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A  Proof of Lemma 2

Proof Suppose the SVD of X, is UpXoV{, and the SVD of Cj is UCECVg. Suppose U~ and Ué: are the
orthogonal complements of Uy and Ug, respectively. By the independence between span (Cp) and span (X),
[Ug, Ué] spans the whole ambient space, and thus the following linear equation system has feasible solutions Y{
and Yo

Us (Ug) Yo + Uz (Ug) Yo = L.
Let Y = I — Uy (Ug-)"Yo, then it can be computed that
X'y =x0 and Clvy =0,

i.e., XO = YXO and YCO = 0 are feasible. By PIS(X) = )(07 PIO (X) = C’()7 PIO (Xo) = XO and PIS (Xo) = 0, the
following linear equation system has feasible solutions Y:

X, =YX,

which simply leads to Vj € ’P‘I;X.

B Proof of Lemma 3

Proof Suppose UxYx Vi is the SVD of X, UpSoVy is the SVD of Xy, Uc is the column space of Cp, and Ué
is the orthogonal complement of Uc. By X = Xg + Co, (UF)TX = (UZ)T Xy and thus

US)"UxExVy = (Uz)"UoSoVy,
from which it can be deduced that
(U&E)"Ux = (Ug) USo(Vy Vx E51).

Since span (C) and span (Xg) are independent to each other, (U£)T Uy is of full column rank. Let the SVD of
(Ué‘)TUO be U1 3, V{%, then we have

Vi Vx 2 = Syt vt (U5 U,
Hence,

Ve Vx S5l 120 VAiET UL (USHTUx | < 1126 1=

1
Omin (Xo) Sin(e) ’

where [|S7!| = 1/sin(f) is concluded from (Knyazev et al., 2002). By | X|| < || Xol| + ||Col|, we further have

6 - 1 > Umin(XO) sm(H) > Umin(XO) sm(9)
IS VEVOlIX 1] — I Xoll + [0l
sin(f)

cond(Xo)(1 + ||‘|)C((;|‘|| ) .

C Proof of Theorem 1

C.1 Roadmap of the Proof

In this section we provide an outline for the proof of Theorem 1. The proof follows three main steps.

1. Equivalent Conditions: Identify the necessary and sufficient conditions (called equivalent conditions), for
any pair (Z’,C") to produce the exact results (7).
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For any feasible pair (Z’/,C’) that satisfies X = X7’ + C’, let the SVD of Z’ as U’'Y'V'" and the column
support of C” as Z'. In order to produce the exact results (7), on the one hand, a necessary condition is that
Pi (2') = Z' and P1,(C") = C', as this is nothing but U” is a subspace of Vg and " is a subset of Zp. On the
other hand, it can be proven that P{; (Z2’) = Z' and Pz, (C") = C" are sufficient to ensure U'U'" = V, V" and
7' = TIy. So, the exactness described in (7) can be equally transformed into two constraints: P{; (2') = Z’
and Pz, (C’) = C’, which can be imposed as additional constraints in (2).

2. Dual Conditions: For a candidate pair (Z’,C") that respectively has the desired row space and column

support, identify the sufficient conditions for (Z’,C’) to be an optimal solution to the LRR problem (2).
These conditions are call dual conditions.
For the pair (Z’,C’) that satisfies X = XZ' + C', P{; (Z2') = Z' and Pg,(C") = C’, let the SVD of
7' as U'S'V'T and the column-normalized version of C’ as H’. That is, column [H']; = ﬁ for all
i € Iy, and [H']; = 0 for all ¢ € Zy (note that the column support of C’ is Z;). Furthermore, define
Pr:(-) = Pu:(-) + Pv:(-) — Pu-Py:(-). With these notations, it can be proven that (Z’,C”) is an optimal
solution to LRR if there exists a matrix () that satisfies

Pr(XTQ)=U'V'"T 1XTQ —Pr(XTQ)|| < 1
Pr,(Q) = \H' 1Q — Pz, (Q)ll2,00 < A

Although the LRR problem (2) may have multiple solutions, it can be further proven that any solution has
the desired row space and column support, provided the above conditions have been satisfied. So, the left
job is to prove the above dual conditions, i.e., construct the dual certificates.

