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A List of Lemmas, Theorems, and
Corollaries

For being self-contained, we list here all the lemmas,
theorems, and corollaries in the main paper.

Lemma 1. The joint transition matrix P+ given by
Eq.(1) in the main paper has a stationary distribution
in form of (αµX , βµY ), if and only if

µXQB = µY , and µYQF = µX . (1)

Under this condition, we have αb = βf . Further, if
both PX and PY are both reversible, then P+ is also
reversible, if and only if

µX(x)QB(x, y) = µY (y)QF (y, x), (2)

for all x ∈ X and y ∈ Y .

Lemma 2. If the condition given above holds, then
µX and µY are respectively stationary distributions of
QBF and QFB. Moreover, if P+ is reversible, then
both QBF and QFB are reversible.

Theorem 1. Given a reversible Markov chain with
transition matrix P, and ε ∈ (0, 1/2), then

log(1/(2ε))(τ − 1) ≤ tmix(ε) ≤ log(1/(εµmin))τ. (3)

Here, τ is called the relaxation time, given by 1/γ∗(P).

Theorem 2. Let λ2 be the second largest eigenvalue
of a reversible transition matrix P, then

Φ2
∗(P)/2 ≤ 1− λ2 ≤ 2Φ∗(P). (4)

Theorem 3. The reversible transition matrix P+ as
given by Eq.(1) in the main paper has

η(b, f)

2
· φ

φ+ 1
≤ Φ∗(P+) ≤ max{b, f}. (5)

Here, η(b, f) = 2αb = 2βf is the total probability of
cross-space transition, φ = min{Φ∗(QBF ),Φ∗(QFB)}.
Corollary 1. The joint chain P+ is ergodic when the
collapsed chains (QBF and QFB) are both ergodic.

Lemma 3. Let P be a reversible transition matrix
over X, such that P(x, x) ≥ ξ > 0 for each x ∈ X
then its smallest eigenvalue λn has λn ≥ 2ξ − 1.

Theorem 4. The hierarchically bridging Markov
chain with bk < 1 for k = 0, . . . ,K−1, and fk < 1 for
k = 1, . . . ,K is ergodic. If we write the equilibrium
distribution in form of (αµ0, β1µ1, . . . , βKµK), then
(S1) µ0 equals the target distribution µ; (S2) for each
k ≥ 1, and y ∈ Yk, µk(y) is proportional to the total
probability of its descendant target states (the target
states derived by filling all its placeholders); (S3) α,
the probability of being at the target level, is given by
α−1 = 1 +

∑K
k=1(b0 · · · bk−1)/(f1 · · · fk).

Corollary 2. If bk/fk+1 ≤ κ < 1 for each k =
1, . . . ,K, then α > 1− κ.

B Proofs

Here, we provide the proofs of the lemmas and theo-
rems presented in the paper.

B.1 Proof of Lemma 1

Recall that P+ is given by

P+ =

[
(1− b)PX bQB

fQF (1− f)PY

]
.

Suppose P+ has a stationary distribution in form of
(αµX , βµY ), then

α(1− b)µXPX + βfµYQF = αµX ,

αbµXQB + β(1− f)µYPY = βµY . (6)

Since µX and µY are respectively stationary distribu-
tions of PX and PY , i.e. µXPX = µX and µYPY =
µY , we have

βfµYQF = αbµX , and αbµXQB = βfµY . (7)

Note that QB and QF were defined with the condition
that each of their rows sums to 1, i.e. QF1|X| = 1|Y |
and QB1|Y | = 1|X|. Multiplying 1 to the right of both
hand sides of either equation results in αb = βf . It
immediately follows that

µXQB = µY , and µYQF = µX . (8)

For the other direction, we assume QB and QF satisfy
the conditions above, and αb = βf . Plugging these
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conditions into the left hand sides of the equations
in Eq.(6) results in (αµX , βµY )P+ = (αµX , βµY ),
which implies that (αµX , βµY ) is a stationary distri-
bution of P+. The proof of the first part is done.

Next, we show the second part of the lemma, which is
about the reversibility. Let µ+ = (αµX , βµY ). Under
the condition that PX and PY are both reversible, we
have for each x, x′ ∈ X,

µ+(x)P+(x, x′) = α(1− b)µX(x)PX(x, x′),

µ+(x′)P+(x′, x) = α(1− b)µX(x′)PX(x′, x), (9)

and thus µ+(x)P+(x, x′) = µ+(x′)P+(x′, x) (due
to the reversibility of PX). Likewise, we can get
µ+P+(y, y′) = µ+(y′)P(y′, y). Hence, P+ is re-
versible if and only if µ+(x)P+(x, y) = µ+(y)P+(y, x)
for each x ∈ X and y ∈ Y . This can be expanded as

αbµX(x)QB(x, y) = βfµY (y)QF (y, x), (10)

which holds if and only if µX(x)QB(x, y) =
µY (y)QF (y, x) (under the condition αb = βf). The
proof is completed.

