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Abstract

Data clustering is an essential problem in
data mining, machine learning and computer
vision. In this paper we present a novel
method for the hypergraph clustering prob-
lem, in which second or higher order affini-
ties between sets of data points are consid-
ered. Our algorithm has important theoret-
ical properties, such as convergence and sat-
isfaction of first order necessary optimality
conditions. It is based on an efficient itera-
tive procedure, which by updating the clus-
ter membership of all points in parallel, is
able to achieve state of the art results in very
few steps. We outperform current hyper-
graph clustering methods especially in terms
of computational speed, but also in terms
of accuracy. Moreover, we show that our
method could be successfully applied both to
higher-order assignment problems and to im-
age segmentation.

1 Introduction

Clustering is an essential problem in data mining, ma-
chine learning and computer vision [13]. Even though
there is no definitive formulation of the clustering
problem, it is generally believed that objects belonging
to the same cluster should exhibit agreement relation-
ships among each other, whereas objects that do not
belong to a cluster should not exhibit such relation-
ships. Many existing clustering methods are partition
based [14, 22, 7, 19, 11]. They make the assumption
that every data point belongs to a cluster. While they
have good performance on problems where such as-
sumptions are valid, in most real applications there is
a large number of outliers that do not belong to any
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cluster. Deciding on whether a point is an outlier or
not is a challenging task, which is why most partition
based methods have poor performance when outliers
abound, as also noted by other authors [17, 5].

Another limitation of most classical data clustering
methods is their handling of only pairwise relation-
ships between data points, given by the weights of an
affinity graph. Since, in some applications, pairwise
relations are not sufficient, it is important to develop
algorithms that can handle higher-order relationships
among data points. Since the problem becomes in-
creasingly harder as the order increases, efficiency is a
crucial factor.

In this paper we propose a novel and efficient method
for clustering, that is not partition based and can
handle higher-order relationships among sets of data
points. Our algorithm has important theoretical prop-
erties such as convergence and satisfaction of first or-
der necessary optimality conditions. In our experi-
ments it significantly outperforms the current state
of the art methods in terms of computational speed,
while being at least as accurate.

Current research on hypergraph clustering takes on
several directions. One is to transform the hypergraph
into a graph by mapping the higher-order affinities to
pairwise relationships [25, 2, 20]. Another direction
is to generalize the methods from pairwise clustering,
such as normalized cuts [22] and nonnegative matrix
factorization to hypergraphs and their corresponding
tensors [24, 21].

Our formulation is related to more recent hypergraph
clustering methods [5] and [17]. In [5] the authors
propose a formulation based on game theory and opti-
mize the objective function using the results of Baum-
Eagon growth transformation [3]. Their algorithm,
like ours, iteratively updates the cluster membership
for all nodes in parallel, and converges relatively fast.
We show experimentally that our method, by taking
larger steps towards a maximum, has significantly bet-
ter speed of convergence, with slightly better accuracy.
In turn, the algorithm of [17] performs node-wise up-
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dates and converges slowly, and in our experiments is
at least an order of magnitude slower than the method
we propose.

2 Problem Formulation

We define clustering with k-th order relationships on a
hypergraph, also known as a k-graph, following a for-
mulation similar to [5, 17]. A k-graph G = (V, E, w)
is formed by a set of n vertices V. = {1,...,n}, a
set of hyperedges E C V* and a k-th order real
valued affinity function w : W — R. The affin-
ity function captures the strength of relationships on
hyperedges, namely the stronger the affinity asso-
ciated with a hyperedge {v1,...,vr}, the larger the
function value w({v1,...,vg}). We define the associ-
ated super-symmetric tensor W of the k-graph as fol-
lows: W(vy,...,vx) = w({v1,...,v5}) if the hyperedge
{v1,...,vx} is in E and 0 otherwise. The tensor W is
super-symmetric since vertices within a given hyper-
edge can be considered in any order without changing
the corresponding affinity value, and each hyperedge
{v1, ..., ux} has k! duplicate entries in the tensor W.

