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APPENDIX – SUPPLEMENTARY
MATERIAL

This Supplementary Material contains the theoreti-
cal background for a treatment of the ideal regression
problem. In Section A we explain why ideal regres-
sion is the correct framework to estimate parametric
systems of equations. In Section B, we present the
concept of genericity, which is essential for formulat-
ing a generative model of ideal regression. Moreover,
we prove some theoretical results related to genericity.
These results are then applied in Section C to obtain
identifiability results and an estimator for ideal regres-
sion, and - as a special application - for the common
marginals problem.

A From estimating sets of equations
to ideal regression

In this section, we will explain why ideal regression
is the natural formulation for estimating sets of equa-
tions. We will provide some examples leading to the
conclusion that ideals in rings are the canonical objects
which capture the ambiguities of sets of polynomial
equations. The reader may find some knowledge on
ring theory, in particular on ideals and Hilbert’s Null-
stellensatz helpful, as presented for example in [1], but
not necessary to understand the phenomena presented
in this section.

As already stated in the main corpus of the paper,
we want to estimate a system of polynomial equations
with specific structure, given some arbitrary system of
polynomial equations:

Problem A.1 Given input polynomials q1, . . . , qn,
estimate a regression parameter θ such that the para-

metric system p
(1)
θ , . . . , p

(m)
θ , is “close” to the inputs

q1, . . . , qn.

Of course, Problem A.1 is still an informal problem de-
scription: it remains to state how θ parameterizes the
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system of equations, and it has yet to be stated what
“close” should mean. Intuitively, “close” should mean

that the set of solutions defined by the p
(1)
θ , . . . , p

(m)
θ

is close to the set or sets of solutions defined by the
q1, . . . , qn, i.e. formally

Vθ = V(p
(1)
θ , . . . , p

(m)
θ )

= {x ∈ CD ; p
(1)
θ (x) = · · · = p

(m)
θ (x) = 0}.

Before we continue, we first show a basic example for
ideal regression:

Example A.2 In ordinary regression, we are given
points (x(1), y(1)), . . . , (x(N), y(N)) ∈ Rk ×R. We want
to estimate a linear polynomial

pθ(X1, . . . , Xk, Y ) = β1X1 + · · ·+ βkXk + α− Y

with parameter θ = (β1, . . . , βk, α) ∈ Rk+1 such that
pθ(x

(i), y(i)) is small for all i. For example, in least
squares regression, the optimal θ is obtained by mini-
mizing the sum of the squares of the pθ(x

(i), y(i)).

Now each point (x(i), y(i)) is the unique solution to the
set of k + 1 equations

qi0(X1, . . . , Xk, Y ) = Y − y(i) = 0

qi1(X1, . . . , Xk, Y ) = X1 − x(i)1 = 0

qi2(X1, . . . , Xk, Y ) = X2 − x(i)2 = 0

...

qik(X1, . . . , Xk, Y ) = Xk − x(i)k = 0

For one point (x(i), y(i)), being close to the regression
hyperplane V(pθ) means that pθ is a principal vector
of the qij with i fixed (w.r.t certain error measures)
considered as elements in the vector space of linear
polynomials. So, being a good approximation to all
points means that pθ is a principal vector for the data
given by all qij .

The following examples will show the central ambi-
guities which occur when considering more than one
equation:
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Example A.3 Let us imagine we want to regress two
equations instead of a single one, i.e. we want to de-
termine two regressor polynomials

p
(1)
θ (X1, . . . , Xk, Y ) = β

(1)
1 X1 + · · ·+ β

(1)
k Xk + α(1) − Y

p
(2)
θ (X1, . . . , Xk, Y ) = β

(2)
1 X1 + · · ·+ β

(2)
k Xk + α(2) − Y

where θ includes the information on the regression co-

efficients β
(i)
j and the α(i). Now it is essential to note

that the set of solutions

Vθ = V(p
(1)
θ , p

(2)
θ )

= {(x, y) ∈ Rk × R ; p
(1)
θ (x, y) = p

(2)
θ (x, y) = 0}

is already uniquely determined by the linear span

of the two polynomials p
(1)
θ (X1, . . . , Xk, Y ) and

p
(2)
θ (X1, . . . , Xk, Y ), seen as elements in the vector

space of linear polynomials. For example, two polyno-

mials p
(1)
θ and p

(2)
θ give rise to the same set of solutions

Vθ as the two polynomials p
(1)
θ + p

(2)
θ and p

(1)
θ − p

(2)
θ .

