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A Proof of Lemma 2

Proof Suppose the SVD of X0 is U0Σ0V
T
0 , and the SVD of C0 is UCΣCV

T
C . Suppose U⊥0 and U⊥C are the

orthogonal complements of U0 and UC , respectively. By the independence between span (C0) and span (X0),
[U⊥0 , U

⊥
C ] spans the whole ambient space, and thus the following linear equation system has feasible solutions Y0

and YC :

U⊥0 (U⊥0 )TY0 + U⊥C (U⊥C )TYC = I.

Let Y = I− U⊥0 (U⊥0 )TY0, then it can be computed that

XT
0 Y = XT

0 and CT0 Y = 0,

i.e., X0 = Y X0 and Y C0 = 0 are feasible. By PIc
0
(X) = X0, PI0(X) = C0, PI0(X0) = X0 and PIc

0
(X0) = 0, the

following linear equation system has feasible solutions Y :

X0 = Y X,

which simply leads to V0 ∈ PLVX
.

B Proof of Lemma 3

Proof Suppose UXΣXV
T
X is the SVD of X, U0Σ0V

T
0 is the SVD of X0, UC is the column space of C0, and U

⊥
C

is the orthogonal complement of UC . By X = X0 + C0, (U
⊥
C )TX = (U⊥C )TX0 and thus

(U⊥C )TUXΣXV
T
X = (U⊥C )TU0Σ0V

T
0 ,

from which it can be deduced that

(U⊥C )TUX = (U⊥C )TU0Σ0(V
T
0 VXΣ−1

X ).

Since span (C0) and span (X0) are independent to each other, (U⊥C )TU0 is of full column rank. Let the SVD of
(U⊥C )TU0 be U1Σ1V

T
1 , then we have

V T0 VXΣ−1
X = Σ−1

0 V1Σ
−1
1 UT1 (U⊥C )TUX .

Hence,

‖V T0 VXΣ−1
X ‖ = ‖Σ−1

0 V1Σ
−1
1 UT1 (U⊥C )TUX‖ ≤ ‖Σ−1

0 ‖‖Σ−1
1 ‖

=
1

σmin(X0) sin(θ)
,

where ‖Σ−1
1 ‖ = 1/ sin(θ) is concluded from (Knyazev et al., 2002). By ‖X‖ ≤ ‖X0‖+ ‖C0‖, we further have

β =
1

‖Σ−1
X V TX V0‖‖X‖

≥ σmin(X0) sin(θ)

‖X‖ ≥ σmin(X0) sin(θ)

‖X0‖+ ‖C0‖

=
sin(θ)

cond(X0)(1 +
‖C0‖
‖X0‖ )

.

C Proof of Theorem 1

C.1 Roadmap of the Proof

In this section we provide an outline for the proof of Theorem 1. The proof follows three main steps.

1. Equivalent Conditions: Identify the necessary and sufficient conditions (called equivalent conditions), for
any pair (Z ′, C ′) to produce the exact results (7).
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For any feasible pair (Z ′, C ′) that satisfies X = XZ ′ + C ′, let the SVD of Z ′ as U ′Σ′V ′T and the column
support of C ′ as I ′. In order to produce the exact results (7), on the one hand, a necessary condition is that
PLV0

(Z ′) = Z ′ and PI0(C ′) = C ′, as this is nothing but U ′ is a subspace of V0 and I ′ is a subset of I0. On the

other hand, it can be proven that PLV0
(Z ′) = Z ′ and PI0(C ′) = C ′ are sufficient to ensure U ′U ′T = V0V

T
0 and

I ′ = I0. So, the exactness described in (7) can be equally transformed into two constraints: PLV0
(Z ′) = Z ′

and PI0(C ′) = C ′, which can be imposed as additional constraints in (2).

2. Dual Conditions: For a candidate pair (Z ′, C ′) that respectively has the desired row space and column
support, identify the sufficient conditions for (Z ′, C ′) to be an optimal solution to the LRR problem (2).
These conditions are call dual conditions.

For the pair (Z ′, C ′) that satisfies X = XZ ′ + C ′, PLV0
(Z ′) = Z ′ and PI0(C ′) = C ′, let the SVD of

Z ′ as U ′Σ′V ′T and the column-normalized version of C ′ as H ′. That is, column [H ′]i = [C′]i
‖[C′]i‖2 for all

i ∈ I0, and [H ′]i = 0 for all i �∈ I0 (note that the column support of C ′ is I0). Furthermore, define
PT ′(·) = PU ′(·) + PV ′(·) − PU ′PV ′(·). With these notations, it can be proven that (Z ′, C ′) is an optimal
solution to LRR if there exists a matrix Q that satisfies

PT ′(XTQ) = U ′V ′T ‖XTQ− PT ′(XTQ)‖ < 1

PI0(Q) = λH ′ ‖Q− PI0(Q)‖2,∞ < λ.

Although the LRR problem (2) may have multiple solutions, it can be further proven that any solution has
the desired row space and column support, provided the above conditions have been satisfied. So, the left
job is to prove the above dual conditions, i.e., construct the dual certificates.

3. Dual Certificates: Show that the dual conditions can be satisfied, i.e., construct the dual certificates.

The construction of dual certificates mainly concerns a matrix Q that satisfies the dual conditions. However,
since the dual conditions also depend on the pair (Z ′, C ′), we actually need to obtain three matrices, Z ′, C ′

and Q. This is done by considering an alternate optimization problem, often called the “oracle problem”.
The oracle problem arises by imposing the success conditions as additional constraints in (2):

Oracle Problem: min
Z,C

‖Z‖∗ + λ‖C‖2,1
X = XZ + C,PLV0

(Z) = Z,PI0(C) = C.