3. Dual Certificates: Show that the dual conditions can be satisfied, i.e., construct the dual certificates.

The construction of dual certificates mainly concerns a matrix ) that satisfies the dual conditions. However,
since the dual conditions also depend on the pair (Z’,C"), we actually need to obtain three matrices, Z', C’
and @. This is done by considering an alternate optimization problem, often called the “oracle problem”.
The oracle problem arises by imposing the success conditions as additional constraints in (2):

Oracle Problem: Iéllél 1 Z« + AlCl2.1
X=XZ+C,P}(Z)=2Pz,(C)=C.

Note that the above problem is always feasible, as (Vo V! , Cp) is feasible. Thus, an optimal solution, denoted
as (Z , 0)7 exists. With this perspective, we would like to use (2 , C') to construct the dual certificates. Let
the SVD of Z be USVT, and the column-normalized version of C' be H. It is easy to see that there
exists an orthonormal matrix V such that UV7 = VoV, where Vj is the row space of Xj. Moreover, it is
easy to show that Py (-) = P (-), Py () = Py(-), and hence the operator P; defined by U and V, obeys
Pi() = P (-) + Py (-) — Py Py (-). Finally, the dual certificates are finished by constructing @ as follows:

Q1 2 MPL(XTH),

(1>

APy PrgPy(I+ > (PyPr, Py) )Py (XTH),
=1

Q 2 UxSIVEWVT +AXTH - Q1 — Qa),

Q2

where UXEXV; is the SVD of the data matrix X.

C.2 Equivalent Conditions

Before starting the main proofs, we introduce the following lemmas, which are well-known and will be used
multiple times in the proof.

Lemma 4 For any column space U, row space V and column support L, the following holds.

1. Let the SVD of a matriz M be UXVT, then 0||M||. = {UVT + W|Pr(W) =0, |W| < 1}.



Manuscript under review by AISTATS 2012

(H) = H,[H]; = [M]/||[M];[|2, Vi €

L; Pr(L) = 0, [ L]l2,00 < 1}
3. For any matrices M and N of consistent sizes, we have Pz(MN) = MPz(N).

4. For any matrices M and N of consistent sizes, we have PyPz(M) = PrPy (M) and PLPz(N) = PrPE(N).
Lemma 5 If a matric H satisfies ||H||2,00 < 1 and is support on I, then |H| < /|Z].

Proof This lemma has been proven by (Xu et al., 2011). We present a proof here for the ease of reading.

IHI = AT = max |H7 sl = max, [+ A
= max 2T [H);)? < 1=+/|Z
s, [2 @S D 1=y
€T €L

Lemma 6 For any two column-orthonomal matrices U and V of consistent sizes, we have |[UVT|20 =
T
max; |V e;]s.

Lemma 7 For any matrices M and N of consistent sizes, we have

[MN|l2,00 < IM[IN]l2,00,
|<M7 N>| < HMHQ,OOHN”QJ

Proof We have
[MNlj2,00 = max|MNe|
= max|[|M[N][l2 < max {|MI|[[[N]i]l2 = [| M| max [|[N]i]]2
= [IM|[INTl2,00-

S
=
I

|Z[M]iT[N]i| < D IMITINY| < Z 1Ml [[V]:ll2

7

< Z(m?XH[M]in)H[ Jill2 = [[M|l2,00 | N [|2,1-

i

The exactness described in (7) seems “mysterious”. Actually, they can be “seamlessly” achieved by imposing
two additional constraints in (2), as shown in the following theorem.

Theorem 2 Let the pair (Z',C") satisfy X = XZ' + C'. Denote the SVD of Z' as U'S'V'T, and the column
support of C' as T'. If P{; (Z2") = Z' and Pr,(C") = C', then U'UT = VoV and T' = T.

Remark 3 The above theorem implies that the exactness described in (7) is equivalent to two linear constraints:
’P‘%(Z*) =Z* and Pz, (C*) = C*. As will be seen, this can largely facilitates the proof of Theorem 1.

Proof To prove U'U'" = VyVI', we only need to prove that rank (Z’) > rq, as PVO(Z’) = 7' implies that U’ is
a subspace of Vj. Notice that ch( ) = Xo. Then we have

Xo = 'PZS(X):PIS(XZ/—FO/):PZS(XZ/)
— XPr(Z).

