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Abstract

We propose a method to efficiently construct
data dependent kernels which can make use of
large quantities of (unlabeled) data. Our con-
struction makes an approximation in the standard
construction of semi-supervised kernels in Sind-
hwani et al. (2005). In typical cases these ker-
nels can be computed in nearly-linear time (in
the amount of data), improving on the cubic time
of the standard construction, enabling large scale
semi-supervised learning in a variety of contexts.
The methods are validated on semi-supervised
and unsupervised problems on data sets contain-
ing upto 64,000 sample points.

1 Introduction

Semi-supervised methods of inference aim to utilize a large
quantity of unlabeled data to assist the learning process.
Often this is achieved by using the data to define a data
dependent kernel which captures the geometry of the data
distribution, as revealed by the sample. The norm in the
reproducing kernel Hilbert space (r.k.h.s.) associated to
such a kernel typically includes a data dependent “intrin-
sic regularizer” component which captures the smoothness
of functions on the data sample. Associated kernel meth-
ods such as LapSVM (Belkin et al., 2006) have been shown
to achieve state of the art performance in classification.

A drawback of the standard semi-supervised kernel con-
struction, due to Sindhwani et al. (2005), is its large com-
putational cost which is cubic in the number of (unla-
beled) data points, rendering the method infeasible for even
moderately-sized problems. Several solutions to this prob-
lem have been proposed; most apply to particular algo-
rithms only (Zhu and Lafferty, 2005; Collobert et al., 2006;
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Garcke and Griebel, 2005; Tsang and Kwok, 2006; Sind-
hwani and Keerthi, 2006; Melacci and Belkin, 2011) or are
restricted to the special case of transduction (Mahdaviani
et al., 2005). In contrast, we provide efficiently-computable
data-dependent kernels which can be used in any kernel
method. A related idea is efficient spectral dimensionality
reduction using Nyström methods (Talwalkar et al., 2008).

The kernels we study in this work are obtained by mak-
ing an approximation in the standard construction of Sind-
hwani et al. (2005), and can be formed for the same gen-
eral class of “intrinsic regularizers” considered therein (see
the details in Section 2). Our starting point is a given
intrinsic regularizer, on functions h ∈ RX , of the form
regQ(h) := h>Qh, defined on the measurements h :=
(h(xi)) ∈ Rn of h at a data sample XS := {x1, . . . , xn},
where Q is some symmetric positive semi-definite (often
very sparse) matrix, typically designed using the data sam-
ple XS . Such regularizers are used in the construction
of data dependent kernels on X (used, for example, for
semi-supervised learning). Implicit in this choice of reg-
ularizer is the assumption that the pseudoinverse Q+ is a
good covariance on the finite set XS (see Theorem 3.1).
Our proposed kernels are obtained by replacing the regular-
izer regQ(h) with an intrinsic regularizer which measures
each function h at a small subsample of landmark points
X̂S = {xs1 , . . . , xsn̂} ⊂ XS and interpolates the measure-
ment ĥ := (h(xsi)) ∈ Rn̂ to a function h∗ ∈ Rn over XS
using the covariance Q+ and uses h∗ to approximate h: the
approximated intrinsic regularizer is thus regQ(h∗). For
very large n we do not need to measure a function h at all
n sample points since regQ(h∗) will be a good approxima-
tion to regQ(h) whenever h is in some class of sufficiently
smooth functions in the sense specified by regQ. We then
form an r.k.h.s. of functions over the input space, whose
norm includes our reduced intrinsic regularizer as a com-
ponent. Importantly the fundamental regularizer Q can be
built using the entire data sample XS .

The surprising and useful result we prove is that while the
complexity of computing data dependent kernels is cubic in
the number of points at which functions are measured it is
only linear in the number of non-zero entries of Q, which in
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typical cases leads to nearly-linear complexity in n. Thus
by disconnecting the number of points used to build the
regularization matrix Q (typically all n data points) and
the number of points at which functions are measured we
are able to practically achieve genuinely large-scale semi-
supervised learning. For example when Q is a graph Lapla-
cian our method allows us to use a huge amount of data
to build the graph and define the intrinsic regularizer, ob-
taining a data dependent kernel on the input space X in
nearly-linear time. This is important since graph building
is often not robust at small sample sizes: experimentally we
demonstrate a significant advantage can be gained from the
ability to exploit a much larger quantity of unlabelled data.

