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A Handling of boundary units

The models did not have any special boundary units,
and therefore at the boundaries and especially at the
corners due to diagonal offsets between the tiles there
were sites which we less constrained than in the cen-
ter of the image. This often caused boundary artifacts
unless special care was taken. We tried various ways
of dealing with these problems, for each of the models
and textures. The results we report use a mixed way
of dealing with them: For all models except TPoT,
we clamped the borders of the negative particles to
zero as in [10]. For the TPoT, we simply discarded
the boundary data in computing the gradients for pa-
rameter updates, which seemed to work best for this
model.

B Features learned by the multi-Tm
model

To investigate the specificity/generality of features of
a multiple texture model we considered a 256-feature
model trained on the full textures, and evaluated
hidden unit activation probabilities of each feature
with each of the bias settings (one per texture class)
as a response to samples from each of the texture
classes. We then applied multi-class Fisher’s lin-
ear discriminant analysis (see e.g. [1, §4.1.6]) to these
vectors to rank the features according to their sepa-
rability/texture specificity, using the J(W ) criterion
from [1]. Based on this ranking, we visualize these
features in Figure I so that the top row illustrates
16 least separable features, the block below it shows
a thinned set of 128 features, and the row below it
16 most separable features, with increasing separabil-
ity from left-to-right and top-to-bottom. Many of the
most separable ones resemble filters in texture-specific
(single-Tm) models for the same data (shown below).
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Figure I: A sampling of weights of a multi-Tm (top
horizontal blocks) and single-Tm-models (bottom ver-
tical blocks). The former are ordered from left-to-right
and top-to-bottom with increasing Fisher LDA score
in each block. The top block shows the features with
the 16 smallest scores, the bottom block the 16 largest
scores, and the middle block a thinned set of 128 fea-
tures.
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Figure II: Inpainting quality assessment for the mod-
els measured as mean structural similarity (MSSIM)
between the inpainted area and the corresponding
ground truth Brodatz texture data at the area. Boxes
indicate the upper and lower quartiles as well as the
median (red bar) of the MSSIM distributions; whiskers
show extent of the rest of the data; red crosses denote
outliers.

C Supplementary constrained
synthesis results

The main part of the paper reported inpainting re-
sults w.r.t NCC. Here we report inpainting results as
measured by MSSIM [14] between the inpainted region
and the ground truth data for that region, and also by
TSS (4) between the inpainted region and the test por-
tion of the Brodatz texture (as opposed to the NCC
scores in Table 1 and Figure 2 (right)). MSSIM [14]
is typically considered to be perceptually more valid
than metrics based on mean squared error for assess-
ing image quality in the task, and is widely used in
assessing inpainting quality. The MSSIM scores are
shown in Figure II and Table I, and the TSS scores
are shown in Figure III and Table II. The results have
a similar pattern to the NCC results with respect to
all textures except for D77 the multi-Tm scores are
now similar to those of the texture-specific TmPoT-
and Tm-models, and the TPoT and the Efros&Leung
scores are clearly lower.

Figure IV shows representative inpainting results for
textures D6, D21, D53, and D77 with the texture-
specific models, and the multi-Tm model with 128
features; due to lack of space only the results with
the single-Tm models and the multi-Tm model were
shown in the Figure 4(bottom) of the main paper.

Figure III: Inpainting quality assessment for the mod-
els measured as texture similarity score between the
inpainted area and the testing half of the Brodatz tex-
ture. Boxes indicate the upper and lower quartiles as
well as the median (red bar) of the TSS distributions;
whiskers show extent of the rest of the data; red crosses
denote outliers.
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D6 D21 D53 D77
TmPoT 0.8629± 0.0180 0.8741± 0.0116 0.8602± 0.0234 0.7668± 0.0322
TPoT 0.8446± 0.0172 0.8609± 0.0275 0.8935± 0.0159 0.6379± 0.0373
Tm 0.8578± 0.0160 0.8662± 0.0185 0.8494± 0.0233 0.7642± 0.0267

Multi-Tm (96) 0.8267± 0.0169 0.8556± 0.0119 0.8325± 0.0238 0.7165± 0.0358
Multi-Tm (128) 0.8393± 0.0154 0.8608± 0.0112 0.8456± 0.0273 0.7240± 0.0431
Multi-Tm (256) 0.8452± 0.0173 0.8673± 0.0103 0.8554± 0.0284 0.7328± 0.0615

Efros&Leung 0.8524± 0.0318 0.8566± 0.0344 0.8558± 0.0578 0.6012± 0.0760

Table I: Sample means and standard deviations of the inpainting MSSIM-scores.

D6 D21 D53 D77
TmPoT 0.9170± 0.0073 0.9175± 0.0087 0.8858± 0.0117 0.7997± 0.0243
TPoT 0.8722± 0.0122 0.8774± 0.0174 0.9031± 0.0117 0.6847± 0.0234
Tm 0.9095± 0.0070 0.9112± 0.0144 0.8748± 0.0129 0.7987± 0.0197

Multi-Tm (96) 0.8854± 0.0070 0.8939± 0.0073 0.8624± 0.0112 0.7573± 0.0208
Multi-Tm (128) 0.8975± 0.0066 0.9018± 0.0064 0.8791± 0.0112 0.7674± 0.0188
Multi-Tm (256) 0.9120± 0.0060 0.9148± 0.0064 0.8989± 0.0106 0.7960± 0.0370

Efros&Leung 0.8789± 0.0194 0.8789± 0.0219 0.8843± 0.0261 0.6541± 0.0533

Table II: Sample means and standard deviations of the inpainting TSS-scores.
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Figure IV: Example inpainting frames (top row), and representative results (other rows), with each case scaled
independently to cover the full intensity range.