B.2 Proof of Lemma 2

If (αµX , βµY ) is a stationary distribution of P+, then
Eq.(8) holds. Thus,

µXQBQF = µYQF = µX , (11)

implying that µX is a stationary distribution of
QBQF . Similarly, we can show that µY is a stationary
distribution of QFQB .

Furthermore, if P+ is reversible, according to
Lemma 1, we have µX(x)QB(x, y) = µY (y)QF (y, x)
for each x ∈ X and y ∈ Y . Then for any x, x′ ∈ X,

µX(x)QBF (x, x′) = µX(x)
∑
y∈Y

QB(x, y)QF (y, x′)

=
∑
y∈Y

µX(x)QB(x, y)QF (y, x′)

=
∑
y∈Y

µY (y)QF (y, x)QF (y, x′)

Similarly, we can get

µX(x′)QBF (x′, x) =
∑
y∈Y

µY (y)QF (y, x′)QF (y, x).

Hence,

µX(x)QBF (x, x′) = µX(x′)QBF (x′, x). (12)

This implies that QBF is reversible. Likewise, we can
show that QFB is reversible under the condition that
P+ is reversible. The proof is completed.

B.3 Proof of Theorem 3

To prove theorem 3, we first establish a lemma on flow
decomposition, and then accomplish the proof based
on the lemma.

B.3.1 A Lemma on Flow Decomposition

For the joint chain P+, we analyze its bottleneck ratio
by decomposing the flows. Consider a partition of the
union space X ∪Y into two parts: A∪B (with A ⊂ X
and B ⊂ Y ) and Ac ∪ Bc (with Ac = X/A and Bc =
Y/B). The flow between them comprises three parts:

F(A,Ac) + F(B,Bc) + (F(A,Bc) + F(B,Ac)).

Here, F(A,Ac) is the flow within X, F(B,Bc) is the
flow within Y , and F(A,Bc) + F(B,Ac) is the flow
between X and Y . The first two are inherited from
the original Markov chains. We focus on the third
one, which reflects the effect of bridging. For this part
of flow, we derive the following lemma by decomposing
it along multiple paths.

Lemma 4. Given arbitrary partition of X ∪ Y into
A ∪B and Ac ∪Bc as described above, we have

F(A,Bc) + F(B,Ac) ≥ αb · Φ∗(QBF )µX(A), (13)

when µX(A) ≤ µX(Ac), and

F(A,Bc) + F(B,Ac) ≥ βf · Φ∗(QFB)µY (B), (14)

when µY (B) ≤ µY (Bc).

Proof. To analyze the flow F(A,Bc) + F(B,Ac), we
further decompose it along multiple paths. Based on
Eq.(1) in the main paper, we have

F(A,Bc) =
∑
x∈A

∑
y∈Bc

αbµX(x)QB(x, y) (15)

= αb
∑
x∈A

∑
y∈Bc

µX(x)QB(x, y)
∑
x′∈X

QF (y, x′)

In this way, we decompose the flow into a sum of the
terms in form of µX(x)QB(x, y)QF (y, x′), which we
call the path weight along x → y → x′, denoted by
ω(x, y, x′). We can then rewrite F(A,B) as

F(A,B) = αb
∑
x∈A

∑
y∈B

∑
x′∈X

ω(x, y, x′). (16)

For conciseness, we use ω(A,B,C) to denote the sum
of paths traveling from A, via B, and ending up in C,
i.e.