Used with the SVM our kernels can be informally viewed
as providing an efficient approximation of LapSVM, and
exhibits comparable performance on small datasets. On
larger datasets, where LapSVM is infeasible, the method
comfortably outperforms the RBF kernel and a more naive
implementation of a “budget” LapSVM (defined by dis-
carding the majority of unlabeled data). We also consider
applications to clustering.

1.1 Preliminaries

We consider the design of kernels suitable for the learning
problem in which we must infer a regression or classifi-
cation function h : X → Y mapping instances x ∈ X
to outputs y ∈ Y . In particular we suppose there ex-
ists a distribution µ over the set X × Y of labeled in-
stances and that we have a partially labeled sample S =
{(x1, y1), . . . , (xm, ym)} ∪ {xm+1, . . . , xn} drawn from
the product distribution µn,m := µm × µn−mX , where µX
is the marginal distribution over the instance space X . We
denote XS := {xi : (xi, yi) ∈ S or xi ∈ S}.
For a positive (semi-)definite kernel K : X × X → R we
denote byHK = span{K(x, ·) : x ∈ X} (where comple-
tion is w.r.t. the r.k.h.s. norm) its unique r.k.h.s..

For a matrix M we denote by M+ its Moore-Penrose
pseudoinverse and by im(M) and leftnull(M) its col-
umn and left null spaces. We denote by In and 1n
the n × n identity matrix and matrix of all ones re-
spectively, ||M ||∞ = maxij |Mij |, and ||M ||2 =

max{
√
λ : λ is an eigenvalue of M>M} and κ(M) :=

||M ||2||M+||2. We denote the standard basis in Rn by
{ei}. When M is symmetric and positive semi-definite we
denote ||z||2M := z>Mz

We view the elements of the set RV of real-valued functions
on a finite set V = {v1, . . . , vt} as vectors f ∈ Rt via
f(vi) = fi.

2 Review of semi-supervised kernel methods

We here recall a standard methodology to define a data de-
pendent kernel for semi-supervised learning in which the

norm of the associated r.k.h.s. captures the smoothness of
each function w.r.t. the data sample. Given an arbitrary
kernel K : X × X → R, with associated r.k.h.s. HK ,
Sindhwani et al. (2005) demonstrate that the space HK̃ ,
consisting of functions from HK , in which the inner prod-
uct is modified,

〈h, g〉K̃ := 〈h, g〉K + η〈u(h), u(g)〉U , h, g ∈ HK , (1)

where U is any linear space (to be chosen) with positive
semi-definite inner product 〈·, ·〉U , and such that u : HK →
U is a bounded linear map, is an r.k.h.s.. Typically the term
〈u(h), u(h)〉U , in the expansion of ||h||2

K̃
, acts as a data

dependent “intrinsic regularizer” and captures a notion of
smoothness of h over the empirical sample. If we define,
h := (hi)i ∈ Rn as the vector of point evaluations of h
on the sample S, hi := h(xi), where xi ∈ S, then, in
particular, when,

〈u(h), u(g)〉U = h>Qg, (2)

for some symmetric p.s.d. regularizer matrix Q then the
r.k.h.s. inner product (1) becomes,

〈h, g〉K̃ := 〈h, g〉K + ηh>Qg, h, g ∈ HK . (3)

For such a Q, and associated intrinsic regularization oper-
ator regQ : h 7→ h>Qh, we say that h ∈ HK is regQ-
smooth whenever regQ(h) is small. We have,

Theorem 2.1 (Sindhwani et al. (2005), Proposition 2.2).
The r.k.h.s. HK̃ consisting of functions fromHK with inner
product (3) has reproducing kernel K̃ : X ×X → R given
by,

K̃(x, x′) = K(x, x′)− ηk>x (I + ηQK)−1Qkx′ , (4)

where kx = (K(x1, x), . . . ,K(xn, x))>, and K is the n×
n Gram matrix Kij = K(xi, xj) for i, j ≤ n.

