
Bayesian Comparison of Machine Learning Algorithms on Single and
Multiple Datasets

Alexandre Lacoste François Laviolette Mario Marchand
Alexandre.Lacoste.1@ulaval.ca Francois.Laviolette@ift.ulaval.ca
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Abstract

We propose a new method for comparing
learning algorithms on multiple tasks which
is based on a novel non-parametric test that
we call the Poisson binomial test. The key
aspect of this work is that we provide a for-
mal definition for what is meant to have an
algorithm that is better than another. Also,
we are able to take into account the depen-
dencies induced when evaluating classifiers
on the same test set. Finally we make op-
timal use (in the Bayesian sense) of all the
testing data we have. We demonstrate em-
pirically that our approach is more reliable
than the sign test and the Wilcoxon signed
rank test, the current state of the art for al-
gorithm comparisons.

1 Introduction

In this paper, we address the problem of comparing
machine learning algorithms using testing data. More
precisely, we provide a method that verifies if the
amount of testing data is sufficient to support claims
such as : “Algorithm A is better than Algorithm B”.
This is particularly useful for authors who want to
demonstrate that their newly designed learning algo-
rithm is significantly better than some state of the art
learning algorithm.

Many published papers simply compare the empirical
test risk of the classifiers produced by their learning
algorithms. This is insufficient. Since the testing data
is randomly sampled from the original task, repeat-
ing the experiment might lead to different conclusions.
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Moreover, when the goal is to compare the generaliza-
tion performances of learning algorithms, more than
one task must be taken into consideration.

In an effort to quantify the differences between learn-
ing algorithms, some authors estimate the variance of
the risk over the different folds of cross validation.
However, since the different training sets are corre-
lated, this violates the independence assumption re-
quired by the variance estimator. Moreover, Bengio
and Grandvalet [BG04, BG05] proved that there is no
unbiased variance estimator for k-fold cross validation.
To overcome this problem, Dietterich [Die98, Alp] de-
veloped the 5 × 2 cross validation which performs an
average over a quasi -unbiased variance estimator.

Langford [Lan06] observed that the number of classifi-
cation errors follows a binomial distribution and pro-
posed a probabilistic testing set bound for the risk of
classifiers. A lower and an upper bound on the true
risk is then used to determine if the observed difference
in empirical testing errors implies that the true risks
differ with high confidence. While this non-parametric
approach is rigorous and statistically valid, it has low
statistical power. Indeed, in practice, the method of-
ten claims that there is not enough data to assert any
statistical differences.

When the goal is to identify if an algorithm is more
suited for general learning than another, both algo-
rithms are analyzed over several datasets. In this sit-
uation, some authors propose to average the risk from
the different tasks. This is also incorrect. Indeed, con-
sider an algorithm that fails to obtain a good classifier
on a task where the risk usually lies around 0.1. This
would draw shadow on all the good work this algo-
rithm could perform on tasks having low risk (around
0.01). Thus, we adopt the common viewpoint that the
risk is incommensurable [Dem06] across the different
tasks.

To address the incommensurability issue, methods
such as the sign test [Men83] choose to ignore the mag-
nitude of the difference on each task and simply count
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how many times the algorithm is better than its com-
petitor on the set of tasks. When more than one learn-
ing algorithm is available, the Friedman test [Fri37]
averages the rank of the classifiers across the differ-
ent tasks, where each rank is obtained by sorting the
empirical test risk of the produced classifiers for a par-
ticular task. This metric is able to partially take into
account the amount of differences between the risk of
classifiers. However, when only two algorithms are
compared, it becomes equivalent to the sign test. Al-
ternatively, it is possible to use the Wilcoxon signed
rank (WSR) test [Wil45]. Instead of simply count-
ing the number of times an algorithm is better than
its competitor, like the sign test does, each count is
weighted by the rank of the amount of differences in
the risk. More precisely, the absolute differences be-
tween the empirical test risk of the produced classifiers
are sorted across the different tasks. Then the rank of
this magnitude is used to weight the counts for both
algorithms.

To demystify which methods are appropriate,
Demšar [Dem06] performed a benchmark and con-
cludes that non-parametric tests such as the sign test,
the WSR test [Wil45] and the Friedman test [Fri37] are
safer to use than methods that assume a normal distri-
bution of the data such as a the t-test or ANOVA. He
also concludes that methods assuming some but lim-
ited commensurability such as the Friedman test and
the WSR test, have more power than the sign test.

Our Contributions

Inspired by the work of Langford [Lan06], we use the
fact that each error performed by a classifier on a test
set follows a Bernoulli law. In other words, the true
risk 1 of a classifier is defined as the probability of
performing an error on the given task. Instead of ob-
taining bounds on the true risk like Langford did, we
answer a simpler question : “Does classifier h have a
smaller true risk than classifier g?”. It is simpler in the
sense that instead of having to estimate two real val-
ues, we only have a single binary variable to estimate.
Since the test set has only a finite amount of sam-
ples, we use the Bayesian methodology to obtain the
probability of either outcome. Using this approach,
we are also able to take into account the dependencies
induced when evaluating classifiers on the same test
set.

