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Abstract

Variable selection is an important and prac-
tical problem that arises in analysis of many
high-dimensional datasets. Convex optimiza-
tion procedures that arise from relaxing the
NP-hard subset selection procedure, e.g., the
Lasso or Dantzig selector, have become the
focus of intense theoretical investigations.
Although many efficient algorithms exist that
solve these problems, finding a solution when
the number of variables is large, e.g., several
hundreds of thousands in problems arising
in genome-wide association analysis, is still
computationally challenging. A practical so-
lution for these high-dimensional problems is
marginal regression, where the output is re-
gressed on each variable separately. We in-
vestigate theoretical properties of marginal
regression in a multitask framework. Our
contribution include: i) sharp analysis for
marginal regression in a single task setting
with random design, ii) sufficient conditions
for the multitask screening to select the rel-
evant variables, iii) a lower bound on the
Hamming distance convergence for multitask
variable selection problems. A simulation
study further demonstrates the performance
of marginal regression.

1 Introduction

Recent technological advances are allowing scientists
in a variety of disciplines to collect data of unprece-
dented size and complexity. Examples include data
from biology, genetics, astronomy, brain imaging and
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high frequency trading. These applications are often
characterized by a large number of variables p, which
can be much larger than the number of observations
n, and are currently driving the development of statis-
tical and machine learning procedures. The sparsity
assumption has been recognized to play a critical role
in effective high-dimensional inference in classification
and regression problems, that is, the statistical infer-
ence is possible in under-determined problems under
the assumption that only a few variables contribute
to the response. Therefore, the variable selection is
of fundamental importance in high-dimensional prob-
lems.

Consider a regression model

y = Xβ + ǫ (1)

with response y = (y1, . . . , ym)′, m × p design ma-
trix X, noise vector ǫ = (ǫ1, . . . , ǫm)′ and coefficients
β = (β1, . . . , βp)

′. For simplicity of presentation, we
assume that m = 2n and use the first n samples to es-
timate the parameters and use remaining parameters
to optimally select the tuning parameters. The high
dimensional setting assumes p ≫ n and the sparsity
assumption roughly states that the coefficient vector
β has a few non-zero components or that it can be well
approximated by such a vector. In the context of linear
regression, there has been a lot of recent work focusing
on variable selection under the sparsity assumption,
such as, Tibshirani (1996), Fan and Li (2001), Candes
and Tao (2007), Zou (2006), Zou and Li (2008), Zhang
(2010), Cai et al. (2010), Chen et al. (1999), Donoho
(2006), Wainwright (2009), Zhao and Yu (2006), and
Meinshausen and Yu (2009), to name a few. Many of
these methods are based on constrained or penalized
optimization procedures in which solutions are biased
to have many zero coefficients. One of the main tools
for variable selection in a regression model is the Lasso
estimator defined by

β̂ = argmin
β

||y −Xβ||22 + λ||β||1 (2)

where λ ≥ 0 is a user defined regularization param-
eter. Theoretical properties of the estimator β̂ are
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now well understood and the optimization problem (2)
can be efficiently solved for medium sized problems.
However, finding a solution in problems involving hun-
dreds of thousands variables, which commonly arise in
genome-wide association mapping problems, still re-
mains a computationally challenging task, even when
many variables can be pruned using rules based on
the KKT conditions (El Ghaoui et al., 2010; Tibshi-
rani et al., 2010).