Kernels of the form (4) can be used in any kernel method
as a means to achieve the semi-supervised goal of exploit-
ing unlabeled data. One common choice is constructed as
follows: given a sample of labeled and unlabeled points
S = {(x1, y1), . . . , (xm, ym)} ∪ {xm+1, . . . , xn} drawn
from the distribution µm×µn−mX consider the intrinsic reg-
ulariser,

〈u(h),u(h)〉U := ÛS(h, h)

=
1

n(n− 1)

∑

ij

(h(xi)− h(xj))
2W (xi, xj),

where W : X × X → R captures similarity or “weight”
between data points, for example W (x, x′) = e−γ||x−x

′||2

for some norm || · || over X . Note that ÛS(h, g) =
2

n(n−1)h
>Lg where L = D −W is a graph Laplacian

whose edge weights are controlled by W = (Wij) =
(W (xi, xj)) and Dij = δij

∑
kWik. This smoothness
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functional is a typical regularizer in semi-supervised learn-
ing (Zhu et al., 2003; Belkin et al., 2006, 2004) which pun-
ishes functions which do not vary smoothly over the sam-
ple. Other choices for the intrinsic regularizer in (3), in-
clude many derived from the Laplacian such as the nor-
malised Laplacian Lnorm or Lp, exp(L), r(L) for some
real number p or function r (see e.g. Smola and Kondor,
2003)).

The key drawback of the construction (4) (as was pointed
out initially for the case of LapSVM in Belkin et al.
(2006)) is the O(n3) complexity required to invert the ma-
trix I + ηQK, which renders any derived method such
as LapSVM infeasible for even moderately large unlabeled
samples. Even once I + ηQK is inverted simply evalu-
ating the kernel K̃ at any pair (x, x′) requires an O(n2)
computation.

3 A general method for efficiently
constructing data dependent kernels

Given a partially labeled sample S, we now detail the
construction of efficiently-computable data-dependent ker-
nels. Recalling the notation of Section 2, we thus sup-
pose that a base kernel K and intrinsic regularization op-
erator regQ : h 7→ h>Qh where Q is a p.s.d. regular-
ization matrix, are given (we will consider typical special
cases later) and we are interested in constructing an r.k.h.s.
HK̆ consisting of functions in HK whose inner product
achieves the regularization effect of (3) but for which, in
contrast to (4), the reproducing kernel K̆ is efficiently com-
putable. Approximating (3) subject to computational con-
straints appears difficult in general and we therefore restrict
our attention to a certain specific form of intrinsic inner
products which we now describe. We consider a subsam-
ple X̂S = {xs1 , . . . , xsn̂} ⊆ XS with |X̂S | =: n̂ � n

and for a given h ∈ HK denote its evaluation on X̂S by
ĥ := (ĥi) ∈ Rn̂ where ĥi := h(xsi). We then consider
those r.k.h.s. HK̆ whose inner products are of the form,

〈h, g〉K̆ := 〈h, g〉K + ηĥ>Q̂ĝ h, g ∈ HK , (5)

where the n̂× n̂ symmetric p.s.d. matrix Q̂ is to be chosen.
Recalling Theorem 2.1 we see that the kernel K̆ is given
by,

K̆(x, x′) = K(x, x′)− ηk̂>x (In̂ + ηQ̂K̂)−1Q̂k̂x′ , (6)

where, for x ∈ X , k̂x = (K(xs1 , x), . . . ,K(xsn̂ , x))>,
and K̂ is the n̂ × n̂ Gram matrix Kij = K(xsi , xsj )

for i, j ≤ n̂. Given Q̂, the complexity of computing (6)
is O(n̂3), thus whenever Q̂ is efficiently computable the
complexity is substantially less than the O(n3) complex-
ity of computing (4). Suppose the subsample X̂S is given1

1A random subsample of XS seems sensible as it would en-
sure that X̂S is an i.i.d. distribution from the underlying data-

and consider the choice of intrinsic regularization matrix
Q̂ and associated operator regQ̂ : ĥ 7→ ĥ>Q̂ĥ. The most

straightforward form of this approach would be, given X̂S ,
to discard all remaining data instances XS\X̂S and con-
struct Q̂ using only the subsample X̂S – typically, for ex-
ample, Q̂ might be derived from the Laplacian of a graph
built on the subset X̂S . In discarding almost all unlabeled
data no advantage can be gained from it and this simplis-
tic method should act as a benchmark which any proposed
method should improve upon. The task is to choose an
n̂× n̂ matrix Q̂ which achieves the effect of (4) exploiting
all unlabeled data. It is perhaps surprising that such a Q̂ ex-
ists: for example, when Q is an n×n Laplacian of a graph
G constructed on all of XS , we can find an n̂ × n̂ regular-
ization matrix Q̂ whose associated regularization operator
involves the full structure of the graph G.

