC curves are
shown in Figure 3. The precision-recall curves are
shown in Figure 4.
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Figure 1: ROC curves of two-proportion z-test (Two-
prop z-test), feature relevance network (FRN) and
elastic net (α = 0.2, α = 0.4, α = 0.6, and α = 0.8)
when we choose different prior probabilities and differ-
ent relative risk levels.
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Figure 2: Precision-recall curves of two-proportion
z-test (Two-prop z-test), feature relevance network
(FRN) and elastic net (α = 0.2, α = 0.4, α = 0.6,
and α = 0.8) when we choose different prior probabil-
ities and different relative risk levels.
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Figure 3: ROC curves of two-proportion z-test, feature
relevance network (FRN) and elastic net (α = 0.2, α =
0.4, α = 0.6, and α = 0.8) when we choose different
correlation structures of covariates.
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Figure 4: Precision-recall curves of two-proportion z-
test, feature relevance network (FRN) and elastic net
(α = 0.2, α = 0.4, α = 0.6, and α = 0.8) when we
choose different correlation structures of covariates.