So, 7o = rank (Xo) = rank (X Pz (2')) < rank (Pz;(2')) < rank (Z').
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To ensure ' = 7, we only need to prove that Zo N Z'® = (), since Pz, (C’) = C’ has produced 7' C Z;. Via some
computations, we have that

Pr,(Xo) =0 = UySoPz, (V) =0
= PIO (VOT) =0
= VoPr (Vy') = 0. (8)
Also, we have
Vo e P = Vi =V Vx Vi
= VoVy' = Vol Vx Vy, (9)
which simply leads to VoV Vx Pz, (VL) = VoPz, (VL ). Recalling (8), we further have
VoPz, (Vg ) = 0= VoVy VxPr, (V) = VoPr, (Vy') = 0
= VWoVi VxPrynze (Vi) = 0, (10)
where the last equality holds because Zop N Z'“ C Zy. Also, note that Zo N Z’° C Z’°. Then we have the following:
X:XZ,+O, = ’PIOOI/C(X) :XPIOQI’C(Z/)
UxYSxPronze(Vx) = UxExVy Prynze(Z')
Pronze(Vx) = Vi Prynzre(Z')
VxPrynze(Vx) = Vx Vi Prynze (Z')
VoVo Vx Prynz (VX)) = VoV Vx VX Prynzre(2')

Pl

Recalling (9) and (10), then we have
VoV Vx Pryzre (Vi) = 0 = VoVl Vx VE Proazie(Z') = 0

= VWV Pryrze(Z') =0
= PIOOI/C(Z/) =0, (11)

where the last equality is from the conclusion of 7’ = VOVOTZ’. By X = Xy + Co,
Pronze(Co) = Prynze (X — Xo) = Prynzre(X).
Notice that Pz nzre(X) = XPr,nz<(Z'). Then by (11), we have
Pr,nze(Co) =0, and so Zy NI = .

C.3 Dual Conditions

To prove that LRR can exactly recover the row space and column support, Theorem 2 suggests us to prove that
the pair (Z’,C") is a solution to (2), and every solution to (2) also satisfies the two constraints in Theorem 2. To
this end, we write down the optimal conditions of (2), resulting in the dual conditions for ensuring the exactness
of LRR.

At first, we define two operators that are closely related to the subgradient of ||C’||2,; and [|Z’]]..
Definition 4 Let (Z',C") satisfy X = XZ' + C', P{; (Z') = Z' and Pz,(C') = C". We define the following:
[C7]:
IC"ill2

B(C") & {H|Prg(H)=0;¥ieLo: [H]; = 2

1t is simple to see that B(C") is a column-normalized version of C'.

Let the SVD of Z' as U'S'V'", we further define the operator Prz:) as

Prizy() & Pu() +Pvi(-) = PuPyi()
= Py, () + Pvi() = Py Pur ().
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Then, we present and prove the dual conditions for exactly recovering the row space and column support of X
and Cj, respectively.

Theorem 3 Let (Z',C") satisfy X = XZ' +C', P (Z') = Z' and Pr,(C') = C'. Then (Z',C") is an optimal
solution to (2) if there exists a matriz Q that satisfies

(a)  Prazn(XTQ)=U'V'T,

(0)  Prz (XTQ) <1,

(c)  Pr(Q) =AB(C"),

(d)  Pzg(@)ll2.00 <A

Further, if Pz, NPy = {0}, then any optimal solution to (2) will have the exact row space and column support.

Proof By standard convexity arguments (Rockafellar, 1970), a feasible pair (Z’,C") is an optimal solution to
(2) if there exists " such that

Q €d|Z'|l. and Q" €AXTIC 1.

Note that (a) and (b) imply that X7 Q € 9||Z’||.. Furthermore, letting Z’ be the column support of C’, then by
Theorem 2, we have I’ = Z,. Therefore (c) and (d) imply that @ € AJ||C’||2.1, and so XTQ € AXT9||C'||21.
Thus, (Z',C") is an optimal solution to (2).

Notice that the LRR problem (2) may have multiple solutions. For any fixed A # 0, assume that (Z'+A,C'—A)
is also optimal. Then by X = X(Z' 4+ A1) + (C' — A) = XZ' + C’, we have

A= XA,

By the well-known duality between operator norm and nuclear norm, there exists Wy that satisfies ||Wy|| = 1 and
<W0,’PT(Z/)J_(A1)> = ||7)T(Z/)J—(A1)||*- Let W = ,PT(Z’)J—(WO)y then we have that ||W|| S 1, <VV, ,PT(Z’)l(Al» =
Pr(zyx (A1)« and Ppzy(W) = 0. Let F be such that

Al e
F]; = —m, if i € Zp and [A]; # 0,
’ 0, otherwise.