Note that the above problem is always feasible, as (V0V
T
0 , C0) is feasible. Thus, an optimal solution, denoted

as (Ẑ, Ĉ), exists. With this perspective, we would like to use (Ẑ, Ĉ) to construct the dual certificates. Let
the SVD of Ẑ be Û Σ̂V̂ T , and the column-normalized version of Ĉ be Ĥ. It is easy to see that there
exists an orthonormal matrix V̄ such that Û V̂ T = V0V̄

T , where V0 is the row space of X0. Moreover, it is
easy to show that PÛ (·) = PLV0

(·), PV̂ (·) = PV̄ (·), and hence the operator PT̂ defined by Û and V̂ , obeys

PT̂ (·) = PLV0
(·) + PV̄ (·)− PLV0

PV̄ (·). Finally, the dual certificates are finished by constructing Q as follows:

Q1 � λPLV0
(XT Ĥ),

Q2 � λPLV ⊥0 PIc
0
PV̄ (I+

∞∑
i=1

(PV̄ PI0PV̄ )i)PV̄ (XT Ĥ),

Q � UXΣ−1
X V TX (V0V̄

T + λXT Ĥ −Q1 −Q2),

where UXΣXV
T
X is the SVD of the data matrix X.

C.2 Equivalent Conditions

Before starting the main proofs, we introduce the following lemmas, which are well-known and will be used
multiple times in the proof.

Lemma 4 For any column space U , row space V and column support I, the following holds.

1. Let the SVD of a matrix M be UΣV T , then ∂‖M‖∗ = {UV T +W |PT (W ) = 0, ‖W‖ ≤ 1}.
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2. Let the column support of a matrix M be I, then ∂‖M‖2,1 = {H+L|PI(H) = H, [H]i = [M ]i/‖[M ]i‖2, ∀i ∈
I;PI(L) = 0, ‖L‖2,∞ ≤ 1}.

3. For any matrices M and N of consistent sizes, we have PI(MN) =MPI(N).

4. For any matrices M and N of consistent sizes, we have PUPI(M) = PIPU (M) and PLV PI(N) = PIPLV (N).

Lemma 5 If a matrix H satisfies ‖H‖2,∞ ≤ 1 and is support on I, then ‖H‖ ≤√|I|.
Proof This lemma has been proven by (Xu et al., 2011). We present a proof here for the ease of reading.

‖H‖ = ‖HT ‖ = max
‖x‖2≤1

‖HTx‖2 = max
‖x‖2≤1

‖xTH‖2

= max
‖x‖2≤1

√∑
i∈I

(xT [H]i)2 ≤
√∑

i∈I
1 =

√
|I|.

Lemma 6 For any two column-orthonomal matrices U and V of consistent sizes, we have ‖UV T ‖2,∞ =
maxi ‖V Tei‖2.

Lemma 7 For any matrices M and N of consistent sizes, we have

‖MN‖2,∞ ≤ ‖M‖‖N‖2,∞,
|〈M,N〉| ≤ ‖M‖2,∞‖N‖2,1

Proof We have

‖MN‖2,∞ = max
i
‖MNei‖2

= max
i
‖M [N ]i‖2 ≤ max

i
‖M‖‖[N ]i‖2 = ‖M‖max

i
‖[N ]i‖2

= ‖M‖‖N‖2,∞.

|〈M,N〉| = |
∑
i

[M ]Ti [N ]i| ≤
∑
i

|[M ]Ti [N ]i| ≤
∑
i

‖[M ]i‖2‖[N ]i‖2

≤
∑
i

(max
i
‖[M ]i‖2)‖[N ]i‖2 = ‖M‖2,∞‖N‖2,1.

The exactness described in (7) seems “mysterious”. Actually, they can be “seamlessly” achieved by imposing
two additional constraints in (2), as shown in the following theorem.

Theorem 2 Let the pair (Z ′, C ′) satisfy X = XZ ′ + C ′. Denote the SVD of Z ′ as U ′Σ′V ′T , and the column
support of C ′ as I ′. If PLV0

(Z ′) = Z ′ and PI0(C ′) = C ′, then U ′U ′T = V0V
T
0 and I ′ = I0.

Remark 3 The above theorem implies that the exactness described in (7) is equivalent to two linear constraints:
PLV0

(Z∗) = Z∗ and PI0(C∗) = C∗. As will be seen, this can largely facilitates the proof of Theorem 1.

Proof To prove U ′U ′T = V0V
T
0 , we only need to prove that rank (Z ′) ≥ r0, as PLV0

(Z ′) = Z ′ implies that U ′ is
a subspace of V0. Notice that PIc

0
(X) = X0. Then we have

X0 = PIc
0
(X) = PIc

0
(XZ ′ + C ′) = PIc

0
(XZ ′)

= XPIc
0
(Z ′).

So, r0 = rank (X0) = rank
(
XPIc

0
(Z ′)

) ≤ rank
(PIc

0
(Z ′)

) ≤ rank (Z ′).
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To ensure I ′ = I0, we only need to prove that I0 ∩ I ′c = ∅, since PI0(C ′) = C ′ has produced I ′ ⊆ I0. Via some
computations, we have that

PI0(X0) = 0⇒ U0Σ0PI0(V T0 ) = 0

⇒ PI0(V T0 ) = 0

⇒ V0PI0(V T0 ) = 0. (8)

Also, we have

V0 ∈ PLVX
⇒ V T0 = V T0 VXV

T
X

⇒ V0V
T
0 = V0V

T
0 VXV

T
X , (9)

which simply leads to V0V
T
0 VXPI0(V TX ) = V0PI0(V T0 ). Recalling (8), we further have

V0PI0(V T0 ) = 0⇒ V0V
T
0 VXPI0(V TX ) = V0PI0(V T0 ) = 0

⇒ V0V
T
0 VXPI0∩I′c(V TX ) = 0, (10)

where the last equality holds because I0 ∩ I ′c ⊆ I0. Also, note that I0 ∩ I ′c ⊆ I ′c. Then we have the following:

X = XZ ′ + C ′ ⇒ PI0∩I′c(X) = XPI0∩I′c(Z ′)
⇒ UXΣXPI0∩I′c(V TX ) = UXΣXV

T
XPI0∩I′c(Z ′)

⇒ PI0∩I′c(V TX ) = V TXPI0∩I′c(Z ′)
⇒ VXPI0∩I′c(V TX ) = VXV

T
XPI0∩I′c(Z ′)

⇒ V0V
T
0 VXPI0∩I′c(V TX ) = V0V

T
0 VXV

T
XPI0∩I′c(Z ′)

Recalling (9) and (10), then we have

V0V
T
0 VXPI0∩I′c(V TX ) = 0⇒ V0V

T
0 VXV

T
XPI0∩I′c(Z ′) = 0

⇒ V0V
T
0 PI0∩I′c(Z ′) = 0

⇒ PI0∩I′c(Z ′) = 0, (11)

where the last equality is from the conclusion of Z ′ = V0V
T
0 Z

′. By X = X0 + C0,

PI0∩I′c(C0) = PI0∩I′c(X −X0) = PI0∩I′c(X).