∑
x∈A

∑
y∈B

∑
x′∈C ω(x, y, x′). Then, we have

F(A,Bc) = αb(ω(A,Bc, A) + ω(A,Bc, Ac)), (17)

F(Ac, B) = αb(ω(Ac, B,A) + ω(Ac, B,Ac)). (18)
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As F is symmetric for a reversible chain, we have
F(B,Ac) = F(Ac, B), and thus

F(A,Bc) + F(B,Ac) ≥ αb(ω(A,Bc, Ac) + ω(Ac, B,A))

= αb ω(A, Y,Ac). (19)

On the other hand, we note that

ω(A, Y,Ac) =
∑
x∈A

∑
y∈Y

∑
x′∈Ac

ω(x, y, x′)

=
∑
x∈A

∑
y∈Y

∑
x′∈Ac

µX(x)QB(x, y)QF (y, x′)

=
∑
x∈A

∑
x′∈Ac

µX(x)
∑
y∈Y

QB(x, y)QF (y, x′)

=
∑
x∈A

∑
x′∈Ac

µX(x)QBF (x, x′). (20)

This is exactly the flow from A to Ac with respect to
the collapsed chain QBF , i.e.

ω(A, Y,Ac) = FQBF
(A,Ac). (21)

Assuming µX(A) ≤ µX(Ac), we have FQBF
(A,Ac) ≥

Φ∗(QBF )µ(A), by the definition of bottleneck ratio.
Combining this with Eq.(19) results in

F(A,Bc) + F(B,Ac) ≥ αb · ω(A, Y,Ac)

≥ αb · Φ∗(QBF )µX(A). (22)

Likewise, with the assumption µY (B) ≤ µY (Bc), we
have

F(A,Bc) + F(B,Ac) ≥ βf · Φ∗(QFB)µY (B). (23)

The proof of the lemma is completed.

B.3.2 The Proof of the Main Theorem

Let µ+ = (αµX , βµY ) be the stationary distribution

of P+. For conciseness, we let Fs(A,B) , F(A ∪
B,Ac∪Bc). When A and B are clear from the context,
we simply write Fs. Then the bottleneck ratio of P+

is the minimum of the values of Fs(A,B)/µ+(A∪B),
among all possible choices of A ⊂ X and B ⊂ Y such
that µ+(A∪B) ≤ 1/2 and A∪B 6= ∅. Throughout this
proof, we assume A ⊂ X, B ⊂ Y , and µ+(A ∪ B) ≤
1/2, i.e. αµX(A) + βµY (B) ≤ 1/2.

Under this assumption, there are three cases, which
we respectively discuss as follows.

Case 1. µX(A) ≤ 1/2 and µY (B) ≤ 1/2.

We have φ = min{Φ∗(QBF ),Φ∗(QFB)} in the theo-
rem. In addition, Fs ≥ F(A,Bc) + F(B,Ac). Com-
bining this with Lemma 4, we get

Fs ≥ αb · φµX(A), and Fs ≥ βf · φµY (B). (24)

Note that η/2 = αb = βf and α+ β = 1. Thus

Fs
µ+(A ∪B)

≥ αFs + βFs
αµX(A) + βµY (B)

≥ ηφ/2. (25)

Case 2. µX(A) < 1/2 and µY (B) > 1/2.

Given arbitrary κ > 2, there are two possibilities:

Case 2.1. 1/κ ≤ µX(X) < 1/2 and µY (B) > 1/2.
Then

Fs ≥ αb · φµX(A) >
1

κ
αbφ. (26)

Recall that µ+(A ∪B) ≤ 1/2. Thus

Fs
µ+(A ∪B)

≥ 2

κ

ηφ

2
. (27)

Case 2.2. µX(X) < 1/κ and µY (B) > 1/2. Here, we
utilize the following fact: Fs ≥ F(B,Ac) = F(B,X)−
F(B,A). Then, by the definition of flow, we have

F(B,X) = βfµY (B) > βf/2, (28)

and by the symmetry of F (due to reversibility),

F(B,A) = F(A,B) ≤ F(A, Y ) = αb/κ. (29)

With αb = βf , combining the results above leads to

Fs > βf/2− αb/κ = αb(1/2− 1/κ). (30)

As a result, we get

Fs
µ+(A ∪B)

> 2αb(1/2− 1/κ) =
η

2
(1− 2/κ). (31)

Case 3. µX(A) > 1/2 and µY (B) < 1/2. Following
a similar argument as we developed above for case 2,
given κ > 2, we can likewise get

Fs
µ+(A ∪B)

≥

{
2
κ
ηφ
2 (µX(X) ≥ 1/κ),

η
2 (1− 2/κ) (µX(X) < 1/κ).