One computationally superior alternative to the Lasso
is marginal regression, also known as correlation learn-
ing, marginal learning and sure screening. This
is a very old and simple procedure, which has re-
cently gained popularity due to its desirable properties
in high-dimensional setting (Wasserman and Roeder,
2009; Fan and Lv, 2008; Fan et al., 2009, 2011). See
also Kerkyacharian et al. (2009) and Alquier (2008)
for related procedures. Marginal regression is based
on regressing the response variable on each variable
separately

µ̂j = (X′
jXj)

−1X′
jy, (3)

where Xj = (x1j , . . . , xnj)
′. Next, the values {|µ̂j |}

are sorted in decreasing order, with {r̂j} denoting the
ranks, and the set of estimated variables is

Ŝ(k) := {1 ≤ j ≤ p : r̂j ≤ k}, 1 ≤ k ≤ p. (4)

Note that in Eq. (3) we use the first n samples only to
compute µ̂j . Under a condition, related to the faith-
fulness conditions used in causal literature (Robins
et al., 2003; Spirtes et al., 2000), it can be shown that

the set Ŝ(k) correctly estimates the relevant variables
S := {1 ≤ j ≤ p : βj 6= 0}, see Wasserman and Roeder
(2009). The following result provides the conditions
under which the exact variable selection is possible if
the size of the support s := |S| is known.
Theorem 1. Consider the regression model in (1)

with X = (x1, . . . ,xn)
′, xi

iid∼ Np(0,Σ), and ǫ ∼
Nn(0, σ

2In), X independent of ǫ. Assume that

max
j∈SC

|ΣjSβS |+ γn(p, s,β,Σ, δ) < min
j∈S

|ΣjSβS | (5)

with γn = O(
√

log(p− s)/n), then

P[Ŝ(s) = S] ≥ 1− δ.

The above theorem is based on the asymptotic result
in Wasserman and Roeder (2009). We provide a fi-
nite sample analysis and explicit constants for the term
γn(p, s,β,Σ, δ) in Appendix. A condition like the one
in Eq. (5) is essentially unavoidable for marginal re-
gression, since it can be seen that in the noiseless set-
ting (ǫ = 0) the condition (5) with γn = 0 is necessary
and sufficient for successful recovery. See Genovese

et al. (2009) for discussion of cases where the faithful-
ness condition is weaker than the irrepresentable con-
dition, which is necessary and sufficient for exact re-
covery of the support using the Lasso (Zhao and Yu,
2006; Wainwright, 2009).

Besides computational simplicity, another practical
advantage of marginal regression is that the number
of relevant variables s can be estimated from data
efficiently as we show below. This corresponds to
choosing the tuning parameter λ in the Lasso prob-
lem (2) from data. To estimate the number of rel-
evant variables, we will use the samples indexed by
{n+1, . . . , 2n}, which are independent from those used
to estimate {µ̂j}j . For a fixed 1 ≤ k ≤ p, let jk
denote the index of the variable for which r̂jk = k.

Let V̂n(k) = span{Xj1 , . . . ,Xjk} be the linear space
spanned by k variables whose empirical correlation
with the response is the highest, and let Ĥ(k) be

the projection matrix from Rn to V̂n(k). Note that
Xjk = (xn+1,jk , . . . , x2n,jk). Define

ξ̂n(k) := ||(Ĥ(k+1)−Ĥ(k))y||22, 1 ≤ k ≤ p−1, (6)

which is then used to estimate the number of relevant
variables as

ŝn = max{1 ≤ k ≤ p−1 : ξ̂n(k) ≤ 2σ2 log 4n
δ }+1. (7)

Using an independent sample to select the number of
relevant variables is needed so that the projection ma-
trix is independent of the noise ǫ. With these defini-
tions, we have the following result.

Theorem 2. Assume that the conditions of Theo-
rem 1 are satisfied. Furthermore, assume that

min
j∈S

|βj | = Ω(
√

log n).

Then P[Ŝ(ŝn) = S]
n→∞−−−−→ 1.

The above results builds on Theorem 3 in Genovese
et al. (2009). A full statement of the theorem provides
a finite sample result for a random design regression
model is proven in Appendix.