To be able to compare two learning algorithms on sev-
eral tasks, we introduce a new concept called a context.
It represents a distribution over the different tasks a
learning algorithm is meant to encounter. Then, each

1 The true risk is the limit value obtained with proba-
bility 1 when the size of the test set goes to infinity.

time a task is sampled from the context, whether or
not algorithm A produces a better classifier than algo-
rithm B follows a Bernoulli law. This means that we
do not need to explicitly know the underlying distri-
bution of the context to obtain a probabilistic answer
to the following question : “Does algorithm A have
a higher chance of producing a better classifier than
algorithm B in the given context?”.

To compare our new methodology to the sign test and
the WSR test, we apply the different methods on a
wide range of synthetic contexts2. Then, an analysis
of the false positives and false negatives shows that the
newly proposed method constantly outperforms these
widely used tests.

The key aspect of this work is that we provide a for-
mal definition for what is meant to have an algorithm
that is better than another. Also, we are able to take
into account the dependencies induced when evaluat-
ing classifiers on the same test set. Finally we make
optimal use (in the Bayesian sense) of all the testing
data we have. Also, note that all algorithms described
in this paper are available as open source software on
http://code.google.com/p/mleval/.

2 Theoretical Setup

We consider the classification problem. In the single
task case, the input space X is an arbitrary set and the
output space Y ⊂ N denotes the set of possible classes.
An example is an input-output pair (x, y) where x ∈ X
and y ∈ Y. Throughout the paper we make the usual
assumption that each example is drawn according to
an unknown distribution D on X ×Y. A classifier is a
function h : X −→ Y. The risk RD(h) of classifier h on
distribution D is defined as E

(x,y)∼D
I(h(x) 6= y) where

I(a) = 1 if predicate a is true and I(a) = 0 otherwise.
We say that classifier h is better than classifier g with

respect to D (denoted as h
D� g) when RD(h) < RD(g).

A learning algorithm is a function A that takes, as
input, a set of examples called the training set and
returns, as output, a classifier. Our goal is to find a
metric that determines if an algorithm A is better than
another algorithm B. In order to do so, we assume that
the input-output space X×Y, the data-generating dis-
tribution D on X × Y, and the number m of training
examples are sampled i.i.d. from an (unknown) distri-
bution W. We refer to W as being the context from
which the different datasets are drawn.

2Note that, if one wants to compare these different
methodology, the resulting experiments will have to be
performed on contexts for which the underlying distribu-
tion W is known, because, otherwise, it is impossible to
state which algorithm is “really” better.
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Given two learning algorithms, A and B, and a con-
text W, we define q̃AB|W as the probability that A is
better than B within the context W, i.e.,

q̃AB|W
def= E

(D,m)∼W
E

S∼Dm
I
[
A(S)

D� B(S)
]

(1)

Consequently, we say that A is better than B within
the context W iff q̃AB|W > 1/2, i.e.,

A W� B ⇔ q̃AB|W > 1
2 (2)

The definition of q̃AB|W is simple but, in practice, we
do not observeW nor any of the sampled D. It is thus

not possible to directly determine if A W� B. However,
we are able to provide a probabilistic answer by using
Bayesian statistics.

3 Bounding the Risk

We cannot evaluate the true risk of a classifier h with
respect toD. However, using a test set T ∼ Dn, we can
evaluate a probability distribution over the possible
values of RD(h).

This is done by first observing that kh
def= nRT (h) fol-

lows a binomial law of parameter p def= RD(h). Next,
we will use Bayes’ theorem to obtain a posterior dis-
tribution over p. But first, we need to provide a prior
distribution.

Since the beta distribution is the conjugate prior of
the binomial distribution, it is wise to use it for the
prior over p, with parameters α′ > 0 and β′ > 0 :

B(p;α′, β′) def= Γ(α′+β′)
Γ(α′)Γ(β′)p

α′−1(1− p)β′−1,

where Γ denotes the gamma function. It follows from
Bayes’ theorem, that the posterior will also be a beta
distribution, but this time, with parameters α def= α′+
kh and β def= β′ + n− kh.

To complete the choice of the prior, we still need to
specify the values for α′ and β′. This could be achieved
by using some information coming from the training
set or some knowledge we might have about the learn-
ing algorithm. However, to stay as neutral as possible
as advocated by Jaynes [Jay57], we chose the least in-
formative prior—which is the uniform prior given by
α′ = β′ = 1.