(32)

Note that µX(A) > 1/2 and µY (B) > 1/2 cannot
hold simultaneously under the assumption αµX(A) +
βµY (B) ≤ 1/2. Integrating the results derived for all
cases, we obtain

Fs(A,B)

µ+(A,B)
≥ η

2
min

{
2

κ
φ, 1− 2

κ

}
, ∀κ > 2. (33)

Note that this inequality holds for all A and B with
0 < µ+(A ∪ B) ≤ 1/2. In this way, we can get a
series of lower bound of the bottleneck ratio, using
different values of κ. And the supreme of these lower
bounds remains a lower bound. It is easy to see that
the supreme attains when 2φ/κ = 1− 2/κ, leading to

sup
κ>2

min

{
2

κ
φ, 1− 2

κ

}
=

φ

1 + φ
. (34)
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It follows that

Φ∗(P+) ≥ η

2

φ

φ+ 1
. (35)

This completes the proof of the lower bound. Next,
we show the upper bound, which is easier. Due to the
definition of bottleneck ratio, for any given partition
of X ∪ Y , the flow ratio derived from that partition
constitutes an upper bound of Φ∗(P+).

Here, we consider the partition with one part being X
and the other being Y . Then

Fs = αb = βf, (36)

and thus the flow ratio is given by

Fs
min(α, β)

= max(f, b). (37)

This gives an upper bound of Φ∗(P+). The proof of
the theorem is completed.

B.4 Proof of Corollary 1

When both QBF and QFB are ergodic, their bottle-
neck ratios are positive. According to Theorem 3, the
bottleneck ratio of Φ∗(P+) is thus positive, implying
that the spectral gap of P+ is positive (by Theorem 2),
and hence P+ is irreducible.

Since QBF is ergodic and thus aperiodic, the greatest
common divisor of the loop lengths for each x ∈ X is 1.
Similar argument applies to each y ∈ Y . Consequently,
the joint chain characterized by P+ is aperiodic.

Being an irreducible and aperiodic finite Markov chain,
the joint chain given by P+ is ergodic. This completes
the proof.

B.5 Proof of Lemma 3

Let P′ = (P − ξI)/(1 − ξ). Since P has P(x, x) > ξ
for each x ∈ X, the entries of the matrix P′ are all
non-negative. In addition,

P′1 =
1

1− ξ
(P− ξI)1 =

1

1− ξ
(1− ξ1) = 1. (38)

This implies that P′ is also a stochastic matrix.

Since P is reversible, all its eigenvalues are real num-
bers. Without losing generality, we assume they are
λ1 ≥ . . . ≥ λn. As P is a stochastic matrix, we have
λ1 = 1 and λn ≥ −1. According to the spectral
mapping theorem, the eigenvalues of P′, denoted by
λ′1, . . . , λ

′
n, are given by λ′i = (λi− ξ)/(1− ξ), for each

i = 1, . . . , n. As P′ is a stochastic matrix, we have
λ′n ≥ −1, and thus λn−ξ

1−ξ ≥ −1. Therefore, λn ≥ 2ξ−1.
The proof is completed.

B.6 Proof of Theorem 4

We show this theorem by progressively proving a series
of claims as follows.

Claim 1. The augmented Markov chain is ergodic.

With bk > 0 for k = 0, . . . ,K−1, the root is accessible
from each state (including both complete and partial
assignments). With fk > 0 for k = 1, . . . ,K, each
state is accessible from root. These imply that any
two states are accessible from each other via the root.
Therefore, the chain is irreducible. In addition, fK < 1
makes the chain aperiodic. As this is a finite Markov
chain, we can conclude that it is ergodic.

Since the chain is ergodic, it has a unique stationary
distribution, i.e. its equilibrium distribution. There-
fore, it suffices to show that (αµ0, β1µ1, . . . , βKµK)
that satisfies the three statements in the theorem is a
stationary distribution.

Claim 2. Given vectors µ0, . . . ,µK respectively over
the set of states at level 0, . . . ,K, such that µ0 = µ is
a distribution over X, and for each k = 1, . . . ,K, µk
is defined recursively by

µk(y) =
1

K − (k − 1)

∑
x∈Ch(y)

µk−1(x), for y ∈ Yk.

(39)
Then, µk for each k = 1, . . . ,K represents a distribu-
tion over Yk, and

µk(y) =

(
K
k

)−1 ∑
x∈X:x�y

µ(x), ∀y ∈ Yk. (40)

Here, x � y means that x is a descendant of y.

The proof of this claim is done by induction as follows.