Notice that PI0∩I′c(X) = XPI0∩I′c(Z ′). Then by (11), we have

PI0∩I′c(C0) = 0, and so I0 ∩ I ′c = ∅.

C.3 Dual Conditions

To prove that LRR can exactly recover the row space and column support, Theorem 2 suggests us to prove that
the pair (Z ′, C ′) is a solution to (2), and every solution to (2) also satisfies the two constraints in Theorem 2. To
this end, we write down the optimal conditions of (2), resulting in the dual conditions for ensuring the exactness
of LRR.

At first, we define two operators that are closely related to the subgradient of ‖C ′‖2,1 and ‖Z ′‖∗.
Definition 4 Let (Z ′, C ′) satisfy X = XZ ′ + C ′, PLV0

(Z ′) = Z ′ and PI0(C ′) = C ′. We define the following:

B(C ′) � {H|PIc
0
(H) = 0; ∀i ∈ I0 : [H]i =

[C ′]i
‖[C ′]i‖2 }.

It is simple to see that B(C ′) is a column-normalized version of C ′.

Let the SVD of Z ′ as U ′Σ′V ′T , we further define the operator PT (Z′) as

PT (Z′)(·) � PU ′(·) + PV ′(·)− PU ′PV ′(·)
= PLV0

(·) + PV ′(·)− PLV0
PV ′(·).
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Then, we present and prove the dual conditions for exactly recovering the row space and column support of X0

and C0, respectively.

Theorem 3 Let (Z ′, C ′) satisfy X = XZ ′ + C ′, PLV0
(Z ′) = Z ′ and PI0(C ′) = C ′. Then (Z ′, C ′) is an optimal

solution to (2) if there exists a matrix Q that satisfies

(a) PT (Z′)(X
TQ) = U ′V ′T ,

(b) ‖PT (Z′)⊥(X
TQ)‖ < 1,

(c) PI0(Q) = λB(C ′),
(d) ‖PIc

0
(Q)‖2,∞ < λ.

Further, if PI0 ∩PV ′ = {0}, then any optimal solution to (2) will have the exact row space and column support.

Proof By standard convexity arguments (Rockafellar, 1970), a feasible pair (Z ′, C ′) is an optimal solution to
(2) if there exists Q′ such that

Q′ ∈ ∂‖Z ′‖∗ and Q′ ∈ λXT∂‖C ′‖2,1.
Note that (a) and (b) imply that XTQ ∈ ∂‖Z ′‖∗. Furthermore, letting I ′ be the column support of C ′, then by
Theorem 2, we have I ′ = I0. Therefore (c) and (d) imply that Q ∈ λ∂‖C ′‖2,1, and so XTQ ∈ λXT∂‖C ′‖2,1.
Thus, (Z ′, C ′) is an optimal solution to (2).

Notice that the LRR problem (2) may have multiple solutions. For any fixed Δ �= 0, assume that (Z ′+Δ1, C
′−Δ)

is also optimal. Then by X = X(Z ′ +Δ1) + (C ′ −Δ) = XZ ′ + C ′, we have

Δ = XΔ1.

By the well-known duality between operator norm and nuclear norm, there existsW0 that satisfies ‖W0‖ = 1 and
〈W0,PT (Z′)⊥(Δ1)〉 = ‖PT (Z′)⊥(Δ1)‖∗. Let W = PT (Z′)⊥(W0), then we have that ‖W‖ ≤ 1, 〈W,PT (Z′)⊥(Δ1)〉 =
‖PT (Z′)⊥(Δ1)‖∗ and PT (Z′)(W ) = 0. Let F be such that

[F ]i =

{
− [Δ]i
‖[Δ]i‖2 , if i �∈ I0 and [Δ]i �= 0,

0, otherwise.

Then PT (Z′)(X
TQ) + W is a subgradient of ‖Z ′‖∗, and PI0(Q)/λ + F is a subgradient of ‖C ′‖2,1. By the

convexity of nuclear norm and �2,1 norm, we have

‖Z ′ +Δ1‖∗ + λ‖C ′ −Δ‖2,1
≥ ‖L′‖∗ + λ‖C ′‖2,1 + 〈PT (Z′)(X

TQ) +W,Δ1〉 − λ〈PI0(Q)/λ+ F,Δ〉
= ‖L′‖∗ + λ‖C ′‖2,1 + ‖PT (Z′)⊥(Δ1)‖∗ + λ‖PIc

0
(Δ)‖2,1 + 〈PT (Z′)(X

TQ),Δ1〉 − 〈PI0(Q),Δ〉.
Notice that

〈PT (Z′)(X
TQ),Δ1〉 − 〈PI0(Q),Δ〉

= 〈XTQ− PT (Z′)⊥(X
TQ),Δ1〉 − 〈Q− PIc

0
(Q),Δ〉

= 〈 − PT (Z′)⊥(X
TQ),Δ1〉+ 〈PIc

0
(Q),Δ〉+ 〈Q,XΔ1 −Δ〉

= 〈 − PT (Z′)⊥(X
TQ),Δ1〉+ 〈PIc

0
(Q),Δ〉

≥ −‖PT (Z′)⊥(X
TQ)‖‖PT (Z′)⊥(Δ1)‖∗ − ‖PIc

0
(Q)‖2,∞‖PIc

0
(Δ)‖2,1,

where the last inequality is from Lemma 7, and the well-known conclusion that |〈MN〉| ≤ ‖M‖‖N‖∗ holds for
any matrices M and N .