Now that we have a probability distribution over
RD(h), we can use the cumulative distribution, to ob-
tain the probability that the risk is smaller than x :

Bc(x;α, β) def=

∫ x

0

B (t;α, β) dt

From the nature of B( · ;α, β), Bc( · ;α, β) is a one to
one relation. Therefore, it has an inverse that we de-
note by B−1

c ( · ;α, β).

Using this inverse function, we can now obtain a prob-
abilistic upper bound of the risk

Pr
(
RD(h) ≤ B−1

c (1−δ;α, β)
)
≥ 1−δ (3)

where δ is the probability that our bound fails and is
commonly set to small values such as 0.05. Since the
bound also depends on δ, smaller values loosen the
bound while higher values tighten the bound.

When α′ = 1 and in the limit where β′ → 0, we con-
verge to the bound described in Theorem 3.3 of Lang-
ford’s tutorial [Lan06]. This can be shown using the
following identity [AS64]

k∑

i=0

(
n

i

)
pi (1− p)n−i = 1−Bc (p, k+1, n−k) , (4)

to rewrite the Langford’s test-set bound as follows :
Pr
(
RD(h) ≤ B−1

c (1−δ; kh+1, n−kh)
)
≥ 1−δ. Con-

sequently, the probabilistic risk upper bound of Equa-
tion (3), given by the Bayesian posterior, becomes
Langford’s test-set bound when the prior has all its
weight on RD(h) = 1 (i.e., when we assume the worst).
Finally, a numerical evaluation of B−1

c can be com-
puted using a Newton method and is available in most
statistical software.

4 Probabilistic Discrimination of
Learning Algorithms on a Single
Task

Let T be any fixed classification task, or equivalently,
let D be any fixed (but unknown) probability distri-
bution on X × Y. Let also A and B be two learning
algorithms. In this section, we want to evaluate, for
the task T , the probability that a classifier obtained
using A is better than a classifier obtained using B.

In the previous section, we saw that, using a test
set T ∼ Dn we can obtain a probability distribu-
tion over RD(A(S)). Similarly, with a second test
set T ′ ∼ Dn′ , we can obtain a probability distribu-
tion over RD(B(S′)). When both training sets and
both test sets are independent, the joint distribution
over RD(A(S)) and RD(B(S′)) is simply the product
of the individual distributions. From this joint distri-

bution, we can therefore evaluate Pr
(
A(S)

D� B(S′)
)

by integrating the probability mass in the region where
RD(A(S)) < RD(B(S′)).

However, in most experiments, learning algorithms are
sharing the same training set and the same testing set.
To take these dependencies into account, let us exploit
the fact that the joint error of the pair of classifiers
comes from a multinomial distribution.
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More precisely, let h def= A(S) and g def= B(S) where S ∼
Dm. For each sample (x, y) ∼ D, we have the following
three outcomes: (1) h(x) 6= y ∧ g(x) = y; (2) h(x) =
y∧ g(x) 6=y; (3) h(x)=g(x) with probability ph, pg
and p respectively. Moreover, ph + pg + p = 1. Let kh,
kg, and k, be the respective counts of these events on
a testing set T . Then (kh, kg, k) follows a multinomial
law with parameters (|T |, (ph, pg, p)).
Since RD(h) < RD(g) whenever ph < pg, our aim is to
obtain a probability distribution over (ph, pg, p), given
(kh, kg, k), to be able to integrate the probability mass
in the region where ph < pg. This can be done using
Bayes’ theorem whenever we have a prior distribution.

Since the Dirichlet distribution is the conjugate prior
of the multinomial, it is wise to use it for the prior
information we have about ph, pg and p. The Dirichlet
distribution of parameters (αh, αg, α) is defined as

D (ph, pg, p;αh, αg, α)

def=
Γ(αh+αg+α)

Γ(αh)Γ(αg)Γ(α)p
αh−1
h pαg−1

g (1−pg−ph)
α−1

where αh > 0, αg > 0 and α > 0.

If the prior is a Dirichlet with parameters
(
α′h, α

′
g, α
′),

it follows from Bayes’ law that, after observing kh, kg
and k on the testing set, the posterior is also a Dirichlet
with parameters (αh, αg, α) where αh

def= α′h+kh, αg
def=

α′g + kg and α def= α′ + k. Consequently, the following

theorem gives us the desired result for Pr
(
h
D� g
)

.