Obviously, when k = 1, according to the definition
above, we have

µ1(y) =
1

K

∑
x∈Ch(y)

µX(x) =
1

K

∑
x∈Ch(y)

µ(x). (41)

This satisfies Eq.(40), as

(
K
1

)
= K, and it is clear

that µ1 is non-negative. In addition, we have∑
y∈Y1

µ1(y) =
∑
y∈Y1

1

K

∑
x∈Ch(y)

µ(x)

=
1

K

∑
y∈Y1

∑
x∈Ch(y)

µ(x)

=
1

K

∑
x∈X

µ(x)
∑

y∈Pa(x)

1 = 1. (42)

Here, Pa(x) is the set of parent states of x. In the
derivation above, we use the fact that x has K parents,
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i.e. |Pa(x)| = K. The identity above implies that µ1

is a valid distribution over Y1. Therefore, the claim
holds when k = 1.

Suppose that the claim holds for k = 1, . . . ,m with
m < K, we are to show that it also holds for k = m+1,
so as to complete the induction. Note that µm+1 is
defined as

µm+1(y) =
1

K −m
∑

x∈Ch(y)

µm(x), for y ∈ Ym+1.

Again, µm+1 is obviously non-negative, and∑
y∈Ym+1

µm+1(y) =
1

K −m
∑

y∈Ym+1

∑
z∈Ch(y)

µm(z)

=
1

K −m
∑
z∈Ym

µm(z)
∑

y∈Pa(x)

1 = 1.

(43)

Similar to the derivation for k = 1, here we apply the
fact that |Pa(x)| = K−m for each x ∈ Ym. This shows
that µm+1 is a valid distribution over Ym. Moreover,
we have for each y ∈ Ym+1,

µm+1(y) =
1

K −m
∑

z∈Ch(y)

(
K
m

)−1 ∑
x∈X:x�z

µ(x)

=
1

K −m
(K −m)!m!

K!

∑
z∈Ch(y)

∑
x∈X:x�z

µ(x)

=
(K −m− 1)!m!

K!
(m+ 1)

∑
x∈X:x�y

µ(x)

=

(
K

m+ 1

)−1 ∑
x∈X:x�y

µ(x). (44)

By induction, we can conclude that the claim holds for
each k = 1, . . . ,K.

Claim 3. When the construction is done up to the
k-th level, the distribution µ+

k , (ck,0µ0, . . . , ck,kµk)
is a stationary of the augmented Markov chain. Here,
µ0, . . . ,µk are given by Claim 2, and ck,0, . . . , ck,k is
defined such that for each k′ = 0, . . . , k

ck,0 =
1

Zk
, ck,l =

1

Zk

b0 · · · bl−1
f1 · · · fl

, (45)

with

Zk = 1 +

k∑
l=1

b0 · · · bl−1
f1 · · · fl

. (46)

We are going to show this claim by induction. Note
that µ0 = µ over X is a stationary distribution of
P. And µ+

0 = c0,0p0, thus c0,0 = 1. It immediately
follows that the claim is true for k = 0. Suppose this

claim holds for k = 0, . . . ,m with m < K, we are to
show that it also holds for k = m + 1. Note from
Eq.(45) that

cm+1,k

cm,k
=

Zm
Zm+1

, ∀k = 0, . . . ,m, (47)

Hence, showing the claim holds for k = m+1 is equiv-
alent to showing that (αµ+

m, βµm+1) is a stationary
distribution of the augmented chain (up to (m+ 1)-th
level), with

α =
Zm
Zm+1

, (48)

and

β =
Zm+1 − Zm

Zm+1
=

1

Zm+1

b0 · · · bm
f1 · · · fm+1

. (49)

According to Lemma 1, it suffices to check that this
distribution satisfies the cross-space detailed balance
given in Eq.(2), which is not difficult to verify based
on the construction described in section 3.2.

In this proof, Claim 1 proves the ergodicity of the
joint chain. Claim 2 constructs a set of vectors
µ0, . . . ,µK , and states that they are valid distribu-
tions over X,Y0, . . . , YK , and satisfy the properties
given in (S2). Claim 3 (induction up to k = K) shows
that the distributions constructed in Claim 2 is ex-
actly a stationary distribution of the joint chain. Since
the chain is ergodic, this is the equilibrium distribu-
tion. As a by product, Claim 3 also shows the the
statement (S3) of the theorem. For (S1), it is auto-
matically established by the construction described in
Claim 2. Therefore, we can conclude that the proof of
the theorem has been completed.

B.7 Proof of Corollary 2

Based on Theorem 4, we have

1

α
= 1 +

K∑
k=1

b0 · · · bk−1
f1 · · · fk

≤ 1 +

∞∑
k=1

κk =
1

1− κ
. (50)

Hence, α ≥ 1− κ. The proof is done.