Motivated by successful applications to variable se-
lection in single task problems, we study properties
of marginal regression in a multitask setting. In a
number of applications, ranging from genome-wide
association studies (Kim and Xing, 2009) to cogni-
tive neuroscience (Liu et al., 2009), it has been ob-
served that learning from related tasks jointly im-
proves performance over procedures that learn from
each task independently. This has sparked a lot of in-
terest in machine learning and statistics community,
see e.g. Turlach et al. (2005), Zou and Yuan (2008),
Obozinski et al. (2011), Lounici et al. (2009), Liu et al.
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(2009), Kolar and Xing (2010), Lounici et al. (2010),
Kolar et al. (2011) and references therein. Section 2
provides sufficient conditions for marginal regression to
exactly select relevant variables in a multitask setting.
We provide versions of Theorem 1 and Theorem 2 for
the multitask regression problem given in (8) below.
Improvements using the multitask learning are illus-
trated on a model with an orthogonal design. Section
3 analyzes the recovery of the relevant variables under
the Hamming distance. A universal lower bound on
the Hamming distance between Ŝ and S is provided.
Some illustrative simulations are given in Section 4.
All proofs are deferred to Appendix.

2 Multitask Learning with Marginal
Regression

In this section, we analyze properties of marginal re-
gression in a multitask setting. We will consider the
following multitask regression model

yt = Xβt + ǫt t = 1, . . . , T (8)

where yt, ǫ ∈ Rm and X ∈ Rm×p. Again, we assume
that m = 2n and use half of the samples to rank the
variables and the other half to select the correct num-
ber of relevant variables. The subscript t indexes tasks
and βt ∈ Rp is the unknown regression coefficient for
the t-th task. We assume that there is a shared de-
sign matrix X for all tasks, a situation that arises, for
example, in genome-wide association studies. Alter-
natively, one can have one design matrix Xt for each
task. We assume that the regression coefficients are
jointly sparse. Let St := {1 ≤ j ≤ p : βtj 6= 0} be
the set of relevant variables for the t-th task and let
S = ∪tSt be the set of all relevant variables. Under
the joint sparsity assumption s := |S| ≪ n.

To perform marginal regression in the multitask set-
ting, one computes correlation between each variable
and each task using the first half of the samples

µ̂tj = (X′
jXj)

−1X′
jyt, (9)

for each t = 1, . . . , T, j = 1, . . . , p. Let Φ : RT 7→ R+

be a scoring function, which is used to sort the values
{Φ({µ̂tj}t)}j in decreasing order. Let {r̂Φ,j} denote
the rank of variable j in the ordering, then the set of
estimated variables is

ŜΦ(k) := {1 ≤ j ≤ p : r̂Φ,j ≤ k}, 1 ≤ k ≤ p. (10)

For concreteness, we will use the norm || · ||1, || · ||2
and || · ||∞ as our scoring functions and denote the

sets of estimated variables Ŝℓ1(k), Ŝℓ2(k) and Ŝℓ∞(k)
respectively.

With the notation introduced, we focus on providing
conditions for marginal regression to exactly select the
relevant variables S. We start our analysis in the fixed
design setting. Let Σ = n−1X′X and assume that the
variables are standardized to have zero mean and unit
variance, so that the diagonal elements of Σ are equal
to 1. Now it simply follows from (9) that

µ̂tj = n−1X′
jyt = ΣjSt

βtSt
+ n−1X′

jǫt.

In order to show that marginal regression exactly re-
covers the set of relevant variables, we need to have

max
j∈SC

Φ({µ̂tj}t) ≤ min
j∈S

Φ({µ̂tj}t). (11)

It is easy to see that (11) is necessary for exact recov-
ery. The following theorem provides sufficient condi-
tions for (11) to hold.