To motivate a natural choice for Q̂ in (5) we first re-
call some well-known facts regarding the duality between
positive semi-definite regularization operators on spaces
of functions and kernels on their domain defined by their
Green’s functions (e.g. Smola et al., 1998). The following
is a special case for finite input sets (the proof is given in
the Appendix):
Theorem 3.1. (e.g. Smola and Kondor, 2003, Theorem 4)
Given a finite set of points V = {v1, . . . , vt}, consider
h ∈ RV as a vector h ∈ Rt via h(vi) := h>ei = hi.
Consider further a regularization operator on such func-
tions, reg : Rt → R given by reg(h) = h>Rh, where
R is a symmetric positive semi-definite matrix. Then the
Hilbert space H = im(R) ⊆ Rt of real-valued functions
on V with inner product 〈h, g〉H = h>Rg is an r.k.h.s.
whose reproducing kernel K : V ×V → R is given by R+,
i.e. such that K(vi, vj) := R+

ij = e>i R
+ej .

The Green’s function in this case simply being the matrix
pseudoinverse of the regularization operator R. Thus sen-
sible regularization operators on functions over finite sets
define sensible reproducing kernels via their pseudoinverse.
A natural choice for the regularization operator Q̂ is imme-
diately motivated by the above observations: for the given
intrinsic regularizer Q we can view Q+ as a kernel on
XS via Q+(xi, xj) = Q+

ij . In particular, the submatrix
Q+|X̂S = (Q+

si,sj : i, j ≤ n̂), being the gram matrix of

the restriction of this kernel to X̂S , is always a valid pos-
itive semi-definite kernel on X̂S which captures precisely
the affinities on X̂S induced by Q+. Thus, recalling the
duality of Theorem 3.1, our proposed choice of regularizer
Q̂ is,

Q̂ =
(
Q+|X̂S

)+

, (7)

i.e. Q̂+
ij = Q+

si,sj , and its associated operator regQ̂ : ĥ 7→
ĥ>Q̂ĥ, is a natural regularizer for functions on X̂S . Since

generating distribution.
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Q̂+ given by (7) is the submatrix of the pseudoinverse of
the n × n matrix Q it might seem that Q̂ is not efficiently
computable but in Section 4 we will see that for typical
choices of Q, an ε-approximation to the kernel Q̂+ is com-
putable in nearly-linear time.

3.1 Interpreting the intrinsic regularizer

So far we have motivated our choice of regularization ma-

trix Q̂ =
(
Q+|X̂S

)+

in (6) by demonstrating that its pseu-

doinverse Q̂+ is a natural kernel on the subset X̂S , and in-
voking Theorem 3.1. We now give the key result interpret-
ing the intrinsic inner product in terms of the interpolation
of functions defined on X̂S to XS .

We first introduce some notation: note that we can reorder
the set XS = {x1, . . . , xn} such that w.l.o.g. we can con-
sider X̂S = {x1, . . . , xn̂}. We then write XS = XS\X̂S ,

n̄ := |XS | = n − n̂ and Q =

(
Qn̂n̂ Qn̂n̄

Qn̄n̂ Qn̄n̄

)
where

Qn̂n̄ = (Qij : xi ∈ X̂S , xj ∈ XS) and Qn̂n̂, Qn̄n̄ etc.
are defined analogously. For a function h ∈ RX define
intQ(ĥ) := argminf∈RXS {regQ(f) : f |X̂S = ĥ} the

minimum (semi-)norm interpolants of ĥ. We have:

Theorem 3.2. Suppose Q is such that the generalized
Schur complement Qn̂n̂ − Qn̂n̄Q

+
n̄n̄Qn̄n̂ is nonsingular2

then, for any h, g ∈ RX , the intrinsic inner product in (5)
with Q̂ defined by (7) satisfies,

ĥ>Q̂ĝ = (h∗)>Qg∗,

where h∗ and g∗ are any elements of the sets of inter-
polants intQ(ĥ) and intQ(ĝ).

Proof. Consider some h, g ∈ RX so that h∗ ∈ intQ(ĥ),
g∗ ∈ intQ(ĝ). For any f ∈ RXS note that,

regQ(f) =

(
f |X̂S
f |XS

)>(
Qn̂n̂ Qn̂n̄

Qn̄n̂ Qn̄n̄

)(
f |X̂S
f |XS

)
,

(8)

and differentiating (8) w.r.t. f |XS , setting this to zero when
f = h∗ and setting h∗|X̂S = ĥ we obtain,

Qn̄n̄h
∗|XS = −Qn̄n̂ĥ (9)

so that h∗ =

(
ĥ

−Q+
n̄n̄Qn̄n̂ĥ + u

)
, for some u ∈

leftnull(Qn̄n̄), and we can similarly derive g∗ =(
ĝ

−Q+
n̄n̄Qn̄n̂ĝ + v

)
, for some v ∈ leftnull(Qn̄n̄). We

2This is guaranteed, for example, when Q is positive definite.

obtain,

h∗>Qg∗ = ĥ>
(
Qn̂n̂ −Qn̂n̄Q

+
n̄n̄Qn̄n̂

)
ĝ

+ u>Qn̄n̂ĥ + v>Qn̄n̂ĝ

= ĥ>
(
Q+|X̂S

)+

ĝ = ĥ>Q̂ĝ.