One can also prove that these are the only ambiguities
in the solution. Thus for Vθ, the parameter θ has not
2k+2 degrees of freedom, but only 2k+1. The param-
eter space for θ is the space of all 2-dimensional affine
linear spaces in (k + 1)-space. In general, similar ad-
ditive ambiguities occur, and it makes sense to speak
about the set of solutions only uniquely with respect
to these additive symmetries.

Example A.4 Similarly, consider the case where we
want to regress a conic section, i.e. we want to regress
a linear polynomial `θ and a quadratic polynomial qθ;
the parameter θ determining all coefficients of the two
polynomials. Again, different choices of coefficients
can lead to the set of solutions

Vθ = V(`θ, qθ);

For example, if `θ, qθ are some choices for the poly-
nomials, `θ and qθ + `′`θ give rise to the same set
of solutions, where `′ is an arbitrary linear polyno-
mial. Similar multiplicative ambiguities also occur in
the general case.

The correct algebraic structure to remove these ambi-
guities is the ideal in ring theory:

Definition A.5 Let R be a commutative ring, e.g. the
ring of polynomials in D variables R = C[X1, . . . , XD]
with addition and multiplication. An ideal of R is a
proper subset I  R such that:

1. (i) I is additively closed,
i.e. f + g ∈ I for all f, g ∈ I

2. (ii) I is closed under multiplication with R,
i.e. f · g ∈ I for all f ∈ I and g ∈ R

A radical ideal additionally fulfills:

1. (iii) I is closed under taking roots,
i.e. f ∈ I if fn ∈ I for some n ∈ N.

Hilbert’s Nullstellensatz states that in the ring
C[X1, . . . , XD], the radical ideals uniquely parameter-
ize the different solution sets of polynomial equations.
Thus we can remove the ambiguities in the parametric
model by replacing sets of equations by ideals. Prob-
lem A.1 then becomes

Problem A.6 Let Fθ be a parametric family of rad-
ical ideals in C[X1, . . . , XD]. Given input polynomials
q1, . . . , qn, estimate a regression parameter θ such that
Fθ is “close” to the inputs q1, . . . , qn.

The radical ideals themselves are uniquely parame-
terized by parts of a certain manifold, the so-called
Hilbert scheme; this automatically implies unique
parametrization for the parametric family Fθ if θ is a
parameter of the Hilbert scheme. For example, the d-
dimensional sub-vector spaces of D-space are equally
parameterized by the possible row-spans of maximal
rank (d×D)-matrices. Algebraically, this corresponds
to the non-singular part of the Grassmann manifold
Gr(d,D).

Also note that we in general cannot remove all the
ambiguities in the input polynomials by putting them
into a single ideal, since the measurements of the qi
may be noisy, and the noise is on the coefficients of
particular elements in the ideal. However, one could
group for example some of them into classes of ideals,
depending on the setting (for example the ideals of
points in ordinary regression).

It remains to say what it means for input polynomials
and regressor ideal Fθ to be “close”. As in ordinary
regressions, there are different ways in which one can
choose to penalize differences. For example, one can
explicitly or numerically optimize a regularized loss
function. On the other hand, a pragmatical approach
is to measure the differences in terms of squared errors
on the graded vector space structure of the ideal; e.g. if
the input polynomials are all degree 2, one would sum
the squared distances to the vector space consisting
of degree two and less polynomials in Fθ; or, if Fθ is
generated in degree 3 and higher, then the least square
error in the higher degree parts.