Theorem 4.1. Let αh
def= α′h + kh, αg

def= α′g + kg and

α def= α′ + k, where α′g > 0, α′h > 0, α′ > 0 , then

Pr
(
h
D� g
)

=

∫ 1

0

∫ 1−p
2

0

D (pg, ph, p ; αg, αh, α) dph dp

= Bc
(

1
2 ;α′h + kh, α

′
g + kg

)

Proof. The first equality follows from the explanations

above. Now, using C def=
Γ(αh+αg+α)

Γ(αh)Γ(αg)Γ(α) , γ def= 1− p and

z def= ph
γ , we have :

∫ 1

0

∫ 1−p
2

0

D (pg, ph, p ; αg, αh, α) dph dp

= C

∫ 1

0

p
α−1

∫ 1−p
2

0

p
αh−1
h (1−p−ph)

αg−1 dph dp

= C

∫ 1

0

p
α−1

∫ 1
2

0

(γz)
αh−1 (γ−γz)αg−1 γ dz dp

= C

∫ 1

0

p
α−1

γ
αh+αg−1 dp

∫ 1
2

0

z
αh−1 (1−z)αg−1 dz

=
Γ(αh+αg)

Γ(αh)Γ(αg)

∫ 1
2

0

z
αh−1 (1−z)αg−1 dz

def= Bc
(

1
2 ;α
′
h + kh, α

′
g + kg

)

4.1 About the Prior

From Theorem 4.1, we see that Pr
(
h
D� g
)

does not

depend on k nor α′. However, to complete the choice
of the prior distribution, we still need to provide val-
ues for αh and αg. It might be possible to extract in-
formation from the training set using cross-validation.
However, this approach is not straightforward and will
require further investigation in future work. Also, we
should not introduce favoritism by using an imbal-
anced prior. Hence, one should use αh = αg

def= α̃.
This leaves us with only one parameter, α̃, for the
prior. Using α̃ > 1 is equivalent to supposing, a pri-
ori, that both classifiers are similar. On the opposite,
using 0 < α̃ < 1 is equivalent to supposing, a priori,
that both classifiers are different. Since they are no
evidences supporting the choice of one over the other,
we follow Jaynes’ maximum entropy principle [Jay57]
and we use α̃ = 1, i.e., αh = αg = 1, which represents
the uniform distribution.

5 The Poisson Binomial Test

In this section we generalize the results of the pre-
vious section to contexts. In context W, whether or
not algorithm A outputs a better classifier than algo-
rithm B is a Bernoulli random variable of parameter
q̃AB|W (Equation (1)). Therefore, after observing N
datasets, the number of wins of A over B is a binomial
distribution of parameter q̃AB|W and N .

Knowing the number of wins of A on N trials would
allow us to directly integrate the Beta distribution to

evaluate the probability that A W� B. However, since
we only have a probabilistic answer when discriminat-
ing learning algorithms on a single task, we need to
take the expectation over the different number of wins.

Figure 1: A graphical model representing the depen-
dencies between the variables during the process of
evaluating algorithms on multiple datasets.

Putting this more formally, comparing A and B on
dataset i yields the multinomialMi of parameters phi,
pgi and |Ti|. As seen in Section 4, this multinomial
is hiding the process of comparing hi and gi, trained
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on Si and tested on Ti. Let ki be the observations
obtained on the ith test set (e.g., ki = (khi, kgi)). To

simplify equations, we also define di
def= I (phi < pgi),

κ def=
∑
i di, k def= (k1, k2, ..., kN ), d def= (d1, d2, ..., dN ),

and r def= q̃AB|W . As represented in Figure 1 the only
observed variables are the ones in k.

Consequently, we have :

Pr
(
A W� B

∣∣∣ k
)

=

∫ 1

1
2

Pr (r | k) dr

=

∫ 1

1
2

N∑

κ=0

Pr (r, κ | k) dr

=

N∑

κ=0

∫ 1

1
2

Pr (r | κ) drPr (κ | k)

=
N∑

κ=0

Pr (κ | k)Bc

(
1
2 , N−κ+β̂B, κ+β̂A

)

where we have used the beta distribution with param-
eter β̂A and β̂B for the prior distribution over r and,
using Bayes’ theorem, have obtained a posterior also
given by a beta distribution. To avoid favoritism over
A or B, it is crucial to use β̂A = β̂B

def= β̂. Also, to
maximize entropy, we use β̂ = 1.

We are now left with one term to evaluate:

Pr (κ | k)

=
∑

d∈{0,1}N
Pr (κ | d) Pr (d | k)

=
∑

d∈{0,1}N
Pr (κ | d)

N∏

i=1

Pr (di | ki)

=
∑

d∈{0,1}N
I

(∑

i

di = κ

)
N∏

i=1

pdii (1−pi)1−di (5)

where pi
def= Pr

(
hi
D� gi

)
is given by Theorem 4.1.

In this form, Equation (5) is computationally hard to
track. However, this represents a Poisson-binomial dis-
tribution [Wan93], which is the generalization of the
binomial distribution when the Bernoulli trials have
different probabilities. There exist several ways to
compute such probability distribution [FW10, CDL94,
CL97]. In our case, we use the following dynamic pro-
gramming algorithm. We have Pr(κ) = qN (κ) where
qi(κ) is defined recursively as:

qi(κ) def=





1 if i = 0 ∧ κ = 0
0 if κ < 0 ∨ κ > i
piqi−1(κ− 1)
+(1− pi)qi−1(κ)

otherwise

This algorithm has O(N2) complexity. It is possible

to build a O
(
N log2(N)

)
algorithm, using spectral do-

main convolution to combine the solution of a divide
and conquer strategy. But the O

(
N2
)

algorithm is
simpler and fast enough for our needs.