Theorem 3. Consider the model (8) with ǫt ∼
N (0, σ2In) and σ > 0 known. The following three

claims hold: i) Define νj = σ−2n
∑T

t=1(ΣjSt
βtSt

)2. If

max
j∈SC

νj + 2 log
2(p− s)

δ

+max
j∈S

2

√
(T + 2νj) log

2s

δ

+ max
j∈SC

2

√
(T + 2νj) log

2(p− s)

δ

≤ min
j∈S

νj

(12)

then P[Ŝℓ2(s) = S] ≥ 1− δ. ii) If

max
j∈SC

T∑

t=1

|ΣjSt
βtSt

|

+ n−1/2σ

√

T 2 + 2T

√
T log

2(p− s)

δ
+ 2T log

2(p− s)

δ

+ n−1/2σ

√

T 2 + 2T

√
T log

2s

δ
+ 2T log

2s

δ

≤ min
j∈S

T∑

t=1

|ΣjSk
βkSk

|

(13)

then P[Ŝℓ1(s) = S] ≥ 1− δ. iii) If

max
j∈SC

max
1≤t≤T

|ΣjSt
βtSt

|

+ n−1/2σ

(√
2 log

2(p− s)T

δ
+

√
2 log

2sT

δ

)

≤ min
j∈S

max
1≤t≤T

|ΣjSt
βtSt

|
(14)

then P[Ŝℓ∞(s) = S] ≥ 1− δ.
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Theorem 3 extends Theorem 1 to the multitask set-
ting and provides sufficient conditions for marginal re-
gression to perform exact variable selection. We will
discuss how the three different scoring procedures com-
pare to each other in the following section.

Theorem 3 assumes that the number of relevant vari-
ables is known, as in Theorem 1. Therefore, we need
to estimate the number of relevant variables in a data-
dependent way. This is done using the remaining n
samples, indexed by {n+1, . . . , 2n}. Recall the defini-
tions from p. 2, where jk denotes the index of the vari-
able for which r̂Φ,jk = k, V̂n(k) = span{Xj1 , . . . ,Xjk}
and Ĥ(k) is the projection matrix from Rn to V̂n(k).
Define

ξ̂ℓ2,n(k) :=

T∑

t=1

||(Ĥ(k+1)−Ĥ(k))yt||22, 1 ≤ k ≤ p−1,

(15)
which is then used to estimate the number of relevant
variables as

ŝℓ2,n = 1 +max{1 ≤ k ≤ p− 1 :

ξ̂ℓ2,n(k) ≤ (T + 2
√

T log(2/δ) + 2 log(2/δ))σ2}.
(16)

Let VS = span{Xj : j ∈ S} be the subspace spanned
by columns of X indexed by S and similarly define

VS,−j = span{Xj′ : j
′ ∈ S\{j}}. Let X

(2)
j denote the

projection of Xj to VS ∩V ⊥
S,−j . With these definitions,

we have the following result.

Theorem 4. Consider the model (8) with ǫt ∼
N (0, σ2In) and σ > 0 known. Suppose that one of
the following three claims hold: i) Eq. (12) holds and
variables are ranked as {r̂ℓ2,j}j, ii) Eq. (13) holds and
variables are ranked as {r̂ℓ1,j}j, or iii) Eq. (14) holds
and variables are ranked as {r̂ℓ1,j}j. Furthermore as-
sume that

min
j∈S

T∑

t=1

||X(2)
j βtj ||22

>

[
2
√
5 log1/2

(
4

δ2

)√
T + 8 log

(
4

δ2

)]
σ2.

(17)

Then P[ŝℓ2,n = s] ≥ 1 − 2δ and P[Ŝφ(ŝℓ2,n) = S] ≥
1− 2δ.

Theorem 4 provides a way to select the number of rel-
evant variables in a multitask setting. It is assumed
that one of the conditions given in Theorem 3 are sat-
isfied and that the corresponding scoring procedure
is used to rank features. Condition (17) is required
in order to distinguish relevant variables from noise.
If the signal strength is small compared to the noise,
there is no hope to select the relevant variables. Com-
paring to Theorem 2, we can quantify improvement

over applying marginal regression to each task indi-
vidually. First, the minimal signal strength for each

variable, quantified as minj∈S

∑T
t=1 ||X

(2)
j βtj ||22 needs

to increase only as O(
√
T ) in multitask setting com-

pared to O(T ) when marginal regression is applied to
each task individually.