Strong clusters C' C V are sets of vertices with high
corresponding hyperedge affinities. Similar to [17] we
describe the cluster score as the average over the hy-
peredge affinities within that cluster. Therefore, if a
set C has m vertices, the cluster score can be written
as:

Z W(Ulv"'vvk) (1)

V1.0 €C

We define the vector x, which acts as an indicator
function, such that z; = 1/m if vertex ¢ is in the cluster
C and x; = 0 otherwise. The cluster score can be
rewritten as:

Sx) = >,

k
W (w1, ooy vi) [ ] 0, - (2)
Vi,..., U EV =1
Finding a good cluster means finding a subset of fea-
tures with a high cluster score S¢. Even if we knew the
number of elements in the cluster, maximizing S op-
timally would be an expensive combinatorial problem.
For practical applications we want to find a solution
efficiently, so we rely on approximations. We relax the
problem, by allowing z to take values in the contin-
uous domain [0,€]; € acts as an upper bound of the
cluster membership probability:

x* = argmax S(x) s.t. Zml =1, xe€[0,€" (3)
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When e = 1, this hypergraph clustering formulation is
equivalent to that of [5]. In the case of € = 1 and pair-
wise affinities in {0,1} (corresponding to unweighted
graphs), the problem is identical to the classical com-
putation of maximal cliques [8, 18].

The L1 norm constraint in Problem 3 favors in prac-
tice sparse solutions and biases towards categorical
values for the membership assignments. This makes
it easier to discretize and find actual clusters. Mul-
tiple clusters can be found in different ways, such as
the ones proposed in [5, 17]. One idea [5] is to re-
move the points belonging to a cluster that was found
and restart the problem on the remaining points. The
other approach [17] is to start from different initial so-
lutions that are close to different clusters and locally
maximize the score (3).

3 Algorithm

Our proposed method (Algorithm 2) is an iterative
procedure that, at each iteration ¢, approximates the
higher order score S(xt) by its first-order Taylor ex-
pansion around the current solution x¢. This trans-
forms the higher order optimization problem into a
sequence of linear programs, each defined in the neigh-
borhood of the solutions x¢, at each time step t.
Note that the first-order approximations can be glob-
ally optimized efficiently on the continuous domain
Sa; =1, x € [0,€]". We successfully took a similar
optimization approach to the problems of MAP infer-
ence, and graph and hypergraph matching [15, 16].

Before presenting our method we first introduce some
notation. Given a possible solution x in the continuous
domain, let vector d(x) be a function of x, obtained
by marginalizing the tensor W as follows:

k—1
d;(x) = Z W(vl,...,vk,l,i)ij. (4)
j=1

Viye-+yVk—1

We can now write the first-order Taylor approximation
of the clustering score around solution x¢ (Equation 2),
in the following form:

S(x) &~ (1 — k)S(x¢) + kd(xg) ' x. (5)

Maximizing the first-order approximation in the con-
tinuous domain of (3) results in the following linear
program defined using the current solution x¢:

y* = argmaxd(x¢) 'y s.t. Zy, =1,y €[0,¢".
(6)
This linear program can be optimally solved using the
following algorithm:
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Algorithm 1 Optimize Problem 6.
d <« d(Xt)
¢+ |1/€]
Sort d in decreasing order d;; > ... > d;, > ... > d;,
Yy, <€ foralll <c
Yiep, & 1—ce
yy, < 0, foralll >c+1
return y

It is relatively easy to show that the above method
returns a global optimum of (6). Once we obtain y*,
we continue by searching for the global optimum of
the original clustering score on the line segment be-
tween the current solution x¢ and y*, an approach
related to the classical Frank-Wolfe method [10]. If
the hypergraph order, k, is less than or equal to 3,
then the global optimum on the line segment can be
computed in closed form since the score becomes a
quadratic (or a cubic) one dimensional function. For
higher order scores an efficient line search algorithm
can be applied. Note that, since both x¢ and y* obey
the constraints Y z; = 1, x € [0, €]™ , every sample on
the line between the two also obeys the constraints, so
the maximizer will also be in the domain.