The above deductions have proven that

‖Z ′ +Δ1‖∗ + λ‖C ′ −Δ‖2,1 ≥ ‖L′‖∗ + λ‖C ′‖2,1 + (1− ‖PT (Z′)⊥(X
TQ)‖)‖PT (Z′)⊥(Δ1)‖∗

+ (λ− ‖PIc
0
(Q)‖2,∞)‖PIc

0
(Δ)‖2,1.
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However, since both (Z ′, C ′) and (Z ′ +Δ1, C
′ −Δ) are optimal to (2), we must have

‖Z ′ +Δ1‖∗ + λ‖C ′ −Δ‖2,1 = ‖L′‖∗ + λ‖C ′‖2,1,

and so

(1− ‖PT (Z′)⊥(X
TQ)‖)‖PT (Z′)⊥(Δ1)‖∗ + (λ− ‖PIc

0
(Q)‖2,∞)‖PIc

0
(Δ)‖2,1 ≤ 0.

Recalling the conditions (b) and (d), then we have

‖PT (Z′)⊥(Δ1)‖∗ = ‖PIc
0
(Δ)‖2,1 = 0,

i.e., PT (Z′)(Δ1) = Δ1 and PI0(Δ) = Δ. By Lemma 1,

Z ′ ∈ PLVX
, Z ′ +Δ1 ∈ PLVX

and so Δ1 ∈ PLVX
.

Also, notice that Δ = XΔ1. Thus, we have

PIc
0
(Δ) = 0 ⇒ XPIc

0
(Δ1) = 0

⇒ V TXPIc
0
(Δ1) = 0

⇒ PLVX
PIc

0
(Δ1) = 0

⇒ PIc
0
(PLVX

(Δ1)) = 0

⇒ PIc
0
(Δ1) = 0,

which implies that PI0(Δ1) = Δ1. Furthermore, we have

PI0(Δ1) = Δ1 = PT (Z′)(Δ1) = PU ′(Δ1) + PV ′PU ′⊥(Δ1)

= PU ′(PI0(Δ1)) + PV ′PU ′⊥(Δ1)

= PI0PU ′(Δ1) + PV ′PU ′⊥(Δ1)

⇒ PI0PU ′⊥(Δ1) = PV ′PU ′⊥(Δ1).

Since PI0PU ′⊥(Δ1) = PU ′⊥(Δ1), the above result implies that

PU ′⊥(Δ1) ∈ PI0 ∩ PV ′ .

By the assumption of PI0∩PV ′ = {0}, we have PU ′⊥(Δ1) = 0. Recalling Theorem 2, we have that PU ′ = PLV0
, and

so Δ1 ∈ PLV0
. Thus, the solution (Z ′+Δ1, C

′−Δ) also satisfiesX = X(Z ′+Δ1)+(C ′−Δ), PLV0
(Z ′+Δ1) = Z ′+Δ1

and PI0(C ′−Δ) = C ′−Δ. Recalling Theorem 2 again, it can be concluded that the solution (Z ′+Δ1, C
′−Δ)

also exactly recovers the row space and column support, i.e., all possible solutions to (2) equally produce the
exact recovery.

C.4 Obtaining Dual Certificates

In this section, we complete the proof of Theorem 1 by constructing a matrix Q that satisfies the conditions in
Theorem 3, and proving PI0 ∩PV ′ = {0} as well. This is done by considering an alternate optimization problem,
often called the “oracle problem”. The oracle problem arises by imposing the equivalent conditions as additional
constraints in (2):

Oracle Problem: min
Z,C

‖Z‖∗ + λ‖C‖2,1 (12)

X = XZ + C,PLV0
(Z) = Z,PI0(C) = C.

Note that the above problem is always feasible, as (V0V
T
0 , C0) is feasible. Thus, an optimal solution, denoted as

(Ẑ, Ĉ), exists. With this perspective, we would like to show that (Ẑ, Ĉ) is an optimal solution to (2), and obtain
the dual certificates by the optimal conditions of (12).
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Definition 5 Let (Ẑ, Ĉ) be an optimal solution to the oracle problem (12). Let Û Σ̂V̂ T and Î be the SVD and
column support of Ẑ and Ĉ, respectively. By Theorem 2,

Û ÛT = V0V
T
0 and Î = I0.

Let

V̄ � V̂ ÛTV0, then we have Û V̂ T = V0V̄
T .

Since Û ÛT = V0V
T
0 and V̄ V̄ T = V̂ V̂ T , we have

PT̂ (·) � PÛ (·) + PV̂ (·)− PÛPV̂ (·)
= PLV0

(·) + PV̄ (·)− PLV0
PV̄ (·).

Lemma 8 Let Ĥ = B(Ĉ), then we have

V0PI0(V̄ T ) = λPLV0
(XT Ĥ).

Proof Notice that the Lagrange dual function of the oracle problem (12) is

L(Z,C, Y, Y1, Y2) = ‖Z‖∗ + λ‖C‖2,1 + 〈Y,X −XZ − C〉
+〈Y1,PLV0

(Z)− Z〉+ 〈Y2,PI0(C)− C〉,

where Y , Y1 and Y2 are Lagrange multipliers. Since (Ẑ, Ĉ) is a solution to problem (12), we have

0 ∈ ∂LZ(Ẑ, Ĉ, Y, Y1, Y2) and 0 ∈ ∂LC(Ẑ, Ĉ, Y, Y1, Y2).
Hence, there exists Ŵ , Ĥ and L̂ such that

PT̂ (Ŵ ) = 0, ‖Ŵ‖ ≤ 1, V0V̄
T + Ŵ ∈ ∂‖Ẑ‖∗,

Ĥ = B(Ĉ),PI0(L̂) = 0, ‖L̂‖2,∞ ≤ 1, Ĥ + L̂ ∈ ∂‖Ĉ‖2,1,
V0V̄

T + Ŵ −XTY − PLV ⊥0 (Y1) = 0,

λ(Ĥ + L̂)− Y − PIc
0
(Y2) = 0.