Theorem 3 and 4 assume that the design is fixed. How-
ever, given proofs of Theorem 1 and 2, extending the
proofs of the multitask marginal regression is straight-
forward.

2.1 Comparing Different Scoring Procedures

In this section, we compare the three scoring proce-
dures based on || · ||1, || · ||2 and || · ||∞. Theorem 3

provides sufficient conditions under which Ŝℓ1 , Ŝℓ2 and

Ŝℓ∞ exactly recover the set of relevant variables S. In
order to provide more intuition, we will focus on con-
ditions (12), (13) and (14) when Σ = I. Furthermore,
we assume that s = O(1).

From (12), we have that

max
j∈SC

T−1||β·j ||22 +O(
log p

nT
)

+O(

√
(T + nmaxj ||β·j ||22) log p

nT
)

≤ min
j∈S

T−1||β·j ||22

is sufficient for Ŝℓ2 to recover S. Condition (13) sim-
plifies to

max
j∈SC

T−1||β·j ||1 +O(

√
1 + T−1 log p+ T−1/2

√
log p

n
)

≤ min
j∈S

T−1||β·j ||1.

Finally, condition (14) simplifies to

max
j∈SC

||β·j ||∞ +O
(√

log pT

n

)
≤ min

j∈S
||β·j ||∞.

Comparing the sufficient condition in this simplified
form, we can observe that the Ŝℓ2 requires weaker con-

ditions for exact support recovery than Ŝℓ∞ . Further-

more, it can be seen that the estimator Ŝℓ∞ is the
most related to the support recovered using marginal
regression on each task separately. From Theorem 1, if
we stack regression coefficients for different tasks into
a big vector, we have that

max
j∈SC

max
1≤t≤T

|βtj |+O
(√

log pT

n

)
≤ min

j∈S
min

1≤t≤T
|βtj |

is sufficient for the exact support recovery. This is
a stronger requirement than the one needed for Ŝℓ∞ .
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Still, from the numerical results, we observe that Ŝℓ1

and Ŝℓ2 perform better than Ŝℓ∞ .

3 Universal Lower Bound for
Hamming distance

So far, we have focused on the exact variable selection.
Although the exact variable selection has been the fo-
cus of many studies, the exact recovery of variables is
not possible in many practical applications with low
signal to noise ratio. Therefore, it is more natural to
measure performance using a distance between the sets
of selected variables and the true set S.

In this section, let X, y1, . . . ,yT , β1, . . . ,βT ,
ǫ1, . . . , ǫT be the same as before. Here X could be
either deterministic or random satisfying X′

jXj = 1
for j = 1, . . . , p. We are interested in studying the
lower bound for variable selection problem measured
by Hamming distance. To construct lower bound, we
need to clearly define the model family we are study-
ing. We use the following random coefficient model
which is adapted from Genovese et al. (2009):

βtj
i.i.d.∼ (1− ηp)ν0 + ηpντp , (18)

for all t = 1, . . . , T, j = 1, . . . , p, where ν0 is the point
mass at 0 and ντp is the point mass at τp. Both ηp and
τp vary with p. We set

ηp = p−v, 0 < v < 1, (19)

so that the expected number of signals is sp = pηp =
p1−v. Let r > 0 be some fixed constant and set
τp =

√
2r log p the signal strength. Such a setting has

been extensively explored in the community of modern
statistics to explore the theoretical limit of many prob-
lems including classification, density estimation, and
multiple hypothesis testing (Donoho and Jin, 2004; Cai
et al., 2007; Ji and Jin, 2010).