Our algorithm can be summarized as follows, in
pseudo-code:

Algorithm 2 Efficient Hypergraph Clustering.
Initialize xg, t < 0
repeat
Step 1: y* « argmaxd(xt)Ty st Yy =
1,y €06 If d(x¢) (y — x¢) = 0 stop.
Step 2: o* « argmax S((1 — a)x¢ + ay*), « €
[0,1].
Step 3: x¢+1 < (1 —a®)x¢ +a*y, t —t+1
until convergence
return xg

4 Theoretical Analysis

Proposition 1 The score S(x;) increases at every step
t of Algorithm 2 and the sequence x; converges.

Proof: The algorithm does not stop at Step 2 if there
is a y different from x¢ such that d(x¢) ' (y — x¢) >
0. Since d(x¢) is proportional to the gradient of the
original clustering score S at the current xg, it follows
that there exists a point on the line segment between
x¢ and y with a score greater than S(x¢). Such a
point is found in Step 3 during line search (maximizer).
Therefore, the score increases at every step. Since S
is also bounded above, the algorithm will converge to
a limit score. This must happen in the limit at step
2, when d(x¢) ' (y —x¢) = 0 and the solution x is
returned.
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Proposition 2: For a point of convergence x, if x; <
x; then d;(x) < d;(x).

Proof: We will use a proof by contradiction. Let us
assume that there exist ¢, j such that z; < z; and
di(x) > d;j(x). Let r = (z; — x;)/2 > 0 and y be a
vector of the same size as x, having all elements equal
to those of x except for the #th and j-th elements,
which are y; = z; +r and y; = x; —r. It can be easily
verified that y lies in the valid continuous domain,
since x is also in the domain. It can also be verified
that d(x) y —dx)"x = d(x) (y —x) = r(di(x) —
d;(x)) > 0, which contradicts the assumption that x is
a point of convergence, since there exists at least one y
which gives a better result in Step 2 of the algorithm.
Hence, x cannot be a maximizer at Step 2.

Proposition 3 The points of convergence of Algo-
rithm 2 satisfy the Karush-Kuhn-Tucker (KKT) nec-
essary optimality conditions for Problem 3.

Proof:
The Lagrangian function of (3) is:

L(x,A, 1, B) = S(X)_)‘(Z xi—1)+z Hi$i+z Bi(e—w;),

(7)
where 8; > 0, u; > 0 and A are the Lagrange multipli-
ers. Since kd;(x) is the partial derivative of S(x) w.r.t
z;, the KKT conditions at a point x are:

kdi(x) — A+ p; — B = 0.
2 i1 i =0
Soimy Bile — i) = 0.

As the elements of x and the Lagrange multipliers are
non-negative, it follows that if z; > 0 = u; = 0 and
x; < € = (; = 0. Then there exists a constant 6 = \/k
such that the KKT conditions can be rewritten as:

S 67 Ty = 07
d;(x)< =96, x; €(0,¢),
>0, w;=¢.

If these KKT conditions are not met then the conclu-
sion of Proposition 2 does not hold, implying that x
is not a point of convergence, which gives a contradic-
tion. Therefore, Proposition 3 must be true.

4.1 Computational Complexity

In the general case, when the number of hyperedges is
of order O(N*) (N - number of data points, k the order
of hyperedges) the overall complexity of each iteration
of our algorithm is also O(N*) (linear in the number
of hyperedges). It is important to note that [17, 5]
have the same O(N*) complexity per step.
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Figure 1: Average computational cost over 100 differ-
ent experiments as a function of the problem size. Left:
the linear dependency of the run time vs nPoints?
shows experimentally that all algorithms have O(N?)
complexity for hyperedges of order 2. Right: the
method of [17] converges in a number of iterations that
is directly proportional to the problem size, while the
convergence of ours and [5] is relatively stable w.r.t.
the number of points. In particular, ours reaches a
high objective score in about 10 iterations.