Let A = Ŵ − Y1 and B = λL̂− Y2, then the last two equations above imply that

V0V̄
T + PLV ⊥0 (A) = λXT Ĥ + PIc

0
(XTB). (13)

Furthermore, we have

PLV0
PI0(V0V̄ T + PLV ⊥0 (A)) = PLV0

PI0(V0V̄ T ) + PLV0
PI0PLV ⊥0 (A)

= V0PI0(V̄ T ) + PLV0
PLV ⊥0 PI0(A)

= V0PI0(V̄ T ). (14)

Similarly, we have

PLV0
PI0(λXT Ĥ + PIc

0
(XTB)) = PLV0

PI0(λXT Ĥ) + PLV0
PI0PIc

0
(XTB)

= PLV0
PI0(λXT Ĥ) = λPLV0

(XTPI0(Ĥ))

= λPLV0
(XT Ĥ). (15)

Combing (13), (14) and (15) together, we have

V0PI0(V̄ T ) = λPLV0
(XT Ĥ).

Before constructing a matrix Q that satisfies the conditions in Theorem 3, we shall prove that PI0 ∩ PV̂ = {0}
can be satisfied by choosing appropriate parameter λ.
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Definition 6 Recalling the definition of V̄ , define matrix G as

G � PI0(V̄ T )(PI0(V̄ T ))T .
Then we have

G =
∑
i∈I0

[V̄ T ]i([V̄
T ]i)

T �
∑
i

[V̄ T ]i([V̄
T ]i)

T = V̄ T V̄ = I,

where � is the generalized inequality induced by the positive semi-definite cone. Hence, ‖G‖ ≤ 1.

The following lemma states that ‖G‖ can be far away from 1 by choosing appropriate λ.

Lemma 9 Let ψ = ‖G‖, then ψ ≤ λ2‖X‖2γn.

Proof Notice that

ψ = ‖PI0(V̄ T )(PI0(V̄ T ))T ‖ = ‖V0PI0(V̄ T )(PI0(V̄ T ))TV T0 ‖
= ‖(V0PI0(V̄ T ))(V0PI0(V̄ T ))T ‖.

By Lemma 8, we have

ψ = ‖λPLV0
(XT Ĥ)(λPLV0

(XT Ĥ))T ‖
= λ2‖PLV0

(XT Ĥ)(PLV0
(XT Ĥ))T ‖

≤ λ2‖PLV0
(XT Ĥ)‖‖(PLV0

(XT Ĥ))T ‖
≤ λ2‖XT Ĥ‖2 ≤ λ2‖X‖2‖Ĥ‖2
≤ λ2‖X‖2|I0| = λ2‖X‖2γn,

where ‖H‖2 ≤ |I0| = γn is due to Lemma 5.

The above lemma bounds ψ far way from 1. In particular, for λ ≤ 3
7‖X‖√γn , we have ψ ≤ 1

4 . So we can assume

that ψ < 1 in sequel.

Lemma 10 If ψ < 1, then PV̂ ∩ PI0 = PV̄ ∩ PI0 = {0}.

Proof Let M ∈ PV̄ ∩ PI0 , then we have

‖M‖2 = ‖MMT ‖ = ‖PI0(M)(PI0(M))T ‖ = ‖PI0(MV̄ V̄ T )(PI0(MV̄ V̄ T ))T ‖
= ‖MV̄ PI0(V̄ T )(PI0(V̄ T ))T V̄ TMT ‖
≤ ‖M‖2‖V̄ PI0(V̄ T )(PI0(V̄ T ))T V̄ T ‖ = ‖M‖2‖PI0(V̄ T )(PI0(V̄ T ))T ‖ = ‖M‖2ψ
≤ ‖M‖2.

Since ψ < 1, the last equality can hold only if ‖M‖ = 0, and hence M = 0. Also, note that PV̂ = PV̄ , which
completes the proof.

The following lemma plays a key role in constructing Q that satisfies the conditions in Theorem 3.

Lemma 11 If ψ < 1, then the operator PV̄ PIc
0
PV̄ is an injection from PV̄ to PV̄ , and its inverse operator is

I+
∑∞
i=1(PV̄ PI0PV̄ )i.

Proof For any matrix M such that ‖M‖ = 1, we have

PV̄ PI0PV̄ (M) = PV̄ PI0(MV̄ V̄ T )

= PV̄ (MV̄ PI0(V̄ T ))
= MV̄ PI0(V̄ T )V̄ V̄ T
= MV̄ (PI0(V̄ T )V̄ )V̄ T

= MV̄ (PI0(V̄ T )(PI0(V̄ T ))T )V̄ T
= MV̄ GV̄ T ,
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which leads to ‖PV̄ PI0PV̄ ‖ ≤ ‖G‖ = ψ. Since ψ < 1, I +
∑∞
i=1(PV̄ PI0PV̄ )i is well defined, and has a spectral

norm not larger than 1/(1− ψ).
Note that

PV̄ PIc
0
PV̄ = PV̄ (I − PI0)PV̄ = PV̄ (I− PV̄ PI0PV̄ ),

thus for any M ∈ PV̄ the following holds

PV̄ PIc
0
PV̄ (I+

∞∑
i=1

(PV̄ PI0PV̄ )i)(M) = PV̄ (I− PV̄ PI0PV̄ )(I+
∞∑
i=1

(PV̄ PI0PV̄ )i)(M)

= PV̄ (M) =M.

Lemma 12 We have

‖PIc
0
(V̄ T )‖2,∞ ≤

√
μr0

(1− γ)n.

Proof Notice that X = XẐ + Ĉ and PIc
0
(X) = X0 = PIc

0
(X0). Then we have

X = XẐ + Ĉ ⇒ PIc
0
(X0) = XPIc

0
(Ẑ)

⇒ V T0 = PIc
0
(V T0 ) = Σ−1

0 UT0 XÛ Σ̂PIc
0
(V̂ T ),

which implies that the rows of PIc
0
(V̂ T ) span the rows of V T0 . However, the rank of PIc

0
(V̂ T ) is at most r0 (this

is because the rank of both Û and V̂ is r0). Thus, it can be concluded that PIc
0
(V̂ T ) is of full row rank. At the

same time, we have
0 � PIc

0
(V̂ T )(PIc

0
(V̂ T ))T � I.

So, there exists a symmetric, invertible matrix Y ∈ R
r0×r0 such that

‖Y ‖ ≤ 1 and Y 2 = PIc
0
(V̂ T )(PIc

0
(V̂ T ))T .