The final line following from the formula for generalized
inverses of partitioned matrices3 (see e.g. Rohde, 1965) and
since (9) implies that Qn̄n̂ĥ⊥leftnull(Qn̄n̄) 3 u (and we
similarly remove the term in v).

In particular, the smoothness that regQ̂(ĥ) measures is
therefore the regQ-smoothness of any minimum (semi-
)norm interpolant h∗ of ĥ. There is also a Bayesian
interpretation: the regQ̂-smoothness of ĥ is the regQ-
smoothness of the posterior mean of Bayesian inference in
the GP using covariance Q+ with observations ĥ sampled
at X̂S in the limit of no noise – there is a well-known equiv-
alence with the minimum semi-norm interpolant.

3.1.1 Spcialization to graph Laplacian-based
regularizers

Via Theorem 3.2 we see that regQ̂ takes into account the
whole of the data sample (whenever Q does). We now ex-
pand upon this in the common case when Q is (derived
from) a graph Laplacian. Given a graph G = (V, E) con-
structed on XS (i.e. there is a bijection XS → V), suppose
that regQ measures smoothness of functions over the ver-
tices V w.r.t. the graph structure (as explained in Section 2),
the typical example being when Q is a Laplacian. The Q̂-
smoothness regQ̂(ĥ) = ĥ>Q̂ĥ of ĥ ∈ RX̂S is then small

whenever ĥ admits an extension to the full vertex set V
which respects the structure of G as illustrated in Figure 1.

4 Complexity analysis

We now show that for typical choices of intrinsic regular-
ization matrices Q (an approximation to) our kernel K̆ is
efficiently computable. If Q̂ is computed then there is a
one timeO(n̂3) cost to construct (In̂+ηQ̂K̂)−1 following
which kernel evaluations can be computed in O(n̂2) time.
Therefore it is required to demonstrate the complexity of
computing Q̂.

We first consider the case when Q is symmetric, di-
agonally dominant sparse matrix with s non-zero en-
tries, and suppose for simplicity that s ≥ n. In this
case we show that there is an algorithm with complexity
O(n̂s log n(log log n)2 log 1

ε + n̂2n) which returns an ε-
approximation A to the kernel matrix Q̂+. We need the

3Which, when Q is positive definite reduces to the well-known
formula.
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Figure 1: Artificial illustration: concentric circles. A 2-NN graph built on the large data sample (black spots connected
by edges) captures the underlying structure of the two concentric circles defining the two classes. Suppose Q captures
smoothness on this graph. The subsample X̂S is highlighted red and green. The hypothesis of Figure 1(a) (the separating
hyperplane is shown by the dotted line) is non-Q̂-smooth: there is no Q-smooth extension of the labeling of X̂S to the
full graph. The hypothesis of Figure 1(b), separating the two classes, is Q̂-smooth: there exists a Q-smooth extension
of the labeling of X̂S to the full graph. Figure 1(c): a 2-NN graph built on X̂S does not capture the structure of the
data-distribution and the correct labeling is not smooth w.r.t. this graph.

following lemma which is a recent example of nearly-linear
time solvers for sparse symmetric diagonally dominant lin-
ear systems pioneered by Spielman and Teng (2006).

Lemma 4.1. (Koutis et al., 2011)4 Given a symmetric di-
agonally dominant n×n matrix M with s non-zero entries
and a vector b ∈ Rn there exists an algorithm which in ex-
pected time O(s log n(log log n)2 log 1

ε ) computes z ∈ Rn
satisfying ||z −M+b||M < ε||M+b||M .