In Figures 1 and 2 we present an evaluation of the
computational costs of the three methods on synthetic
problems with hyperedges of second order (k = 2).
The results are averages over 100 different synthetic
problems with varying number of data points. In Fig-
ure 1, left plot, we show the average computational
time per iteration (in Matlab) of each method vs. the
squared number of data points. Note that the com-
putation time per step for each method varies almost
linearly with the squared number of data points, con-
firming the theoretical O(N*) complexity (for k = 2).
As expected, the least expensive method per step is
[17] which performs sequential updates, while ours and
[5] are based on parallel updates. The drawback of
[17] (right plot) is the large number of iterations to
convergence. It is interesting to note that [17] needs
approximately the same number of iterations to con-
verge as the dimensionality of the problem (number
of data points). On the other hand, both ours and
[5] are relatively stable with respect to the number of
points. Ours converges the fastest, needing on average
less than 10 iterations. In terms of overall computa-
tional time, the method of [17] takes 1 to 2 orders of
magnitude longer than ours to converge for 200 — 1200
points (Figure 2).

5 Experimental Analysis

We present three types of experiments that are rele-
vant for data clustering, and compare the performance
of our algorithm with that of current state of the art
methods. The first experiment is on 2D line fitting,
similar to experiments from [17] and [5]. The second
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Figure 2: Average total time to convergence over 100
experiments. We let ours run for 50 iterations, but it
usually converges after about 10 iterations.

type of experiments we show is on higher order match-
ing, where we perform comparisons with both cluster-
ing methods as well as two state of the art hypergraph
matching algorithms [23, 9]. This experiment reveals
an interesting connection between hypergraph cluster-
ing and hypergraph matching. The third set of exper-
iments is on image segmentation, in which we empha-
size the limitation of [5] to using nonnegative affinities,
as opposed to ours and [17].

5.1 Line clustering

This experiment consists of finding lines as clusters of
2D points. Since any two points lie on a line, third
order affinity measures are needed. Similar to [17]
and [5], for any triplet of points {i,j,k}, we use as
dissimilarity measure the mean distance to the best
fitting line d(i,j, k). We define the similarity func-
tion w({4, j, k}) using a Gaussian kernel w({i,j,k}) =
exp(—d(i, j, k)?/o3), where o4 is a parameter that con-
trols the sensitivity to fitting errors.
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Figure 3: Generated 3D points from three lines with
outliers. Notice the difficulty of finding the correct
clusters in the example on the right, when both the
noise variance and the number of outliers are relatively
large. Best viewed in color.
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We randomly generate points belonging to three lines
in the range [—0.5,0.5]% , with 30 points per line per-
turbed with Gaussian noise N (0, o) and add a number
of outliers in the same region of the 2D space. In Fig-
ure 3 we present two examples of generated point sets,
with the three lines shown in red, blue and green and
outliers shown with magenta. The figure on the right
presents the case of 60 outliers with a relatively large
amount of noise 0 = 0.04. Note the difficulty of recov-
ering the correct clusters.

We are interested in two important aspects: accuracy
and speed of convergence, under varying levels of noise
and number of outliers. For each level of noise and
number of outliers, we test all methods in 50 random
trials and average the results (Figure 4). For each
clustering problem, all algorithms are initialized with
the same uniform initial solution, and the performance
is evaluated using the F-measure. Our method and
[17] use the same € = 1/30. The performance of all
methods in our experiments was relatively stable w.r.t
04, so we fixed o4 = 0.02.

In Figure 4, plots b and d, we show the average F-
measure of all three algorithms at convergence, ours
performing slightly better then the rest. An impor-
tant aspect in practice is how fast a method can reach
a good solution. This issue is particularly important in
graph and hypergraph clustering problems that have
combinatorial complexity. Our algorithm obtains ac-
curate solutions much faster than both [17] and [5]. If
our method takes on average between 5 to 10 steps to
reach a good solution, the algorithm of [17] needs more
than 150 steps (= the number of data points). Since
the computation time per step can be shown to be
comparable for all algorithms (ours is about 1.4 times
slower per step than the others on these problems) we
present in Figure 4, plots a and ¢, the performance of
all algorithms when ours is stopped after 5 iterations,
whereas the other two methods are stopped after 10
steps. Empirically we find that our proposed method
converges about one order of magnitude faster.

