Data dependent kernels in nearly-linear time

Supplementary Material

A Proofs

A.1 Proof of Theorem3.1

Proof. We just need to check the reproducing property of K = R forallv € V and h € im(R): (h, K(v;, "))y =
<h, R+ei>H = hTRR+6i = hTei = hi = h(Ul) O

A.2 Proof of Theorem 4.3
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Proof. Theorem 4.2 implies that in time O(7is log n(log log n)? log +7n2n), we can compute an A such that,

~— 6/\12nin
(A + 1K) = (Q " +nK)l]s < —20
me

(13)
which implies that (see for example Horn and Johnson, 1990, section 5.8),
(A +nK) —(Q " + 1K) |2 < — +hodt
nnek
(14)
where h.o.t. denotes terms in €2 or greater. Define K4 (z,2') = K(z,2') + nk] (A + nf{\)_lzx/. Then since

SUD,cx HET ||> = K7 and since Q is positive definite,

sup [Ka(e,a') = K(w,a')| =5 sup [k} ((A+nK)™" = (@ +nK) ") k|

x,x'€X z,x'€X
<nl(A+nK)" = (@7 + 1K) sup [k |
e
< e+ h.o.t.

The higher order terms involve terms in €2 or higher order and potentially depend upon n. Thus by choosing € asymptot-

ically sufficiently small w.r.t. n (for example if h.o.t € O(f(n)) then choosing € = %ns)t. suffices) then asymptotically

e dominates the higher order terms as both n — oo and e — 0 so that we can remove the higher order terms from the
asymptotic analysis (for example by making a substitution ¢’ = ¢ + h.o.t.). [

A.3 Proof of Theroem 4.4

Proof. We begin by making pn calls to the solver of Koutis et al. (2011) to iteratively solve the equations
Rz — L0

(0)

%

for each 7 where x5, € Xsandall 1 < j < p and where z\*) = eg,. This gives zfj ) = R+zi(j 4 rz(j ) such that

lr IR < e[ RT 27 V|R, (15)
in total time O(pnslog n(loglogn)? log %) by Lemma 4.1. Now note that,
29 = RH2071 4 10
_ R+(R+zl(j—2) +r§j_1)) +TZ(J')
= (R+)jzl(0> + (R*)jflrl(l) + .. JrRJrrz(j—l) +7,Z(j).
Thus,
127 = (R*)Y e || < (B rV|lr+ ...+ [[R I V|r+|r?||r
<IRG HlrM g+ -+ IRl Plle + 17 (16)
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Now note, by repeatedly applying (15),
Iri R < ellR" 2"V Ir
k—1
< el|RY||sl1=" VIR
k—2 k—1
< ellB [l (1B =" =+ lIr" Vllr)
k—2 k—2
< ellB Iz (1B Lll=" 2 |r + el | B2 ?[r) .

k—2
< e||R* (13|27 r + hot.

< EHRJFHISAH%Q)HR + h.o.t.
< ¢||R*|57Y||R e, ||r + hot.
_1
<¢|RY|57% + hot.,
(17)

where h.o.t. denotes terms in €2 or greater. And so plugging this into (16) gives,

129 — (R*)es,||r < jell BTS2 + hot.

129 — (Rt Ve |lrs < jel| RISV RY)Y ™ +hot

125 — Qe

K2

_ _1
o < pel|RI|PV2 RSP 2 + hot.

Now let Z := ( z%”) zép) ) and
A=2"QZ=ZR'Z,
and note that A can be computed with O(psn + n?n) operations since R has s non-zero entries. Now note that,

Q= Aijl = 1Q1, — Al
= e Q"e,, — 2" Q=)
= (@Fe. — 27) QQ%e,, + (QFes, — 27)QQe,, — (QTes, — 2P) QQ7 e, — 2]
<llQ"es, - ZE”)IIQ\/WJr 1Q%es, — 2P loVes, Qes,
+1Q%es, — 2" l0llQ es, — 2 llq
< 2pe|| RISV R, T +hod,

3p—1
)

which, after setting ¢’ such that e = 2pe’||R||?~V/?||R* ||,

, we have that in time complexity,
O(pnslogn(loglogn)? log é + pn?s)
= O(piis log n(loglogn)*(log p + plog|| R|2||R* |2 + log %) +17°n)
the guarantee,
|@Z — A4;j| <e+hot,

and the higher order terms can be removed as in the proof of Theorem 4.3. O