We can now prove the following:

Theorem 4.2. Given a symmetric diagonally dominant n×
n matrix Q with s non-zero entries an approximation A to
the kernel matrix Q̂+ on X̂S can be computed in expected
time O(n̂s log n(log log n)2 log 1

ε + n̂2n) where,

|Aij − Q̂+
ij | < εQ+

sisiQ
+
sjsj ,

and thus in sup norm,

||A− Q̂+||∞ < ε sup
{i : xi∈X̂S}

(Q+
ii)

2, (10)

and in spectral norm,

||A− Q̂+||2 < ε
∑

{i : xi∈X̂S}

(Q+
ii)

2. (11)

Proof. We begin by making n̂ calls to the solver of Koutis
et al. (2011) to solve the equations

Qzi = esi (12)

for each i where xsi ∈ X̂S , giving zi such that ||zi −
Q+esi ||Q ≤ ε||Q+esi ||Q = εQ+

sisi in total time

4Published papers with similar guarantees are (Koutis et al.,
2010; Spielman and Teng, 2006).

O(n̂s log n(log log n)2 log 1
ε ) by Lemma 4.1. Now let

Z :=
(
z1 ... zn̂

)
and

A := Z>QZ,

and note that A can be computed with O(sn̂ + n̂2n) op-
erations since Q has s non-zero entries. Now note that
|Q̂+

ij − Aij | = |Q+
sisj − Aij | = |e>siQ+esj − z>i Qzj | =

|(Q+esi − zi)
>QQ+esj + (Q+esj − zj)

>QQ+esi −
(Q+esi−zi)>Q(Q+esj−zj)| ≤ ||Q+esi−zi||QQ+

sjsj +

||Q+esj−zj ||QQ+
sisi+||Q+esi−zi||Q||Q+esj−zj ||Q <

(2ε + ε2)Q+
sisiQ

+
sjsj which (after rescaling ε′ = 2ε + ε2)

proves (10). Now note that,

||A− Q̂+||2 = sup
{x : ||x||≤1}

∣∣∣x>(A− Q̂+)x
∣∣∣

= sup
{x : ||x||≤1}

∣∣∣∣∣∣
∑

ij≤n̂
xixj(Aij − Q̂+

ij)

∣∣∣∣∣∣

≤ ε sup
{x : ||x||≤1}

∑

i≤n̂
|xiQ+

sisi |
∑

j≤n̂
|xjQ+

sjsj |

≤ ε
∑

i≤n̂
(Q+

sisi)
2,

which proves (11).

The linear solvers used to compute the regularizer Q̂ utilise
low stretch spanning tree preconditioners. In practice we
use a recent practical implementation (Koutis, 2011) of
these ideas (rather than the algorithm attaining the guar-
antee above) and achieve linear-time scaling in practice.
We can also derive a similar result for an approxima-
tion of the kernel K̆, and we essentially incur an addi-
tional logarithmic dependence upon 1

λmin
where λmin :=
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min{λ : λ is an eigenvalue of Q̂−1 + ηK̂}. The follow-
ing theorem is proved in the appendix:
Theorem 4.3. Given a symmetric diagonally dominant,
n × n matrix Q with s non-zero entries let Q̂ be as de-
fined in (7) and suppose further that Q̂ is positive definite.
Let λmin := min{λ : λ is an eigenvalue of Q̂−1 + ηK̂}.
Then if ε is asymptotically sufficiently small w.r.t. n, an ap-
proximation K̆A to the kernel K̆ defined by (6), and where
K satisfies supx∈X K(x, x) = κ < ∞, can be computed
in expected time O(n̂s log n(log log n)2 log qn̂η

ελmin
+ n̂2n),

where q :=
∑
{i : xi∈X̂S}(Q

+
ii)

2, such that

sup
x,x′∈X

|K̆(x, x′)− K̆A(x, x′)| < ε.

4.1 Laplacians, higher order regularizers and
amplified resistances

In the case when Q = L, a sparse (connected) graph Lapla-
cian, as is typically the case in semi-supervised learning ap-
plications, Theorem 4.2 demonstrates that we can approx-
imate the kernel Q̂+ well. By applying simple transforms
to the linear systems solved in the proof of Theorem 4.2,
very similar results will hold for the normalized Laplacian
Lnorm = D−1/2LD−1/2 or other regualrizers obtained
from simple transforms. Recent theoretical and practical
results (Nadler et al., 2009; Zhou and Belkin, 2011; von
Luxburg et al., 2010) demonstrate some problems with us-
ing L as a regularizer: for example, the solution of Lapla-
cian regularised empirical risk minimization degenerates to
a constant function with spikes at labeled points in the limit
of large data whenever the intrinsic dimensionality of the
data manifold is small. A solution suggested by the analy-
sis of Zhou and Belkin (2011) is to include iterated Lapla-
cians Lp as regualrizers. It is important that our scheme
applies to these more general regularizers which may not
be sparse. In the case of iterated regularizers Q = Rp,
our method incurs an additional quadratic dependence on
p and a logarithmic dependence on the generalized condi-
tion number κ(R) = ||R||2||R+||2 of R, the following is
proved in the appendix:
Theorem 4.4. Given an n × n intrinsic regualarization
matrix Q = Rp where R is symmetric, diagonally
dominant and has s non-zero entries, if ε is asymptotically
sufficiently small w.r.t. n, an approximation A to the
kernel matrix Q̂+ on X̂S can be computed in expected time
O
(
pn̂s log n(log log n)2