Then Przn(XTQ) + W is a subgradient of ||Z’[|,, and Pz, (Q)/A + F is a subgradient of [|C’[|21. By the
convexity of nuclear norm and f3 ; norm, we have

12"+ Axl + AIC = All2,y

> L[l + MC 20 + (Prezn(XTQ) + W, A1) = AP, (Q)/A + F, A)

= L'« + AIC 21 + IPrzns (Al + APz (A) 2,1 + (Przn (XTQ), Ar) — (P1,(Q), A).

Notice that

(Prz(X"Q), A1) = (P, (Q), A)

= <XTQ - ,PT(Z/)J-(XTQ)7 A1> - <Q - PIg(Q)7 A>

= (- PT(Z’)i(XTQ)’A1> + (P (Q), A) +(Q, XAy — A)

= (= Prz)+(XTQ), A1) + (P (Q), A)

> —[|Przy - (XTQPrzn: (A1)« = 1Pz5(Q)l2,00 | Pz (A)]]2,1,

V

where the last inequality is from Lemma 7, and the well-known conclusion that [(MN)| < || M]|||N]|« holds for
any matrices M and N.

The above deductions have proven that

12"+ Arll« + AIC" = All2 L'+ M N2 + (1 = [Pz (XT QNI Pr(z (Ar)lls

>
+ A= P (@)ll2.00)[Pzs(A) 2.1
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However, since both (Z’,C") and (Z' + Ay1,C" — A) are optimal to (2), we must have
12"+ Al + AIC" = Al = [IL'][« + AC7]|2.1,
and so
(1 = P12+ (XTQ)IDIPr(zy+ (Al + (A = [Pz (Q)

Recalling the conditions (b) and (d), then we have

|2,00)[|Pzs (A)[]2,1 < 0.

1Prezys (A« = [Pzg(A)]l21 = 0,

ie., Pz (A1) = Ay and Pz, (A) = A. By Lemma 1,
Z'ePy 7'+ A €Pl, andso Ay € P
Also, notice that A = XA;. Thus, we have

Prs(A) =0 XPre(Ar) =0
V)q(:'Pzg(AO =0
Pxexng(Al) =0
Pzg (ngx (A1))=0
= Prg(Ar1) =0,

LR

which implies that Pz, (A1) = Ay. Furthermore, we have

Pr,(A1) = Ar=Prizy(A1) =Py (A1) + Py Py (Ar)
Pur(Pzy(A1)) + Pvr Py (A1)

= P, Pu(A1) + Py Py (A1)

= PIOPU/L (Al) = PV’PU(L (Al).

Since Pz, Py (A1) = Py (Aq), the above result implies that
Py (Al) S PIO NPyr.

By the assumption of Pz,NPys = {0}, we have Py (A1) = 0. Recalling Theorem 2, we have that Py = P{; , and
so Ay € Pf;. Thus, the solution (Z'+A;, C'—A) also satisfies X = X (Z'+A;)+(C'=A), P{ (Z'+A1) = Z'+ Ay
and Pz, (C" — A) = €' — A. Recalling Theorem 2 again, it can be concluded that the solution (Z' + A;,C" — A)
also exactly recovers the row space and column support, i.e., all possible solutions to (2) equally produce the
exact recovery.

C.4 Obtaining Dual Certificates

In this section, we complete the proof of Theorem 1 by constructing a matrix () that satisfies the conditions in
Theorem 3, and proving Pz, NPy = {0} as well. This is done by considering an alternate optimization problem,
often called the “oracle problem”. The oracle problem arises by imposing the equivalent conditions as additional
constraints in (2):

Oracle Problem: réucr} 1 Z]« + ACl2,1 (12)
X=XZ+C, P} (Z)=2Pz,(C) = C.
Note that the above problem is always feasible, as (VoV!, Cp) is feasible. Thus, an optimal solution, denoted as