This in turn implies that Y −1PIc
0
(V̂ T ) has orthonomal rows. Since PIc

0
(V T0 ) = V T0 is also row orthonomal, it

can be concluded that there exists a row orthonomal matrix R such that

Y −1PIc
0
(V̂ T ) = RPIc

0
(V T0 ).

Then we have

‖PIc
0
(V̂ T )‖2,∞ = ‖Y RPIc

0
(V T0 )‖2,∞

≤ ‖Y ‖‖RPIc
0
(V T0 )‖2,∞ ≤ ‖RPIc

0
(V T0 )‖2,∞

≤ ‖PIc
0
(V T0 )‖2,∞

≤
√

μr0
(1− γ)n,

where the last inequality is from the definition of μ.

By the definition of V̄ , we further have

‖PIc
0
(V̄ T )‖2,∞ = ‖PIc

0
(V T0 Û V̂

T )‖2,∞ = ‖V T0 ÛPIc
0
(V̂ T )‖2,∞ ≤ ‖PIc

0
(V̂ T )‖2,∞

≤
√

μr0
(1− γ)n.

Now we define Q1 and Q2 used to construct the matrix Q that satisfies the conditions in Theorem 3.

Definition 7 Define Q1 and Q2 as follows:

Q1 � λPLV0
(XT Ĥ) = V0PI0(V̄ T ),

Q2 � λPLV ⊥0 PIc
0
PV̄ (I+

∞∑
i=1

(PV̄ PI0PV̄ )i)PV̄ (XT Ĥ)

= λPIc
0
PV̄ (I+

∞∑
i=1

(PV̄ PI0PV̄ )i)PV̄ PLV ⊥0 (XT Ĥ),
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where the equalities are due to Lemma 8 and Lemma 4.

The following Theorem almost finishes the proof of Theorem 1.

Theorem 4 Let the SVD of the dictionary matrix X as UXΣXV
T
X . Assume ψ < 1. Let

Q � UXΣ−1
X V TX (V0V̄

T + λXT Ĥ −Q1 −Q2).

If

γ

1− γ <
β2(1− ψ)2

(3− ψ + β)2μr0
,

and

(1− ψ)
√

μr0
1−γ

‖X‖√n(β(1− ψ)− (1 + β)
√

γ
1−γμr0)

< λ <
1− ψ

‖X‖√γn(2− ψ) ,

then Q satisfies the conditions in Theorem 3, i.e., it is the dual certificate.

Proof By Lemma 10, it is concluded that ψ < 1 can ensure that PV̂ ∩PI0 = {0}. Hence it is sufficient to show
that Q simultaneously satisfies

(S1) PÛ (XTQ) = Û V̂ T ,

(S2) PV̂ (XTQ) = Û V̂ T ,

(S3) PI0(Q) = λĤ,

(S4) ‖PT̂ (XTQ)‖ < 1,

(S5) ‖PIc
0
(Q)‖2,∞ < λ.

We prove that each of these five conditions holds, in S1-S5. Then in S6, we show that the condition on λ is not
vacuous, i.e., the lower bound is strictly less than the upper bound.

First of all, we shall simplify the formula of XTQ that will be used several times in the following process.
Recalling the setting (3) that assumes PLVX

(V0) = V0, we have that PLVX
(Q1) = Q1 and

PLVX
(Q2) = λPIc

0
PV̄ (I+

∞∑
i=1

(PV̄ PI0PV̄ )i)PV̄ PLVX
PLV ⊥0 (XT Ĥ)

= λPIc
0
PV̄ (I+

∞∑
i=1

(PV̄ PI0PV̄ )i)PV̄ PLVX
(I− V0V T0 )XT Ĥ)

= λPIc
0
PV̄ (I+

∞∑
i=1

(PV̄ PI0PV̄ )i)PV̄ (I− V0V T0 )XT Ĥ)

= λPIc
0
PV̄ (I+

∞∑
i=1

(PV̄ PI0PV̄ )i)PV̄ PLV ⊥0 (XT Ĥ)

= Q2.

Further, we have

XTQ = VXV
T
X (V0V̄

T + λXT Ĥ −Q1 −Q2) = PLVX
(V0V̄

T + λXT Ĥ −Q1 −Q2)

= PLVX
(V0V̄

T ) + λPLVX
(XT Ĥ)− PLVX

(Q1)− PLVX
(Q2)

= V0V̄
T + λXT Ĥ − PLVX

(Q1)− PLVX
(Q2)

= V0V̄
T + λXT Ĥ −Q1 − PLVX

(Q2)

= V0V̄
T + λXT Ĥ −Q1 −Q2.
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S1: Note that PLV0
(Q1) = λPLV0

(XT Ĥ) and PLV0
(Q2) = 0. Thus we have

PÛ (XTQ) = PÛ (V0V̄ T + λXT Ĥ −Q1 −Q2)

= PLV0
(V0V̄

T + λXT Ĥ −Q1 −Q2)

= V0V̄
T + λPLV0

(XT Ĥ)− PLV0
(Q1)− PLV0

(Q2)

= V0V̄
T − PLV0

(Q2)

= V0V̄
T = Û V̂ T .

S2: First note that

PV̄ (Q2) = λPV̄ PIc
0
PV̄ (I+

∞∑
i=1

(PV̄ PI0PV̄ )i)PV̄ PLV ⊥0 (XT Ĥ)

= λPV̄ PLV ⊥0 (XT Ĥ),

which is from that the operator PV̄ PIc
0
PV̄ is an injection from PV̄ to PV̄ , and its inverse is given by

I+
∑∞
i=1(PV̄ PI0PV̄ )i.

Thus we have

PV̂ (XTQ) = PV̂ (V0V̄ T + λXT Ĥ −Q1 −Q2)

= PV̄ (V0V̄ T + λXT Ĥ −Q1 −Q2)

= V0V̄
T + λPV̄ (XT Ĥ)− λPV̄ PLV0

(XT Ĥ)− PV̄ (Q2)

= V0V̄
T + λPV̄ PLV ⊥0 (XT Ĥ)− PV̄ (Q2)

= V0V̄
T = Û V̂ T .