(
log 1

ε + p log κ(R)
)

+ n̂2n
)
,

and such that,

||A− Q̂+||∞ < ε.

We also remark that kernels associated to the amplified
resistances of von Luxburg et al. (2010) can also be effi-
ciently approximated.

We have seen that our method will enable the construction
of efficient data-dependent kernels based upon a variety of

recent approaches for graph-based regularizion. We should
finally mention that, when the graph is not given, forming
a k-nearest neighbor graph, for example, can be achieved
in in O(n log n) (Vaidya, 1989) on low dimensional data
and approximations exist for high dimensional data (Chen
et al. (2009)) so there is no other computational bottleneck
in this approach.

5 Experiments

5.1 Semi-supervised binary classification

We experiment on standard binary classification tasks.
The first of our experiments compare the efficient semi-
supervised kernels with LapSVM and a Gaussian RBF ker-
nel SVM on the ‘letter’ data set from the UCI repository
(Frank and Asuncion, 2010) and the ‘MNIST digits’ data
(Lecun and Cortes). We build k-NN graphs with k = 5 and
0−1 weights and form powers of the normalized Laplacian
Lpnorm (with a small ridge term) as the basic intrinsic reg-
ularizer matrix Q. This was mixed with an ambient Gaus-
sian RBF kernel Kσ , with bandwidth σ, as in (4) to form
the kernel for LapSVM. The subsample was chosen at ran-
dom, except for a strong bias to the labeled data5. In our
experiments we use the preconditioned conjugate gradient
solver, with the preconditioner of Koutis (2011) which uses
a combination of combinatorial preconditioners and multi-
grid methods6, to solve the linear systems required to ob-
tain Q̂. We then form the efficient data-dependent kernel
as in (6). Model selection was performed using 5-fold
cross validation over a grid of values for the exponent p,
the level of intrinsic regularization η and the bandwidth σ
of the Gaussian kernel (σ could alternatively be chosen us-
ing a common heuristic). The subsample is formed using
n̂ = 250 points of the labeled and unlabeled data chosen
uniformly at random. All results are averaged over 50 tri-
als. In Figure 2 we give learning curves for the three meth-
ods: the x-axis is the size of the labelled set. The efficient
kernel recovers the performance of the full LapSVM.

In the second set of experiments, Figure 3, our set up is
as above but we consider larger datasets, the full ‘MNIST
digits’ data, on which implementing the full LapSVM is
infeasible. We consider the ‘4 vs 9’ and ‘3 vs 8’ tasks on
12’000 labelled and unlabelled data points and the ‘Odd vs
Even’ task on 64,000 data points (on which results are av-
eraged over 25 trials). We consider small subsamples of
size n̂ = 250 and n̂ = 500. We compare to the Gaussian

5It seems important to ensure that the labeled data does not ex-
clusively contain points from the subsample – essentially so that
cross validation is performed over some points not the domain of
the intrinsic kernel, so that the algorithm does not learn the trans-
ductive problem, but a precise ratio seems unimportant.

6This is a practical solver using combinatorial preconditioners,
though not the implementation achieving nearly-linear theoretical
performance.
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RBF kernel and a simplistic implementation of “budget”
LapSVM building a graph on the reduced subsample X̂S
only, as a sanity check to ensure the method outperforms
this benchmark; the point here is that in practice one would
work under computational budget constraints, and the nat-
ural choice would be between discarding most of the data
and implementing the full LapSVM on the reduced sam-
ple or exploiting all data with the efficient kernel measur-
ing functions at the subsample, since they have (roughly)
the same complexity in the subsample size. The effi-
cient LapSVM substantially outperforms both the “budget”
LapSVM approach and the Gaussian RBF SVM, learning
much faster with, in particular, a very small labelled sam-
ple. In particular a significant advantage can be gained
from the efficient method’s ability to exploit all 64,000 un-
labelled points in the ‘Odd vs Even’ task.