Let Ŝ be the index set of selected variables for any
variable selection procedure and S be the index set
of true relevant variables. We define the Hamming
distance

Hp(Ŝ, S |X) = Eηp,πp

[∣∣∣(Ŝ \ S) ∪ (S \ Ŝ)
∣∣∣
]
. (20)

Let

λp :=
1

τp

[
log

(
1− ηp
ηp

)
+

Tτ2p
2

]

=
1√

2r log p
log(pv − 1) + T

√
r log p

2

≤ (v + Tr)
√
log p√

2r
.

Our main result in this section provides a universal
lower bound of Hp(Ŝ, S |X) for all sample size n and
design matrix X. Let F (·) and F̄ (·) be the distri-
bution function and survival function of the standard
Gaussian distribution and let φ(·) denote the density
function of the standard Gaussian distribution. We
have the following lower bound results.

Theorem 5. (Universal lower bound) Fix v ∈
(0, 1), r > 0 and a sufficiently large p. For any n and
design matrix X such that X′X has unit diagonals, we
have the following lower bound:

Hp(Ŝ, S |X)

sp

≥
[
1− ηp
ηp

F̄

(
λp√
T

)
+ F

(
λp√
T

−
√
Tτp

)]
.

(21)

This can be further written as

Hp(Ŝ, S |X)

sp

≥





√
rT

2(v + Tr)
√
π log p

· p−(v−Tr)2/(4rT ), v < rT

1 + o(1), v > rT.
(22)

One thing to note in the above theorem is that such
a lower bound simultaneously holds for any sample
size n. The main reason for this is that we constraint
X′

jXj = 1 for all j = 1, . . . , p. Such a standardiza-
tion essentially fixes the signal-to-noise ratio under
asymptotic framework where p increases. Therefore,
the lower bound does not depend on sample size n.

3.1 Comparing with Single Task Screening

It would be instructive to compare the lower bounds
for multitask screening with that for single task screen-
ing. By setting T = 1, we can obtain from Theorem
5 that the Hamming distance lower bound for single
task screening takes the form:

Hsingle
p (Ŝ, S |X)

sp

≥





√
r

2(v + r)
√
π log p

· p−(v−r)2/(4r), v < r

1 + o(1), v > r.
(23)

If v > r, Hsingle
p (Ŝ, S |X) ≥ sp + o(1), which means

that no procedure can recover any information of the
true signal at all. On the other hand, the correspond-
ing no recovery condition for multitask screening is
strengthened to be r > Tr and such a condition rarely
holds when T is larger. Therefore, one effect of the

651



Marginal Regression For Multitask Learning

multitask setting is that the signal-to-noise ratio is im-
proved by jointly considering multiple tasks. For the
case that r < vT and r < T in both settings, it can
be seen that the rate for multitask screening is much
faster than that for single-task screening.

4 Empirical Results

We conduct an extensive number of numerical studies
to evaluate the finite sample performance of marginal
regression on the multitask model given in (8). We
consider marginal regression using the three scoring
procedures outlined in Section 2. The variables are
ranked using || · ||1, || · ||2 and || · ||∞ norms and the

resulting sets of variables are denoted Ŝℓ1 , Ŝℓ2 and

Ŝℓ∞ . The number of active variables is set using the
result of Theorem 4.

Let Ŝ be an estimate obtained by one of the scoring
methods. We evaluate the performance averaged over
200 simulation runs. Let Ên denote the empirical av-
erage over the simulation runs. We measure the size
of the support Ŝ. Next, we estimate the probability
that the estimated set contains the true set S, that is,
Ên[1I{S ⊆ Ŝ}], which we call coverage probability. We

define fraction of correct zeros (p− s)−1Ên[|ŜC ∩SC |],
fraction of incorrect zeros s−1Ên[|ŜC ∩ S|] and frac-

tion of correctly fitted Ên[1I{S = Ŝ}] to measure the
performance of different scoring procedures.

We outline main findings using the following simula-
tion studies. Due to space constraints, tables with
detailed numerical results are given in the Appendix.