5.1 Transitivity and Ordering

The operator
D� is transitive for any D since it is

based on the risk of the classifiers. We then have
h
D� g ∧ g D� f =⇒ h

D� f . However, this transitive

property doesn’t hold for
W�. This can be shown with

a small counterexample presented on Figure 2. In this
example, we are comparing algorithms A, B and C on
datasets a, b and c. We work in the theoretical setup.
Therefore we know W and assume that it is the uni-
form distribution on the 3 datasets. Also, the exact
risk for each classifier is expressed in Figure 2. Hence,

from Definition (2), we have A W� B, B W� C and C W� A.

This implies that
W� cannot be used for ordering algo-

rithms.

A B C
a 0.1 0.2 0.3
b 0.3 0.1 0.2
c 0.2 0.3 0.1

Figure 2: A minimalist counterexample on the transi-
tivity of comparison on multiple datasets.

The non-transitivity of
W� is a consequence of ignoring

the amount of differences between the two risks. This
also affects other methods such as the sign test (defined
in Section 6.1). In most practical situations, the finite
amount of samples have the side effect of weighting
the differences between classifiers. Thus, alleviating
the chances of observing a high probability cycle.

6 Simulations With Synthetic
Contexts

In this section we compare the performances of the
Poisson binomial test with the sign test and the WSR
test. Ideally, we would run learning algorithms with
the different evaluation methods on contexts for which
we know the real underlying distributions and we
would repeat this process several times. However, we
do not have such data and this process would take for-
ever. Fortunately, we saw that the outcome of testing
two learning algorithms on a task is equivalent to sam-
pling from a multinomial of parameters pg, ph, p, and

n def= |T |. Therefore, by defining a probability distri-
bution over the four parameters of this multinomial,
we build what we call a synthetic context.
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With those contexts, it is now easy to sample the data
we need to compare the answer of the different meth-
ods with the real answer. However, the behavior of
the three methods depends on a confidence threshold
which offer a trade-off between the success rate and
the error rate. It is thus hard to compare them with
a fixed threshold. To overcome this difficulty, we use
the area under the ROC curve (AUC) as a metric of
performances.

The following subsections provide the details on how
to obtain the p-values for the sign test and the WSR
test and on how to compute the AUC. Finally, in Sec-
tion 6.4, we present the results obtained on different
synthetic contexts.

6.1 Sign Test

The sign test [Men83] simply counts the number of
times that A has a better empirical metric than B
and assumes that this comes from a binomial distri-
bution of parameters q̃AB|W and N . In our case, we
use sgn (khi − kgi) and any sample i where khi = kgi
is ignored, for i ∈ {1, 2, ..., N}.
To assert that the observed difference is significant
enough, the sign test is based on hypothesis testing.

In our case, this corresponds to whether A W= B or not.
More formally, H0 : q̃AB|W = 0.5 and H1 : q̃AB|W 6=
0.5. Let κ+ be the number of times we observe a pos-
itive value of sgn (kgi − khi) and κ− be the number
of times we observe a negative value. Then, the two
tailed p-value of H0 is given by

ρs(κ+, κ−) = 2

min(κ+,κ−)∑

i=0

(
κ+ + κ−

i

)
1

2κ++κ−

It is common to reject H0 when ρs(κ+, κ−) goes below
0.05 (or any reasonable threshold). In that case, we
proceed as follows : if κ+ > κ−, we conclude that

A W� B, and we conclude the converse when κ+ < κ−.

6.2 Wilcoxon Signed Rank (WSR) Test

Instead of simply counting the number of wins like the
sign test does, the WSR test [Wil45] weight each count
by the rank of the absolute difference of the empirical
risk. More precisely, the empirical risk difference is

di
def=

kgi − khi
mi

.

The samples where di = 0 are rejected and we use J as
the set of indices where di 6= 0. To take into account
the fact that there might be samples of equal rank, we

use the following formula to compute the rank :

ri
def=

1

2


1 +

∑

j∈J
I (|dj | < |di|) +

∑

j∈J
I (|dj | ≤ |di|)




The sum of positive rank is c+
def=
∑
j∈J rjI (dj>0) and

the sum of negative rank is c−
def=
∑
j∈J rjI (dj<0).