(Z, C’), exists. With this perspective, we would like to show that (Z, C’) is an optimal solution to (2), and obtain
the dual certificates by the optimal conditions of (12).
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Definition 5 Let (AZA,C') be an optimal solution to the oracle problem (12). Let USVT and I be the SVD and
column support of Z and C, respectively. By Theorem 2,
Ut =vpV'  and I =1,.
Let
VA VUTVO, then we have UVT = VoVT.
Since UUT = VoV and VVT = VVT, we have
Pi() 2 Pu()+Py() = PaPy()
P, () + Py () = Py, Po ().
Lemma 8 Let H = B(C), then we have
VoPr, (VT) = AP (X7 H).
Proof Notice that the Lagrange dual function of the oracle problem (12) is
L(Z,C.Y,Y1,Y) = |1Z]1 + Al Cl21 + (Y. X — XZ - C)
+(V1, P, (2) = 2) + (Y2, P, (C) = C),
where Y, Y7 and Y5 are Lagrange multipliers. Since (Z , C’) is a solution to problem (12), we have
0€dLy(Z,C,Y,Y1,Ys) and 0€dLo(Z,C,Y,Y1,Ys).
Hence, there exists W, H and L such that
Pp(W) =0,|W| < 1,VoVT + W € 9] 2|,
H=B(C),Pr,(L) =0, || L]|2.00 < 1, H+L € |C|21,

VWV + W = XTY =Pl (Y1) =0,
ANH + L) =Y — Pre(Ya) = 0.
Let A=W —Y; and B = AL — Y5, then the last two equations above imply that
VWV + P (A) = AXTH + P (X" B). (13)
Furthermore, we have
Pl P, (VoVT + Py (A)) = Pl Pr, (VoVT) + Py Pr, Py L (A)
= VoPr, (V) + Pt Py Pry (A)
= VP, (V7). (14)
Similarly, we have
P Pr,\X"H + Prz (X" B)) = P{; Pr, AXTH) + P{; Pr,Pr: (X" B)
=Pl Pr, A\XTH) = \PL (XTPr, (H))
= \PL(XTH). (15)
Combing (13), (14) and (15) together, we have
VoPz, (VT) = XPE (XTH).

Before constructing a matrix @ that satisfies the conditions in Theorem 3, we shall prove that Pz, NPy = {0}
can be satisfied by choosing appropriate parameter \.
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Definition 6 Recalling the definition of V, define matriz G as
G £ Pr, (V) (P, (V).
Then we have

G=Y WLV < VRV = VIV =1,

where % is the generalized inequality induced by the positive semi-definite cone. Hence, |G| < 1.
The following lemma states that ||G|| can be far away from 1 by choosing appropriate .
Lemma 9 Let ¢ = ||G||, then v < N\?|| X ||*yn.

Proof Notice that

b = PR (VPR (V)T = VP, (V) (Pr, (V1) VT |
|(VoPz, (V7)) (VoP, (V1)) .

By Lemma 8, we have
= |XPE(XTH)OPE (XTH)T|
= N|PELXTH) (P (XTH)T|

<
|

< NP TP (XTH)T|
< NXTH|? < XX )7
< NXIPIZol = A2(IX[Pn,

where ||H||? < |Zy| = yn is due to Lemma 5.

The above lemma bounds v far way from 1. In particular, for A < W, we have 1) < i. So we can assume
that ¥ < 1 in sequel.

Lemma 10 If1 < 1, then Py NPz, = Py NPz, = {0}.

Proof Let M € Py NPz, then we have

1M = [MMT|| = [Pz, (M)(Pr,(M))"|| = [Pz, (MVVT)(Pr, (MVVT))"||
= [MVPL(VT)(Pr, (V)T VIMT|
< MV Pz, (V) (P, (VO)TVE| = M| Pz, (VE) (Pz, (V)T || = | M][*%
< M.

Since ¢ < 1, the last equality can hold only if [[M]| = 0, and hence M = 0. Also, note that P = Py, which
completes the proof.

The following lemma plays a key role in constructing @ that satisfies the conditions in Theorem 3.

Lemma 11 If v < 1, then the operator Py PzePy is an injection from Py to Py, and its inverse operator is
I+ 221(PVPIOP\7)l~

Proof For any matrix M such that ||M|| = 1, we have

PiyPr, Py (M) = 'P(/PIO(MVVT)

Py (MVPL, (V"))
MVPL,(VHVVT

MV (Pz, VHV)VT

= MV(Pg, (V") (P, (VT)T)VT
= MVGVT,
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which leads to ||Py Pz, Py || < |G| = . Since ¢ < 1, I+ > 72, (Py Pz, Pyy) is well defined, and has a spectral
norm not larger than 1/(1 — ).