In Figure 5 we further study the convergence proper-
ties of all three algorithms. Plots a, b and ¢ show the
solutions on one experiment for all methods after 5, 50
iterations and at convergence. The case presented is a
good example of how the methods behave in general.
Our method, after only 5 iterations, is already close
to its optimum, reaching a sparse solution. Note that
the first 30 elements correspond to the points of the
first line, so our method is already close to a perfect
solution. The method of [17] is still very close to its ini-
tial solution, due to its site-wise updates. The method
of [5] based on Baum-Eagon [3] performs parallel up-
dates per step, but it takes smaller steps than ours.
Our method uses the same problem formulation as [17]
so we directly compare the objective scores obtained
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Figure 4: Performance comparison of different meth-
ods on 2D line fitting. Left: our method has a far
superior performance when all algorithms are allowed
to run for the same, limited amount of computational
time: ours for 5 iterations (less time), the competitors
for 10 iterations. Comparison with right plot: notice
that our method has almost converged in only 5 iter-
ations. Best viewed in color.

per iteration averaged over 300 experiments (Figure
5, plot d: average scores normalized by the maximum
average). Our algorithm converges very fast (< 10
iterations), while [17] takes almost 200 steps until it
converges to an objective score slightly less on average
than ours.

5.2 Affine-invariant Matching

Affine invariant point matching is an important prob-
lem in computer vision, with applications to object
matching and recognition. Distant or planar objects
seen from different view-points undergo transforma-
tions that can be well approximated by an affine or a
piece-wise affine transformation. We perform experi-
ments on affine invariant point matching and compare
our method with hypergraph clustering as well as hy-
pergraph matching methods [9] (TM), [23] (PM). Since
the connection between hypergraph clustering and hy-
pergraph matching is not well established yet, we be-
lieve that such experiments are relevant.

Hypergraph matching has a similar tensor formulation
as hypergraph clustering (3), the main difference be-
ing the constraints on the solution. Usually assign-
ment problems impose 1-to-1 matching constraints on
a solution x, where each element x; corresponds to a
candidate match ¢ = (u,v). Here, u is the index of a



Efficient Hypergraph Clustering

Solutions returned after 5 iterations

Solutions returned after 50 iterations

—Ours
===Liuetal

——-Buloetal.

o noise = 0.005
60 outliers

——-Buloetal.
===Liuetal

—Ours

0.08} |cnoise =0.005
60 outliers

o
o
£
.

R N
b) 100 150

Solutions returned at convergence

< noise = 0.005
0.8 60 outliers
0.06 -

- ===Liuetal.
-
06 e —ours
0.04

Y i y ot 04| ,”
¥ 4
ooz §' 02
IR
. | :

o 50 100 150 g 20

——Ours 1
——-Liuetal. e
——Bulo etal. 08 PR

5,=002
60 outliers.
€= 1445

150

100
Iteration step

Figure 5: Solutions achieved after different numbers
of iterations on the same problem for all algorithms.
For plots a-c the x-axis indexes the elements of the
solution vectors. Plot d: average objective scores of
our method vs. [17] per iteration number. Notice the
fast convergence of our method. Best viewed in color.
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from silhouette

Transformation
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Figure 6: Examples from our dataset: original image
(left), points sampled on the boundaries of the per-
son (middle), transformed points with added noise and
outliers (right). Best viewed in color

feature from one image and v is the index of the fea-
ture from the other image. The acceptable solutions
are indicator vectors such that x; is 1 if v is matched
to v and 0 otherwise. A tensor, similar to W is con-
structed such that its elements of type (i1, ..., ix) rep-
resent matching similarities between the k-tuple of fea-
tures (ug,...,u) from one image and the correspond-
ing k-tuple (v1,...,v5) from the other image, where
iqg = (ugq,vg)-

Although the constraints are different for hypergraph
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matching, it is important to note that the two state-of-
the-art hypergraph matching methods [9, 23] ignore
the 1-to-1 constraints during optimization and impose
them only during a final, post-processing step. This
makes them very efficient in practice. The method
of [9] is based on computing the stationary point of
the higher order power method applied to the tensor
W. That is the higher-order extension of the principal
eigenvector of matrices, well known for its usefulness in
clustering. We therefore expect other clustering meth-
ods to be useful for matching.