In the algorithm we present in section C, we try to
minimize squared errors in the graded parts, since
quadratic optimization provides explicit and efficient
solutions and thus deterministic algorithms.
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B Algebraic Geometry of Genericity

In the paper, we have introduced the framework of
ideal regression, where we estimate ideals from noisy
input polynomials. In its algebraic formulation as
Problem A.6, we want to find a good regression pa-
rameter θ for the ideal Fθ. In ordinary regression, the
generative assumption is, slightly reformulated, that
the data points are points on the regression hyper-
plane, plus some independent noise, often even as-
sumed i.i.d. Moreover, the sample points are assumed
to be “generic” in the sense that the points are not the
same and sufficiently distinct so that one can regress
a hyperplane to them.

Thus, for ideal regression it is analogous and natu-
ral to postulate as generative model that the input
polynomials are “generic” polynomials from the ideal
Fθ which are then disturbed by additional sampling
noise. In the following section, we explain our proba-
bilistic model for genericity, its relation to known types
of genericity, and its theoretical implications for the
ideal regression problem. The additional noise will be
treated in the next section.

Since ideal regression is an algebraic procedure, knowl-
edge about basic algebraic geometry will be required
for an understanding of the following sections. In par-
ticular, the reader should be at least familiar with the
following concepts before reading this section: polyno-
mial rings, ideals, radicals, factor rings, algebraic sets,
algebra-geometry correspondence (including Hilbert’s
Nullstellensatz), primary decomposition, height and
dimension theory in rings. A good introduction into
the necessary framework can be found in [1].

B.1 Definition of genericity

In the algebraic setting of the paper, we would like to
calculate the radical and homogenous saturation of an
ideal

I = 〈f1, . . . , fn〉.

This ideal I is of a special kind: its generators fi are
random, and are only subject to the constraints that
they vanish on the linear subspace S which we want to
identify, and that they are homogenous of fixed degree.
In order to derive meaningful results on how I relates
to S, or on the solvability of the problem, we need to
model this kind of randomness.

In this section, we present a concept called genericity.
Informally speaking, a generic situation is a situation
without pathological degeneracies. In our case, it is
reasonable to believe that apart from the conditions
of homogeneity and the vanishing on S, there are no
additional degeneracies in the choice of the genera-
tors. So, informally spoken, the ideal I is generated

by generic homogenous elements vanishing on S. This
section is devoted to developing a formal theory for
addressing genericity, as it occurs for example in con-
ditioned sampling as a generative assumption.

The concept of genericity is already widely used in
theoretical computer science, combinatorics or discrete
mathematics; there, it is however often defined inex-
actly or not at all, or it is only given as an ad-hoc
definition for the particular problem. On the other
hand, genericity is a classical concept in algebraic ge-
ometry, in particular in the theory of moduli. The
interpretation of generic properties as probability-one-
properties is also a known concept in applied algebraic
geometry, e.g. algebraic statistics. However, the ap-
plication of probability distributions and genericity to
the setting of generic ideals, in particular in the con-
text of conditional probabilities, are original to the
best of our knowledge, though not being the first one
to involve generic resp. general polynomials, see [4].
Generic polynomials and ideals have been also studied
in [3]. A collection of results on generic polynomials
and ideals which partly overlap with ours may also be
found in the recent paper [5].

Before continuing to the definitions, let us explain
what genericity should mean. Intuitively, generic ob-
jects are objects without unexpected pathologies or
degeneracies. For example, if one studies say n lines
in the real plane, one wants to exclude pathological
cases where lines lie on each other or where many
lines intersect in one point. Having those cases ex-
cluded means examining the “generic” case, i.e. the
case where there are n(n+ 1)/2 intersections, n(n+ 1)
line segments and so forth. Or when one has n points
in the plane, one wants to exclude the pathological
cases where for example there are three affinely de-
pendent points, or where there are more sophisticated
algebraic dependencies between the points which one
wants to exclude, depending on the problem.

In the points example, it is straightforward how one
can define genericity in terms of sampling from a prob-
ability distribution: one could draw the points under a
suitable continuous probability distribution from real
two-space. Then, saying that the points are “generic”
just amounts to examine properties which are true
with probability one for the n points. Affine depen-
dencies for example would then occur with probability
zero and are automatically excluded from our inter-
est. One can generalize this idea to the lines example:
one can parameterize the lines by a parameter space,
which in this case is two-dimensional (slope and or-
dinate), and then sample lines uniformly distributed
in this space (one has of course to make clear what
this means). For example, lines lying on each other
or more than two lines intersecting at a point would
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occur with probability zero, since the part of param-
eter space for this situation would have measure zero
under the given probability distribution.