Simulation 1: The following toy model is based on the
simulation I in Fan and Lv (2008) with (n, p, s, T ) =
(400, 20000, 18, 500). Each xi is drawn independently
from a standard multivariate normal distribution, so
that the variables are mutually independent. For
j ∈ S and t ∈ 1, . . . , T , the non-zero coefficients
are given as βtj = (−1)u(4n−1/2 log n + |z|), where
u ∼ Bernoulli(0.4) and z ∼ N (0, 1). The number
of non-zero elements in {βtj}t is given as a parame-
ter Tnon−zero ∈ {500, 300, 100}. The positions of non-
zero elements are chosen uniformly at random from
{1, . . . , T}. The noise is Gaussian with the standard
deviation σ set to control the signal-to-noise ratio
(SNR). SNR is defined as Var(xβ)/Var(ǫ) and we vary
SNR ∈ {15, 10, 5, 1}.
Simulation 2: The following model is used to eval-
uate the performance of the methods as the num-
ber of non-zero elements in {βtj}t varies. We set
(n, p, s) = (100, 500, 10) and vary the number of out-
puts T ∈ {500, 750, 1000}. For each number of outputs
T , we vary Tnon−zero ∈ {0.8T, 0.5T, 0.2T}. The sam-
ples xi and regression coefficients are given as in Simu-

lation 1, that is, xi is drawn from a multivariate stan-
dard normal distribution and the non-zero coefficients
are given as βtj = (−1)u(4n−1/2 log n + |z|), where
u ∼ Bernoulli(0.4) and z ∼ N (0, 1). The noise is
Gaussian, with the standard deviation defined through
the SNR, which varies in {10, 5, 1}.
Simulation 3: The following model is borrowed from
Wang (2009). We assume a correlation structure be-
tween variables given as Var(Xj1 ,Xj2) = ρ|j1−j2|,
where ρ ∈ {0.2, 0.5, 0.7}. This correlation structure
appears naturally among ordered variables. We set
(n, p, s, T ) = (100, 5000, 3, 150) and Tnon−zero = 80.
The relevant variables are at positions (1, 4, 7) and
non-zero coefficients are given as 3, 1.5 and 2 respec-
tively. The SNR varies in {10, 5, 1}.
Simulation 4: The following model assumes a block
compound correlation structure. For a parameter ρ,
the correlation between two variables Xj1 and Xj2 is
given as ρ, ρ2 or ρ3 when |j1 − j2| ≤ 10, |j1 − j2| ∈
(10, 20] or |j1 − j2| ∈ (20, 30] and is set to 0 otherwise.
We set (n, p, s, T ) = (150, 4000, 8, 150), Tnon−zero =
80 and the parameter ρ ∈ {0.2, 0.5}. The relevant
variables are located at positions 1, 11, 21, 31, 41, 51,
61, 71 and 81, so that each block of highly correlated
variables has exactly one relevant variable. The values
of relevant coefficients are given in Simulation 1. The
noise is Gaussian and the SNR varies in {10, 5, 1}.
Simulation 5: This model represents a difficult set-
ting. It is modified from Wang (2009). We set
(n, p, s, T ) = (200, 10000, 5, 500). The number of
non-zero elements in each row varies is Tnon−zero ∈
{400, 250, 100}. For j ∈ [s] and t ∈ [T ], the non-zero
elements equal βtj = 2j. Each row of X is gener-
ated as follows. Draw independently zi and z′i from
a p-dimensional standard multivariate normal distri-
bution. Now, xij = (zij + z′ij)/