The WSR test assumes that the di are sampled i.i.d.
from a symmetric distribution around a common me-
dian3. Then, under H0, the values of I (di < 0) are
i.i.d. and have equal probabilities for either outcome.
This allows us to recursively compute the probability
distribution for the values of c+ under H0 as follows :

wn(c)def=





0 if c 6∈ [0, n(n+1)
2

]

1 if n=1 and c∈ [0, n(n+1)
2

]
wn−1(c)+wn−1(c−n)

2
otherwise

Finally, the two tailed p-value is given by :

ρw(c+, c−) def= 2

min(c+,c−)∑

c=0

w|J|(c)

and whenever ρw(c+, c−) ≤ δ, we reject H0. In that
case, we proceed as follows : if c+ > c−, we conclude

that A W� B, and conclude the converse when c+ < c−.

6.3 Area Under the ROC Curve

With a synthetic context, we can directly sample a set
of khi and kgi for i ∈ {1, 2, . . . , N}. Providing this in-
formation to one of the methods, we obtain an answer
â and a confidence level γ. In the case of the sign test,
the confidence level is 1 − ρs(κ+, κ−). For the WSR
test, we use 1−ρw(c+, c−). Finally, for the Poisson bi-

nomial test, we use max
(

Pr
(
A W� B

)
,Pr

(
B W� A

))
.

Next, repeating this experiment M times for a given
threshold τ and comparing the answer to the real an-
swer a, we obtain a success count sτ and an error count
eτ . More formally,

sτ
def=
∑M
j=1 I(γj > τ)I(âj = a)

eτ
def=
∑M
j=1 I(γj > τ)I(âj 6= a).

To obtain the ROC curve, we have computed all pairs
(sτ , eτ ) by selecting τ from the set of the M obtained
confidence levels γj . Next, to obtain the AUC, we
use a trapezoidal approximation of the integral over

the values
(
sτ
s0
, eτe0

)
where s0 and e0 correspond to the

3We will see that the symmetric assumption is inappro-
priate for machine learning algorithm evaluation.
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success count and error count when the threshold is at
its minimum value.

To obtain a good resolution for the ROC curve, we fix
M to 105. Also, to make sure that there is no bias in
the methods, we randomly swap the khi and kgi and,
we adjust the value of a accordingly.

6.4 Experimental results
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Figure 3: Comparison of the 3 methods, using AUC on
a single Dirichlet synthetic context, for various values
of N where n is fixed to 1001.
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Figure 4: Comparison of the 3 methods, using AUC
on a multiple Dirichlet synthetic context, for various
values of N where n is fixed to 1001.

As explained before, a synthetic context is completely
determined by a probability distribution over the pa-
rameters of the three outcome multinomial. For sim-
plicity reasons, we fix n, and use Dirichlet distributions
to represent synthetic contexts.

For our first experiment, we fix n to 1001 and use the
Dirichlet distribution of parameters (100, 110, 790).
The expected values for ph, pg and p are then respec-
tively 0.1, 0.11 and 0.79. This means that in this con-

102 103 104 105
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0.88

0.90

0.92

0.94
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AU
C

Poisson Binomial test
Wilcoxon SR test
Sign test

Figure 5: Comparison of the 3 methods, using AUC
on a multiple Dirichlet synthetic context, for various
values of n where N is fixed to 21.

text A W� B. Figure 3 expresses the AUC of the three
different methods, for various values of N . From those
results, we first observe that the Poisson binomial test
constantly outperform the sign test. Also, we observe
that the WSR test have performances similar to our
approach. However, it is important to understand that
this synthetic context is favorable to the WSR test. In-
deed, the di (see Section 6.2) are sampled from a sym-
metric distribution, which is one of the assumptions
required by the WSR test.

To explore how the WSR test behaves with a non-
symmetric distribution of the di, we use the fol-
lowing bimodal context : with probability 2

3 , we
sample from the Dirichlet distribution of parameters
(100, 140, 9760), otherwise we sample from the Dirich-
let distribution of parameters (1400, 1000, 7600). Now,
fixing n to 100001 and N to 14, we have an AUC over
0.8 for the sign test and the Poisson binomial test,
while the AUC of the WSR test is 0.334, i.e., worse
than random. This means that the WSR test may
drastically fail in some situations. Such events can
occur in practice when a learning algorithm is bet-
ter than its competitor on tasks having many classes,
but the two algorithms are exposed to a context where
tasks having fewer classes are more frequent. Since the
average risk typically raises with the amount of classes,
this would create an asymmetrical distribution of the
empirical risk differences.

Finally, to build a more plausible context, we use
the error counts obtained when comparing svm with
parzen window on 22 datasets coming from UCI and
MNIST (Section 9.1). The synthetic context is thus
a uniform distribution over 22 Dirichlet distributions
where the parameters are provided in supplementary
materials. The AUC for various values of N and vari-
ous values of n are expressed in Figure 4 and Figure 5.
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From those results, we conclude that the Poisson bi-
nomial test is a significantly more appropriate test for
machine learning algorithm comparison.