Note that
Py PPy = Py(I — Pr,)Py = Py (I — PyPr,Pr),
thus for any M € Py, the following holds

PyPrsPy(1+ > (PyPr,Py))(M) = Py(I—PyPr,Py)(I+ Y (PyPr,Py))(M)

i=1 i=1

= 7)‘7(M) = M.

Lemma 12 We have

Naves < &
PV e < 7

Proof Notice that X = XZ + C and Pre(X) = Xo = Pzc(Xo). Then we have
X=XZ+C = Pr(Xo) = XPrc(2)
W = Pay () = 5 U XOS P (07,

which implies that the rows of Pre (VT) span the rows of V;'. However, the rank of PIS(VT) is at most ro (this
is because the rank of both U and V is (). Thus, it can be concluded that PIS(VT) is of full row rank. At the
same time, we have R R
0< 'PIS(VT)('PIS(VT))T < I.

So, there exists a symmetric, invertible matrix Y € R"*"0 such that

Y[ <1 and Y2 =Pr(VT)(Pr(VD))".
This in turn implies that Y*1PIS(VT) has orthonomal rows. Since Pr¢(Vy') = V{ is also row orthonomal, it
can be concluded that there exists a row orthonomal matrix R such that

Y Pre (V) = RPrs (V).

Then we have

1Pz (V) 2,00 1Y RPzg (Vi) 12,00

< IYIIRPze (VY 2,00 < I1BPze (Ve)ll2,0
< Pz (V ) 2,00
Hro
< 77
B (1=)n

where the last inequality is from the definition of p.
By the definition of V', we further have
1Pz (V2o = P25 (VF TV l2,00 = Ve UPs (VT )ll2,00 < [P (VT)ll2,00

HTo

= VaT-n

Now we define @1 and @2 used to construct the matrix ) that satisfies the conditions in Theorem 3.

Definition 7 Define Q1 and Q2 as follows:
Qu = APE(XTH) =VoPr,(VT),

Q2 2 XPEPrPy(1+ Y (PyPr,Py) )Py (XTH)
=1
= AP Py(1+ Y (PyPr,Py))PyPh (XTH),

i=1
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where the equalities are due to Lemma 8 and Lemma 4.

The following Theorem almost finishes the proof of Theorem 1.

Theorem 4 Let the SVD of the dictionary matriz X as UxSx V. Assume i) < 1. Let
QEUXSYVEVVT +AXTH — Q1 - Qo).

If

v B2(1 —1)?
L—vy = B—=v+p)>2ur’

and

(1-9), /2 ) -

A 9
XV =)~ L+ B) ) XA —7)

then Q) satisfies the conditions in Theorem 3, i.e., it is the dual certificate.

Proof By Lemma 10, it is concluded that 1) < 1 can ensure that Py, NPz, = {0}. Hence it is sufficient to show
that @ simultaneously satisfies

(81)  Py(xXTQ) =UV",

(82)  Pp(xTQ) =0UVT,

(S3)  Pr(Q) = A,

(S4) IPa(XTQ)| <1,

(85)  Pzg(Q)ll2,00 < A

We prove that each of these five conditions holds, in S1-S5. Then in S6, we show that the condition on A is not
vacuous, i.e., the lower bound is strictly less than the upper bound.

First of all, we shall simplify the formula of X7 that will be used several times in the following process.
Recalling the setting (3) that assumes Py (Vo) = Vo, we have that P{_(Q1) = Q1 and

Ph(Q2) = APrgPy(I+ Y (PyPr,Py))PoPy, Pl (XTH)

i=1

= NP Py(1+ Y (PyPr,Py))PyPi (1 - VoV )X H)
=1

= MPrPy(1+) (PyPzPy))Py(T - VoV )X H)

=1

= AP Py(1+) (PyPr,Py))PyPi.(XTH)
1=1

= Q.
Further, we have

XTQ = VxVEWVT +0AXTH — Q1 — Q2) =P (VoVT + AXTH — Q1 — Q)
= Ph (V") + APL (XTH) — P (Q1) — P (Q2)
= WVT+AXTH - P (Q1) — Pl (Q2)
VoVT +0XTH — Q1 — PE(Q2)
= VoVI+AXTH - Q1 — Q..
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S1: Note that Pf; (Q1) = AP}, (XTH) and P (Q2) = 0. Thus we have

Po(XTQ) = Pr(VoVT +AXTH — Q1 — Q)
= PELVOVT +AXTH - Q1 — Q2)
= WV +PE(XTH) — Pl (Q1) — P (Q2)
= WV —Pf(Q2)
= Wr=0vT.