5.2 Clustering

Another application of the efficiently-computable data-
dependent kernel is to clustering. We consider 2 class clus-
tering on an artificially generated 2-moons data set with
1000 data points. For a kernel K : X × X → R we define
a metric d on X via d(x, x′) = ||K(x, ·) −K(x′, ·)||K =√
K(x, x) +K(x′, x′)− 2K(x, x′). We investigate k-

means clustering (k = 2) comparing the full LapSVM ker-
nel, the efficient data-dependent kernel (generated as out-
lined in Section 5.1, with p = 2) and Euclidean distance.
The efficient kernel uses a subsample X̂S of size n̂ = 40 to
measure functions, whereas the full LapSVM kernel uses
all 1000 data points. We selected the best kernels from a
small grid over the parameters γ and η. The results are
displayed in Figure 4: the Euclidean distances incurred an
error of 11.4%, the full LapSVM kernel achieved perfect
clustering with 0% and the efficient kernel achieved 1% er-
ror. Thus using a subsample of just 4% of the data, we are
able to almost recover, in nearly-linear rather than cubic
time, the performance of the full LapSVM kernel.

5.3 Practical timing results

To validate the practical timing performance of the pro-
posed method we consider the time taken to compute the
semi-supervised kernels on the MNIST data, as detailed
in Section 5.1 but using a non-normalised Laplacian and
p = 1, γ = 1 and η = 1. We consider the computation
time of the inverse of the n̂ × n̂ matrix (In̂ + ηQ̂K̂)−1,
including the computation of the matrix Q̂ from Q, which
is the heart of the efficient kernel computation, and theoret-
ically nearly-linear. We compare 2 methods of solving the
linear systems required to compute Q̂: the preconditioned
conjugate gradient solver, with the combinatorial precon-
ditioner of Koutis (2011) used in the experiments; and the
Matlab “backslash” operator. We compare these results to
the computation of the inverse of the (non-sparse) n × n
matrix (In + ηQK)−1 which is the computational bottle-

neck of the standard semi-supervised kernel construction,
and is cubic in complexity.

Results are shown in Figure 5: in practice the method is
extremely fast, the efficiently computable kernels can be
computed on 64,000 MNIST data points in 3 minutes (and
the computation remains feasible on much larger data still).
The preconditioned conjugate gradient method achieves
approximately linear complexity in our experiments. The
backslash method is also very fast on small data sizes (pre-
sumably due to the vectorization of the Matlab implemen-
tation) but appears to be growing super-linearly on this data
set. As expected, the computation time of the standard
semi-supervised kernel construction becomes infeasible for
just a few thousand data points.
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Figure 5: Computation time of LapSVM and efficient data-
dependent kernels

6 Conclusions

We have presented a method for generating data dependent
kernels in nearly-linear time. The method is based on dis-
connecting the number of data points used to build a data
dependent regularization matrix and the number of points
at which functions are measured. By measuring at fewer
points and (implicitly) interpolating, our method is able to
exploit huge amounts of unlabelled data in semi-supervised
and unsupervised learning tasks.

Encouragingly, our experiments show that a significant ad-
vantage can be gained in semi-supervised learning from
the ability to exploit a much greater quantity of unlabelled
data: on large datasets of 64,000 data points the advantage
gained from exploiting the large quantity of unlabelled data
is clear, and much greater than the improvement demon-
strated when only a small quantity of unlabelled data can
be exploited. In a clustering experiment the method ap-
proximately recovers the performance of the full kernel by
measuring functions at a small fraction the datapoints.
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Dataset sample size n (labeled + unlabeled) subsample size n̂ = |X̂S | test set size
letter D vs O 1250 250 308
letter O vs Q 1250 250 286
MNIST 2 vs 3 2000 250 405
MNIST 3 vs 8 12,000 250 1966
MNIST 4 vs 9 12,000 250 1782
MNIST Odd vs Even 64,000 500 500

Table 1: Binary classification experiments
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(a) letter D vs O
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(b) letter O vs Q
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(c) MNIST 2 vs 3

Figure 2: Classification: small data sets
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(a) MNIST 3 vs 8
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(b) MNIST 4 vs 9
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(c) MNIST Odd vs Even

Figure 3: Classification: large data sets
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