Since affine transformations cannot be recovered
from pairs of points, we use third order cluster-
ing.  Given three points (u1,us,us) in one im-
age and their corresponding matches (v1,vs,v3) in
the other image, transformed by the affine trans-
formation T, the areas of the corresponding trian-
gles Ay, uyug and Ay, 0, are related by the for-
mula |detT| = Ay, usus/Avivs,vs- We use third
order matching scores of the form W(iy,...,ix) =
exp (1 — /[ det T[Av, vz 0 [Aus uz,us) 2 /07)-
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Figure 7: Results on affine invariant matching. Note
that our method gives solutions that are already close
to the sparse ground truth without using the 1-to-1
matching constraints. Best viewed in color

We generated 2D point sets from 420 real images con-
taining 7 different persons collected with an RGB-
depth kinect camera. For each image we first ob-
tained the occlusion boundaries of the person and
extracted around 40 — 50 points per image equally
spaced on the boundary. Using this set of points we
obtained the second set by transforming the points
based on a randomly generated affine transformation
T = [1+ N(0,0.2),N(0,0.2); N(0,0.2),1 4+ N(0,0.2)],
and then perturbed their position with Gaussian noise
N(0,0). We also added outliers to the second set of
points (Figure 6). Since | det T| is unknown at testing
time, we estimated its distribution (from the distribu-
tion of T'), and for each matching example, we sampled
a few values and picked the one giving the best objec-
tive score.

In clustering, a sparse solution is always preferred.
In the case of matching, in order to obtain a sparse
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solution it is better to use the 1-to-1 matching con-
straints. If clustering already provides a sparse solu-
tion it is not clear how to use the 1-to-1 constraints
in the final post-processing step. The three cluster-
ing methods from the previous experiment tend to
give sparse solutions. In turn, hypergraph matching
algorithms [9, 23] almost always give continuous so-
lutions. They could be later discretized by the Hun-
garian algorithm that imposes the 1-to-1 constraints.
We therefore expect the matching algorithms to ben-
efit more from the Hungarian method than the clus-
tering algorithms. For this reason we evaluate algo-
rithms in two ways. First, we measure the matching
rate by applying the Hungarian method to the raw
output x of each algorithm , namely solve the prob-
lem y* = argmaxx 'y, given the 1-to-1 matching con-
straints. Second, we measure the closeness of the raw
output to the sparse ground truth, by computing the
normalized correlation between the two. Note that the
second measure should favor methods that give sparse
clustering solutions, which are close to the matching
ground truth without the knowledge of the one-to-one
constraints. We present the results in Figure 7. Note
that our method outperforms on average all the others
in terms of both matching and normalized correlation
scores against ground truth. The fact that our method
gives sparse solutions close to ground truth, without
using the 1-to-1 matching constraints could be useful
in matching applications where the 1-to-1 constraints
do not hold. For example, in cases of large changes
in scale or when matching sub-parts of objects to full
parts, the exact many-to-1 or many-to-many match-
ing constraints are unknown. In those cases, a robust
clustering method could recover the correct matches
without using any matching constraints.