7 Comparing Popular Algorithms

Table 1: Comparison of the test risk for 3 of the 4
algorithms on 5 of the 22 datasets. Individual signif-
icance is shown, using Theorem 4.1, for selected pair
of classifiers.

svm
Di� ann

Di� parzen
Adult 0.157 0.52 0.157 1.00 0.172
Glass 0.140 0.61 0.150 0.40 0.140

MNIST:08 0.003 1.00 0.012 0.04 0.006
Mushrooms 0.000 0.50 0.000 0.99 0.001

Sonar 0.154 0.84 0.202 0.42 0.192

Table 2: The pairwise Poisson binomial test show-
ing Pr (row � col). Gray values represent redundant
information.

svm ann parzen adaBoost
svm 0.50 0.72 0.99 0.95
ann 0.28 0.50 0.88 0.87

parzen 0.01 0.12 0.50 0.52
adaBoost 0.05 0.13 0.48 0.50

Table 3: The pairwise sign test for 1 - ρs(κ+, κ−).
Cases where κ+ 6> κ− are omitted.

svm ann parzen adaBoost
svm - 0.88 1.00 0.92
ann - - 0.71 0.83

parzen - - - -
adaBoost - - 0.18 -

Table 1 presents the empirical test risk RTi(Aj(Si))
for three popular learning algorithms on five UCI
datasets. A more complete table is provided in the
supplementary material. Table 2 expresses the pair-
wise comparison of algorithms when using the Poisson
binomial test. For comparison, we have also reported
the p-value of the sign test in Table 3 and for the WSR
test in Table 4. Here, the three methods yield compa-
rable results but, in contrast with the experiment in
Section 6, it is not possible to conclude if one method
yields better conclusions than the others since the dis-
tribution W is unknown here.

When performing experiments on synthetic contexts,
we observed that using a threshold of 0.85 for the Pois-
son binomial test yield a lower type I error rate than
the sign test and the WSR test with a threshold of

Table 4: The pairwise WSR test for 1 - ρw(c+, c−).
Cases where c+ 6> c− are omitted.

svm ann parzen adaBoost
svm - 0.30 0.97 0.92
ann - - 0.95 0.41

parzen - - - -
adaBoost - - - -

0.90 on the confidence level. Using this remark, the
sign test perform 2 assertions, the WSR test perform
3 assertions and, the Poisson binomial test perform 4
assertions. While it seems favorable to our approach,
another test might have yield different results. How-
ever, the results provided in Section 6 are reliable and
support the same conclusion.

8 Future Work

In this work we did not addressed the problem of mul-
tiple comparisons. This case occurs when more than
one probabilistic comparison has to be made. Then,
the probability of having a false conclusion inrcreases
with the number of comparisons. To address this prob-
lem, it is common to use methods to control the fam-
ilywise error rate [HT87] or the false discovery rate
[BH95]. However, the current approaches are made to
work with frequentist comparisons and are not directly
applicable to our Bayesian tool. To this end, we are
currently working on a Bayesian method to control the
false discovery rate under dependencies.

We are also investigating on how to extend the Pois-
son binomial test to work outside of the classifica-
tion paradigm. This would allow us to compare al-
gorithms meant to work on regression or structured
output tasks.

Together, these new methods should provide the ma-
chine learning community with a wide range of tools to
shed light on the discovery of new learning algorithms.
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9 APPENDIX—SUPPLEMENTARY
MATERIAL

9.1 Synthetic Contexts

Table 5: List of Dirichlet parameters used in the mul-
timodal synthetic context.

kh+1 kg+1 n-kh-kg+1
11 14 1223
12 20 1232
10 16 4078
13 15 1228
31 17 320
22 22 148
27 35 154
14 18 112
17 25 286
24 17 151
149 240 5555
16 30 762
19 14 791
11 16 237
79 127 3834
15 20 1213
10 11 803
15 15 122
11 29 176
14 18 352
46 64 410
31 1019 2694

9.2 Experimentation details

In this section, we compare the following commonly-
used learning algorithms:

• svm: Support Vector Machine [CV95] with the
RBF kernel.

• parzen: Parzen Window [Par62, Ros56] with the
RBF kernel.

• adaBoost: AdaBoost [FS95] using stumps as
weak classifiers.

• ann: Artificial Neural Networks [MP69] with two
hidden layers, sigmoid activation function and L2

regularization of the weights.

These learning algorithms are compared on 18 bi-
nary classification datasets coming from UCI and 4
other datasets coming from MNIST. Our goal is to
explore the behavior of the Poisson binomial test on
commonly-used learning algorithms applied on real

datasets rather than discriminating the quality of these
learning algorithms. The details on the tuning of these
algorithms are provided in the appendix.

Experimental Setup

Each dataset is split into two equal-size dataset called
Si and Ti. Then, each learning algorithm is trained on
Si and tested on Ti using the zero-one loss. Finally, all
pairs of learning algorithms are compared using both
the Poisson binomial test and the sign test.