√
(2) for j ∈ [s]

and xij = (zij +
∑

j′∈[s] zij′)/2 for j ∈ [p]\[s]. Now,

Corr(xi,1, yt,i) is much smaller than Corr(xi,j , yt,i) for
j ∈ [p]\[s], so that it becomes difficult to select vari-
able 1. The variable 1 is masked with the noisy vari-
ables. This setting is difficult for screening procedures
as they take into consideration only marginal informa-
tion. The noise is Gaussian with standard deviation
σ ∈ {1.5, 2.5, 4.5}.
Our simulation setting transitions from a simple sce-
nario considered in Simulation 1 towards a challeng-
ing one in Simulation 5. Simulation 1 represents a toy
model, where variables are independent. Simulation 2
examines the influence of the number of non-zero ele-
ments in the set {βtj}t. Simulations 3 and 4 represent
more challenging situations with structured correla-
tion that naturally appears in many data sets, for ex-
ample, a correlation between gene measurements that
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Prob. (%) of Fraction (%) of Fraction (%) of Fraction (%) of

Ŝ S ⊆ Ŝ Correct zeros Incorrect zeros S = Ŝ |Ŝ|

Simulation 1: (n, p, s, T ) = (500, 20000, 18, 500), Tnon−zero = 300

SNR = 5
Ŝℓ∞ 100.0 100.0 0.0 76.0 18.3

Ŝℓ1 100.0 100.0 0.0 91.0 18.1

Ŝℓ2 100.0 100.0 0.0 92.0 18.1

Simulation 2.a: (n, p, s, T ) = (200, 5000, 10, 500), Tnon−zero = 400

SNR = 5
Ŝℓ∞ 100.0 100.0 0.0 82.0 10.2

Ŝℓ1 100.0 100.0 0.0 91.0 10.1

Ŝℓ2 100.0 100.0 0.0 91.0 10.1

Simulation 3: (n, p, s, T ) = (100, 5000, 3, 150), Tnon−zero = 80, ρ = 0.7

SNR = 5
Ŝℓ∞ 96.0 100.0 1.3 95.0 3.0

Ŝℓ1 99.0 100.0 0.3 97.0 3.0

Ŝℓ2 97.0 100.0 1.0 95.0 3.0

Simulation 4: (n, p, s, T ) = (150, 4000, 8, 150), Tnon−zero = 80, ρ = 0.5

SNR = 5
Ŝℓ∞ 100.0 100.0 0.0 84.0 8.2

Ŝℓ1 100.0 100.0 0.0 87.0 8.1

Ŝℓ2 100.0 100.0 0.0 87.0 8.1

Simulation 5: (n, p, s, T ) = (200, 10000, 5, 500), Tnon−zero = 250

σ = 2.5
Ŝℓ∞ 87.0 100.0 2.6 39.0 5.9

Ŝℓ1 0.0 99.9 90.6 0.0 14.8

Ŝℓ2 0.0 99.9 55.0 0.0 12.5

Table 1: Results of simulations. Tables with all results are given in the Appendix.

are closely located on a chromosome. Finally, Sim-
ulation 5 is constructed in such a way such that an
irrelevant variable is more correlated with the output
than a relevant variable. Tables giving detailed re-
sults of the above described simulations are given in
the Appendix. Table 1 reproduces some of the results.
We observe that the sets Ŝℓ1 and Ŝℓ2 perform simi-
larly across different simulation settings. Except for
the simulation 5, Ŝℓ∞ has worse performance than the
other two estimators. The performance difference is
increased as the signal to noise ratio decreases. How-
ever, when the signal to noise ratio is large, there is
little difference between the procedures.

5 Discussion

This paper has focused on the analysis of marginal
regression in the multitask setting. Due to its simplic-

ity and computational efficiency, marginal regression
is often applied in practice. Therefore, it is important
to understand under what assumptions it can be ex-
pected to work well. Using multiple related tasks, the
signal in data can be more easily detected and the es-
timation procedure is more efficient. Our theoretical
results support this intuition. One open question still
remains. It is still not clear how to match the lower
bound on the Hamming distance given in Section 3,
but we suspect that recent developments in Ji and Jin
(2010) could provide tools to match the lower bound.
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