5.3 Image Segmentation

A recent trend in image segmentation is to formulate
the problem in terms of composition [6, 12, 4] from a
bag of single segments, obtained from running multi-
ple segmentation algorithms. The composition of seg-
ments becomes, at a higher level, another clustering
problem. In this case, each node of the graph is a pos-
sible segment (one image region or object), and affini-
ties between nodes represent relationships between im-
age segments. The problem is usually formulated as
a pairwise clustering problem, with unary and pair-
wise affinities/costs. The unary terms represent the
”goodness” of single image segments, and the pairwise
terms capture how well neighboring segments agree,
based on their common contours or other features [12].
When two segments overlap there is a conflict, which is
captured by repulsion terms (negative affinities). A fi-
nal segmentation (tiling of individual segments) should
contain a set of segments that cover the entire image,
while no two segments overlap.
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Segmentation is interesting from a clustering point of
view, due to the presence of negative pairwise terms
(conflicts), which are not common to clustering meth-
ods. Our method and [17] can accommodate nega-
tive terms, whereas the method of [5] is based on the
Baum-Eagon growth transformation for polynomials
with non-negative coefficients. Our experiments on
segmentation confirm that [5] is not competitive when
negative affinities exist.

In theory [5] could be applied to problems with neg-
ative affinities, if a positive constant is added to each
term, such that all become non-negative. The addi-
tion of a constant does not change the optimum of the
original problem, but it does affect the optimization of
the relaxed problem.

Avg. segmentation objective scores

Avg. nr. segments per segmentation

Avg. segmentation objective score

== Bulo etal

Penalty for conflicts =

1
3 0 06 12 25 5 10 20 4 8
Constant used for Bulo etal.

P Reayrorcontics . penatyforcontics
Figure 9: Quantitative segmentation results. Left:
Average objective scores after removing segments with
conflicts. Middle: average number of surviving seg-
ments in the final tiling, after eliminating conflicts.
Right: average objective score for [5] when different
constants are added, for conflict penalty = 5.

We perform clustering experiments for segmentation
on the BSDS300 dataset [1] using the nodes (segments)
and the affinities (unary and pairwise) provided by
the authors of [6, 12] (there are between 10 to 300
possible segments for each image). For each segment i
the unary term W (i,4) is positive and increases with
the quality of the segment. For every pair of segments
W (i, j) is positive if the segments are neighbors and
agree with each other, negative (minus a large penalty
constant) when the segments overlap, and 0 otherwise.
The problem consists of finding a set of segments which
maximizes the clustering score.

For each image the final number of segments should
be the same as the ground truth (we consider the min-
imum number from the several human segmentations
given in [1]). For each method, we sort the elements of
the continuous solution in decreasing order and keep
the first Ny segments (where Ny = ground truth). If
the tiling obtained contains segments that are in con-
flict, we remove segments in a greedy manner, starting
with the one with the largest number of conflicts, un-
til all conflicts are eliminated. The same greedy pro-
cedure is applied for all methods. In Figure 9 (left)
we show the average objective score (over the 100 im-
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Figure 8: Examples of segmentation results after removing segments that have conflicts. Dark regions are not
covered by any segment. Note the better image coverage and quality of the segmentations returned by our

method. Best viewed in color.

ages from the training set) as we vary the value of the
penalty (subtracted for pairs of segments that are in
conflict). For [5] we added a positive constant equal
to this penalty to every affinity term during optimiza-
tion, and subtracted it back for evaluating the final
score. We experimented with different values of the
added constant for [5], and the optimum was always
close to the value of the penalty (Figure 9, right plot).
The middle plot shows the average number of segments
that survive after removing the ones in conflict. Before
the removal procedure our method also outperformed
(w.r.t. objective score) [17] on 62 images and [5] on
98 images out of 100. In Figure 8 we present a few
representative segmentation results. The dark regions
are not covered by any segment. Note that another
post-processing greedy procedure could be used to fill
the uncovered areas. Quantitatively, ours has on aver-
age the best performance, covering the images better
and giving higher scores. On average both our method
and [17] found a cluster of segments with no conflicts
in about 60% of cases, while [5] did so only in less than
10%. These are cases in which the greedy removal pro-
cedure was not necessary.
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6 Conclusions

We presented a novel hypegraph clustering method
with important theoretical properties and state of the
art performance. Our algorithm is based on an effi-
cient iterative procedure with significantly better con-
vergence speed than existing state of the art methods,
without any loss of accuracy. We have also tested our
method on matching and image segmentation prob-
lems and showed competitive performance. In future
work we plan to further explore the application of
hypergraph clustering techniques to matching, visual
recognition and segmentation problems.
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