Since each learning algorithm comes with adjustable
hyperparameters, we use the 10-fold cross validation
estimate of the error rate on Si to select the most
appropriate set of values.

Details on Learning Algorithms

We present here the details about the tuning of the
learning algorithms used in the experimental setup.

To concisely define the list of explored hyperparam-
eters, we use Link(a, b) def= {a, a + s, a + 2s, ..., b}
where s def= b−a

k−1 . This represents k values uniformly
selected in the interval [a, b]. Similarly, we define
Logk(a, b) def= {10x | x ∈ Link(a, b)}.
When searching the appropriate parameter for the
RBF kernel, we use the following approach. First re-
call that the RBF kernel values are given by

kRBF(x, x′) def= exp

( −r
2σ̂2
‖x− x′‖2

)
, (6)

where r is found using cross-validation and σ̂ is ob-
tained using the train set. To obtain an appropriate
value for σ̂, we used the 10th percentile over the dis-
tribution of distances between all pairs of examples in
Si.

To build weak learners for boosting algorithms, we use
c stumps per attribute where c is constant across all
attributes and is found using cross validation. For each
attribute, each of the c threshold values are uniformly
distributed across the interval of values realized on the
training data.

svm: Support Vector Machine [CV95] with RBF ker-
nel. The width r of the kernel (Equation (6)) is se-
lected from Log20(−5, 5) and the soft-margin parame-
ter C is selected from Log20(−2, 5).

parzen: Parzen Window [Par62, Ros56] with RBF
kernel. The width r of the kernel is selected from
Log30(−4, 4).

adaBoost: AdaBoost [FS95], using stumps as weak
classifiers. The number of iterations is selected using
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Table 6: Comparison of RTi(Aj(Si)) for i ∈ {1, 2, ..., 22} and j ∈ {1, 2, 3, 4}. Individual significance is shown,
using Theorem 4.1, for selected pair of classifiers.

svm � ann � parzen � adaBoost
Adult 0.157 0.52 0.157 1.00 0.172 0.00 0.151

Breast 0.041 0.50 0.041 0.87 0.053 0.50 0.053
Credit 0.187 0.00 0.129 0.84 0.144 0.43 0.141
Glass 0.140 0.61 0.150 0.40 0.140 0.95 0.206

Haberman 0.279 0.57 0.286 0.05 0.231 0.50 0.231
Hearts 0.196 0.03 0.135 0.98 0.196 0.97 0.257

Ionosphere 0.057 0.77 0.074 1.00 0.160 0.05 0.109
Letter:AB 0.000 0.94 0.004 0.12 0.001 0.99 0.009
Letter:DO 0.014 0.73 0.017 0.04 0.008 1.00 0.040
Letter:OQ 0.009 0.76 0.013 0.98 0.027 0.89 0.038

Liver 0.349 0.71 0.366 0.75 0.395 0.07 0.331
MNIST:08 0.003 1.00 0.012 0.04 0.006 1.00 0.016
MNIST:17 0.007 0.69 0.007 0.64 0.008 0.36 0.007
MNIST:18 0.011 1.00 0.037 0.00 0.017 0.42 0.016
MNIST:23 0.017 1.00 0.035 0.00 0.022 1.00 0.041

Mushrooms 0.000 0.50 0.000 0.99 0.001 0.01 0.000
Ringnorm 0.015 1.00 0.054 1.00 0.282 0.00 0.027

Sonar 0.154 0.84 0.202 0.42 0.192 0.59 0.202
Tic-Tac-Toe 0.161 0.00 0.052 1.00 0.198 1.00 0.357

USVotes 0.069 0.25 0.065 0.98 0.092 0.01 0.051
WDBC 0.049 0.02 0.021 1.00 0.077 0.03 0.042

Waveform 0.068 0.26 0.067 1.00 0.080 0.41 0.079

cross validation for values in {2n | n ∈ {1, 2, ..., 10}}
and the number of stumps is selected from { 1, 2, 3,
4, 6, 10, 14, 21, 31 }.

ann: Artificial Neural Networks [MP69] with two
hidden layers, sigmoid activation function, and L2 reg-
ularization of the weights. The input space is normal-
ized on the training set, such that each attribute has
zero mean and unit variance. The number of neurons
on the second layer is d√Nl1 e where Nl1 is the num-
ber of neurons on the first layer and is selected from
{ 3, 4, 5, 6, 7, 9, 11, 13, 16, 19, 23, 28, 33, 40, 48,
57, 69, 83, 100 }. Finally, the weight of the L2 regu-
larizer is selected from Log20(−2, 2). The network is
trained using conjugate gradient descent with no early
stopping.

In all cases, when there are two hyperparameters, all
pair of proposed values are explored.
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