S2: First note that

Py(Q2) = APyPrPy(I+) (PyPr,Py))PyPi.(XTH)
i=1
= APy Py. (XTH),
which is from that the operator PyPrgPy is an injection from Py to Py, and its inverse is given by
I+ (PyPr,Py)".

Thus we have

Po(XTQ) = Py(VoVT +AXTH — Q1 — Q1)
= Pr(VoVT +XXTH — Q, — Q2)
= VoVT + APy (XTH) - XPyPE (XTH) — Py (Q2)
= WVT +XPyPLLU(XTH) — Py (Q2)
= Wvr=0v".

S3: We have

Pr,(Q) = Pr(UxSPVEWLVT +AXTH - Q1 — Q)
= UxSx'ViVoPr, (V") + \UxUX Pz, (H) — Ux S5 V¥ Pz, (Q1)
= UxXx'VEVoPr, (VD) + N\UxUEH — Ux S VEPL (Q1)
= UxXx'VEVoPr, (V) + N\UxULH — Ux S VEVYPL, (VT
= NUxULH = P (H).

By C' = X(I — Z), we have that C' € Py, and so

H=B(C) € Py,
which finishes the proof of Pz, (Q) = AH.
S4: Since Pj. (VoVT) = Ps.(Q1) = 0, we have

P (XTQ) = Prp (VT +AXTH - Q1 — Qo)
= MPp.Py. (XTH) - NPy Py PrgPy (I + > (PyPr,Py) Py (XTH).

i=1
First, it can be calculated that

1Py Py (XTH) < (IXTH| < | XIIH] < 1X]vAm,

where ||H|| < /47 is due to Lemma 5.
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Second, we have the following
1PV Poo PP (I+ Y (PoPr,Py))Pr(XTH)|
i=1

< |[PrePy(T+ Y (PyPr,Py) )Py (XTH)|

i=1

< (T + ) (PyPr,Py))Py(XTH)|

i=1
1 T F
< o 1P (X7 )|
_ IXlyam

Thus we have that

X
Pr (@l <1 = Al + ) <o
1-9
A< rm————.
~ XAz - )

=

S5: Note that Prg (XTH) = Prs(Q1) = 0. So we only need to bound the rest two parts.

By Lemma 7, we have

1Pz (Ux S Vi VoV )ll2,00 = [Ux S5 Vi VoPze (V) 12,00
< NUxEXVEVollIIPL (VT)
= IS VEVolll| Pz (V)

1

< ——— 1P (V)| l2.00
> B”XH” IO( )”27

2,00

|2,oo

- 1 Uro
~BIXIY (T =)n

; (16)

where || S VEV| < ﬁHlXH is due the the definition of §, and the last inequality is due to Lemma 12.

We expand @2 for convenience:

Q2 = NPgPy(I+ Y (PuPs,Py))PrPl, (XTH)

i=1
= MI-WVOXTHVVT(1+> VEVHVPLVT).

i=1

Write Qa = AMQ2 — Q2), with

Q, = XTI:[VVT(I—l—ZVGiVT)VfPIg(VT)a
i=1

Q: = VW XTHVVI(I+) VGV VP, (V).
i=1
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Then we have
1Pze(UxE5' VX Q2)ll2,00 = IUx S5V Pre(Q2) 12,00
= |UxUXHVVT(1+ Y VGV )VPL(VT) 200
i=1

<|aVVT(1+ ZVG”VT)VPIC( lz,00

=1

<[HVVTE+Y VGV VP (V)20

i=1

< =NV + Z VGVDINVIIPL (V)20

< VAT /17

717#} 71 ’YM 0>

and
[Pz (UxSx' Vi Q2)ll2.00 = IUxS%' Vit Pzc(Q2)l|2,00

= |UxS VIV VT XTHVVT (1 + Y VGV )V PLe(VT) 2,00

i=1

< IS VEVO VG XTNIAINVVTNIE + Y VEVOIIVIIPz (V2,00

=1
1 1 HTo
X
< ,BIIXH” ”W"l —o\ T n

,UJTO .