S3: We have

PI0(Q) = PI0(UXΣ−1
X V TX (V0V̄

T + λXT Ĥ −Q1 −Q2))

= UXΣ−1
X V TX V0PI0(V̄ T ) + λUXU

T
XPI0(Ĥ)− UXΣ−1

X V TXPI0(Q1)

= UXΣ−1
X V TX V0PI0(V̄ T ) + λUXU

T
XĤ − UXΣ−1

X V TXPI0(Q1)

= UXΣ−1
X V TX V0PI0(V̄ T ) + λUXU

T
XĤ − UXΣ−1

X V TX V0PI0(V̄ T )
= λUXU

T
XĤ = λPLVX

(Ĥ).

By Ĉ = X(I− Ẑ), we have that Ĉ ∈ PUX
and so

Ĥ = B(Ĉ) ∈ PUX
,

which finishes the proof of PI0(Q) = λĤ.

S4: Since PT̂⊥(V0V̄ T ) = PT̂⊥(Q1) = 0, we have

PT̂⊥(XTQ) = PT̂⊥(V0V̄ T + λXT Ĥ −Q1 −Q2)

= λPV̄ ⊥PLV ⊥0 (XT Ĥ)− λPLV ⊥0 PV̄ ⊥PIc
0
PV̄ (I+

∞∑
i=1

(PV̄ PI0PV̄ )i)PV̄ (XT Ĥ).

First, it can be calculated that

‖PV̄ ⊥PLV ⊥0 (XT Ĥ)‖ ≤ ‖XT Ĥ‖ ≤ ‖X‖‖Ĥ‖ ≤ ‖X‖√γn,

where ‖Ĥ‖ ≤ √γn is due to Lemma 5.
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Second, we have the following

‖PLV ⊥0 PV̄ ⊥PIc
0
PV̄ (I+

∞∑
i=1

(PV̄ PI0PV̄ )i)PV̄ (XT Ĥ)‖

≤ ‖PIc
0
PV̄ (I+

∞∑
i=1

(PV̄ PI0PV̄ )i)PV̄ (XT Ĥ)‖

≤ ‖(I+
∞∑
i=1

(PV̄ PI0PV̄ )i)PV̄ (XT Ĥ)‖

≤ 1

1− ψ ‖PV̄ (X
T Ĥ)‖

≤ ‖X‖√γn
1− ψ .

Thus we have that

‖PT̂⊥(XTQ)‖ < 1 ⇐ λ(‖X‖√γn+
‖X‖√γn
1− ψ ) < 1

⇐ λ <
1− ψ

‖X‖√γn(2− ψ) .

S5: Note that PIc
0
(XT Ĥ) = PIc

0
(Q1) = 0. So we only need to bound the rest two parts.

By Lemma 7, we have

‖PIc
0
(UXΣ−1

X V TX V0V̄
T )‖2,∞ = ‖UXΣ−1

X V TX V0PIc
0
(V̄ T )‖2,∞

≤ ‖UXΣ−1
X V TX V0‖‖PIc

0
(V̄ T )‖2,∞

= ‖Σ−1
X V TX V0‖‖PIc

0
(V̄ T )‖2,∞

≤ 1

β‖X‖‖PIc
0
(V̄ T )‖2,∞

≤ 1

β‖X‖
√

μr0
(1− γ)n, (16)

where ‖Σ−1
X V TX V0‖ ≤ 1

β‖X‖ is due the the definition of β, and the last inequality is due to Lemma 12.

We expand Q2 for convenience:

Q2 = λPIc
0
PV̄ (I+

∞∑
i=1

(PV̄ PI0PV̄ )i)PV̄ PLV ⊥0 (XT Ĥ)

= λ(I− V0V T0 )(XT Ĥ)V̄ V̄ T (I+

∞∑
i=1

V̄ GiV̄ T )V̄ PIc
0
(V̄ T ).

Write Q2 = λ(Q̄2 − Q̃2), with

Q̄2 � XT ĤV̄ V̄ T (I+
∞∑
i=1

V̄ GiV̄ T )V̄ PIc
0
(V̄ T ),

Q̃2 � V0V
T
0 X

T ĤV̄ V̄ T (I+
∞∑
i=1

V̄ GiV̄ T )V̄ PIc
0
(V̄ T ).
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Then we have

‖PIc
0
(UXΣ−1

X V TX Q̄2)‖2,∞ = ‖UXΣ−1
X V TXPIc

0
(Q̄2)‖2,∞

= ‖UXUTXĤV̄ V̄ T (I+
∞∑
i=1

V̄ GiV̄ T )V̄ PIc
0
(V̄ T )‖2,∞

≤ ‖ĤV̄ V̄ T (I+
∞∑
i=1

V̄ GiV̄ T )V̄ PIc
0
(V̄ T )‖2,∞

≤ ‖Ĥ‖‖V̄ V̄ T (I+
∞∑
i=1

V̄ GiV̄ T )V̄ PIc
0
(V̄ T )‖2,∞

≤ ‖Ĥ‖‖V̄ V̄ T ‖‖(I+
∞∑
i=1

V̄ GiV̄ T )‖‖V̄ ‖‖PIc
0
(V̄ T )‖2,∞

≤ √γn 1

1− ψ
√

μr0
(1− γ)n

=
1

1− ψ
√

γ

1− γ μr0, (17)

and

‖PIc
0
(UXΣ−1

X V TX Q̃2)‖2,∞ = ‖UXΣ−1
X V TXPIc

0
(Q̃2)‖2,∞

= ‖UXΣ−1
X V TX V0V

T
0 X

T ĤV̄ V̄ T (I+
∞∑
i=1

V̄ GiV̄ T )V̄ PIc
0
(V̄ T )‖2,∞

≤ ‖Σ−1
X V TX V0‖‖V T0 XT ‖‖Ĥ‖‖V̄ V̄ T ‖‖(I+

∞∑
i=1

V̄ GiV̄ T )‖‖V̄ ‖‖PIc
0
(V̄ T )‖2,∞

≤ 1

β‖X‖‖X‖
√
γn

1

1− ψ
√

μr0
(1− γ)n

=
1

β(1− ψ)
√

γ

1− γ μr0. (18)

Combing (16), (17) and (18) together, we have

‖PIc
0
(Q)‖2,∞ ≤ ‖PIc

0
(UXΣ−1

X V TX V0V̄
T )‖2,∞ + λ‖PIc

0
(UXΣ−1

X V TX Q̄2)‖2,∞
+ λ‖PIc

0
(UXΣ−1

X V TX Q̃2)‖2,∞
≤ 1

β‖X‖
√

μr0
(1− γ)n +

λ

(1− ψ)
√

γ

1− γ μr0 +
λ

β(1− ψ)
√

γ

1− γ μr0

=
1

β‖X‖
√

μr0
(1− γ)n +

λ(1 + β)

β(1− ψ)
√

γ

1− γ μr0.