B =19)
Combing (16), (17) and (18) together, we have
<

Pz (Q)]]2,00 [Pre (Ux S Vi VoV ) [l2,00 + Al Pre (Ux BV Q2) 12,00

APz (Ux 25"V Q2)l|2,00

+

IN

1 Ao +/\(1+ﬁ) i
BIXIV T =)n " B —9)V 177"

Hence,

[Pz (Q)|2,00 < A

1 1T A1+ p)
< TRV T T A T <

1 1o 1+8 2
)\ _
S T=yn <M Ba— gy T

1-9 o B /L
= ||X|| (1 77)71 < )‘(/8(1 1/}) (1 +6) fyl’[/ O)

(1 - 11[}) ({L_T?y)

IX[VA(B(L — ) — (1+ 8), /12 o)

= A>

! L A T o + A T
BIXTV GT=yn " G=p) V17" Ba—pyy 17"
Y
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as long as (1 —¢) — (14 B), /ﬁ,uro > 0, which is proven in the following step.

S6: We have shown that each of the 5 conditions hold. Finally, we show that the bounds on A can be satisfied.
But this amounts to a condition on the outlier fraction . Indeed, we have

(1-9)\/d=5 1— 4

<
IXIVABQA =) = 1+ B)y [ 2spure)  IXIVREZ =)V
=(@2-v) (lj—wurow(l—w)—(um ﬁuro
v B-v)
L—y = (=9 +p8)2uro’

which can be satisfied, since the right hand side does not depends on . Moreover, this condition also ensures

B(L—) — (1+8)\ /2o > 0.

We have thus shown that if ©» < 1 and A is within the given bounds, we can construct a dual certificate. From
here, the following lemma immediately establishes our main result, Theorem 1.

Lemma 13 Let v* be such that

v 32432

1—a* 4911 +48)%ury’

then LRR, with A\ = strictly succeeds as long as v < y*.

__3
7 X vAsn?

Proof First note that

49(11 +4B)2urg 49 (3— L 1 B)2uro’

32452 36 B2(1-1)?
2

Lemma 9 implies that as long as v < v* we have the following:

9y 9
<—<
49yx — 49

| =

¥ < N||X[Pyn =

Hence, we have

B2(1 —)? - B2l —1)?
(3 =1+ B)2uro (3= %+ B)2uro
7 _36_B-¢)
L= 49 (3 -1+ B)2uro
36 B2(1 —¥)*(1 —~%)
TS Bt Ay

(1=9)\/ 7255 . 5 . . . . -
Note that XA (1B o) as a function of \/ T=y M0 18 strictly increasing. Moreover, \/ T=7 M0 <
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(1—9), /o (1—4), /23— ¢ + B)
IXIVABO =) = (1+ ), 725 0m0) IX[lvrB(1 = ¥)(2 =)

Bl=v)? [1—n~
s ST B -y +8)

S XVl - )2 - )
e =
= XV - v)
. ta-w)
= IXVAnE - )
3
<

7| XAy e’
where the last inequality holds because 1 > 0.
By ¢ < 1/4, we also have

I=

3
2—-3)  7IXIvaTR

_ 3 . . . . . . *
Hence, \ = XA always satisfies the given bounds, as long as the outlier fraction « is not higher than ~*.

11— N 1—1 N 1—
IX[lvm(2 =) ~ [ XIIVy @2 -9) = [|X|vy™n

—~ |

D List of Notations

X The observed data matrix.

Xo The ground truth of the data matrix.

Co The ground truth of the outliers.

cond(-) The condition number of a matrix.

d The ambient data dimension, i.e., number of rows of X.
n The number of data points, i.e., number of columns of X.
To The indices of outliers, i.e., non-zero columns of Cj.

~ Fraction of outliers, which equals |Zp|/n.

Uop,Vo  The left and right singular vectors of Xj.

1 Incoherence parameter of Vj.

B RWD parameter of the dictionary X.

zZ,C The optimal solution of the Oracle Problem.

U , 1% The left and right singular vectors of Z.

Vv An auxiliary matrix defined in Definition 5.

B(+) An operator defined in Definition 4.

An auxiliary matrix defined in Lemma 8, as H = B(C).
An auxiliary matrix defined in Definition 6.
Defined in Lemma 9 as ¢ = ||G||.

Qo