Hence,

‖PIc
0
(Q)‖2,∞ < λ

⇐ 1

β‖X‖
√

μr0
(1− γ)n +

λ(1 + β)

β(1− ψ)
√

γ

1− γ μr0 < λ

⇐ 1

β‖X‖
√

μr0
(1− γ)n < λ(1− 1 + β

β(1− ψ)
√

γ

1− γ μr0)

⇐ 1− ψ
‖X‖

√
μr0

(1− γ)n < λ(β(1− ψ)− (1 + β)

√
γ

1− γ μr0)

⇐ λ >
(1− ψ)

√
μr0

(1−γ)

‖X‖√n(β(1− ψ)− (1 + β)
√

γ
1−γμr0)

,
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as long as β(1− ψ)− (1 + β)
√

γ
1−γμr0 > 0, which is proven in the following step.

S6: We have shown that each of the 5 conditions hold. Finally, we show that the bounds on λ can be satisfied.
But this amounts to a condition on the outlier fraction γ. Indeed, we have

(1− ψ)
√

μr0
(1−γ)

‖X‖√n(β(1− ψ)− (1 + β)
√

γ
1−γμr0)

<
1− ψ

‖X‖√n(2− ψ)√γ

⇐ (2− ψ)
√

γ

(1− γ)μr0 < β(1− ψ)− (1 + β)

√
γ

1− γ μr0

⇐ γ

1− γ <
β2(1− ψ)2

(3− ψ + β)2μr0
,

which can be satisfied, since the right hand side does not depends on γ. Moreover, this condition also ensures

β(1− ψ)− (1 + β)
√

γ
1−γμr0 > 0.

We have thus shown that if ψ < 1 and λ is within the given bounds, we can construct a dual certificate. From
here, the following lemma immediately establishes our main result, Theorem 1.

Lemma 13 Let γ∗ be such that

γ∗

1− γ∗ =
324β2

49(11 + 4β)2μr0
,

then LRR, with λ = 3
7‖X‖√γ∗n , strictly succeeds as long as γ ≤ γ∗.

Proof First note that

324β2

49(11 + 4β)2μr0
=

36

49

β2(1− 1
4 )

2

(3− 1
4 + β)2μr0

.

Lemma 9 implies that as long as γ ≤ γ∗ we have the following:

ψ ≤ λ2‖X‖2γn =
9γ

49γ∗ ≤
9

49
<

1

4
.

Hence, we have

β2(1− ψ)2
(3− ψ + β)2μr0

>
β2(1− 1

4 )
2

(3− 1
4 + β)2μr0

⇒ γ∗

1− γ∗ <
36

49

β2(1− ψ)2
(3− ψ + β)2μr0

⇒ μr0 <
36

49

β2(1− ψ)2(1− γ∗)
(3− ψ + β)2γ∗

.

Note that
(1−ψ)

√
μr0

(1−γ)

‖X‖√n(β(1−ψ)−(1+β)
√

γ
1−γ μr0)

as a function of
√

γ
1−γμr0 is strictly increasing. Moreover,

√
γ

1−γμr0 <



Manuscript under review by AISTATS 2012

β(1−ψ)
3−ψ+β , and thus

(1− ψ)
√

μr0
(1−γ)

‖X‖√n(β(1− ψ)− (1 + β)
√

γ
1−γμr0)

<
(1− ψ)

√
μr0

(1−γ) (3− ψ + β)

‖X‖√nβ(1− ψ)(2− ψ)

<

6
7
β(1−ψ)2
3−ψ+β

√
1−γ∗
1−γ (3− ψ + β)

‖X‖√γ∗nβ(1− ψ)(2− ψ)

=

6
7 (1− ψ)

√
1−γ∗
1−γ

‖X‖√γ∗n(2− ψ)

≤
6
7 (1− ψ)

‖X‖√γ∗n(2− ψ)
≤ 3

7‖X‖√γ∗n,

where the last inequality holds because ψ ≥ 0.

By ψ < 1/4, we also have

1− ψ
‖X‖√γn(2− ψ) ≥

1− ψ
‖X‖√γ∗n(2− ψ) >

1− 1
4

‖X‖√γ∗n(2− 1
4 )

=
3

7‖X‖√γ∗n.

Hence, λ = 3
7‖X‖√γ∗n always satisfies the given bounds, as long as the outlier fraction γ is not higher than γ∗.

D List of Notations

X The observed data matrix.
X0 The ground truth of the data matrix.
C0 The ground truth of the outliers.
cond(·) The condition number of a matrix.
d The ambient data dimension, i.e., number of rows of X.
n The number of data points, i.e., number of columns of X.
I0 The indices of outliers, i.e., non-zero columns of C0.
γ Fraction of outliers, which equals |I0|/n.
U0, V0 The left and right singular vectors of X0.
μ Incoherence parameter of V0.
β RWD parameter of the dictionary X.

Ẑ, Ĉ The optimal solution of the Oracle Problem.

Û , V̂ The left and right singular vectors of Ẑ.
V̄ An auxiliary matrix defined in Definition 5.
B(·) An operator defined in Definition 4.

Ĥ An auxiliary matrix defined in Lemma 8, as Ĥ = B(Ĉ).
G An auxiliary matrix defined in Definition 6.
φ Defined in Lemma 9 as ψ = ‖G‖.