When we work with polynomials and ideals, the situ-
ation gets a bit more complicated, but the idea is the
same. Polynomials are uniquely determined by their
coefficients, so they can naturally be considered as ob-
jects in the vector space of their coefficients. Similarly,
an ideal can be specified by giving the coefficients of
some set of generators. Let us make this more ex-
plicit: suppose first we have given a single polynomial
f ∈ C[X1, . . . XD] of degree k.

In multi-index notation, we can write this polynomial
as a finite sum

f =
∑
α∈ND

cαX
α with cα ∈ C.

This means that the possible choices for f can be pa-
rameterized by the

(
D+k
k

)
coefficients cI with ‖I‖1 ≤ k.

Thus polynomials of degree k with complex coefficients
can be parameterized by complex

(
D+k
k

)
-space.

Algebraic sets can be similarly parameterized by pa-
rameterizing the generators of the corresponding ideal.
However, this correspondence is not one-to-one, as dif-
ferent generators may give rise to the same zero set.
While the parameter space can be made unique by di-
viding out redundancies, which gives rise to the Hilbert
scheme, we will instead use the redundant, though
pragmatic characterization in terms of a finite dimen-
sional vector space over C of the correct dimension.

We will now fix notation for the parameter space of
polynomials and endow it with algebraic structure.
The extension to ideals will then be derived later.
Let us writeMk for complex

(
D+k
k

)
-space (we assume

D as fixed), interpreting it as a parameter space for
the polynomials of degree k as shown above. Since
the parameter space Mk is isomorphic to complex(
D+k
k

)
-space, we may speak about algebraic sets in

Mk. Also, Mk carries the complex topology induced
by the topology on R2k and by topological isomor-
phy the Lebesgue measure; thus it also makes sense
to speak about probability distributions and random
variables on Mk. This dual interpretation will be the
main ingredient in our definition of genericity, and will
allow us to relate algebraic results on genericity to the
probabilistic setting in the applications. As Mk is a
topological space, we may view any algebraic set in
Mk as an event if we randomly choose a polynomial
in Mk:

Definition B.1 Let X be a random variable with val-
ues in Mk. Then an event for X is called algebraic
event or algebraic property if the corresponding event
set in Mk is an algebraic set. It is called irreducible

if the corresponding event set in Mk is an irreducible
algebraic set.

If an event A is irreducible, this means that if we
write A as the event “A1 and A2”, for algebraic events
A1, A2, then A = A1, or A = A2. We now give some
examples for algebraic properties.

Example B.2 The following events on Mk are alge-
braic:

1. The sure event.

2. The empty event.

3. The polynomial is of degree n or less.

4. The polynomial vanishes on a prescribed algebraic
set.

5. The polynomial is contained in a prescribed ideal.

6. The polynomial is homogenous of degree n or zero.

7. The polynomial is homogenous.

8. The polynomial is a square.

9. The polynomial is reducible.

Properties 1-6 are additionally irreducible.

We now show how to prove these claims: 1-2 are clear,
we first prove that properties 3-6 are algebraic and ir-
reducible. By definition, it suffices to prove that the
subset of Mk corresponding to those polynomials is
an irreducible algebraic set. We claim: in any of those
cases, the subset in question is moreover a linear sub-
space, and thus algebraic and irreducible. This can be
easily verified by checking directly that if f1, f2 fulfill
the property in question, then f1 +αf2 also fulfills the
property.

Property 7 is algebraic, since it can be described as
the disjunction of the properties “The polynomial is
homogenous of degree n or zero” for all n ≤ k, for
some fixed k. Those single properties can be described
by linear subspaces ofMk as above, thus property 7 is
parameterized by the union of those linear subspaces.
In general, these are not contained in each other, so
property 6 is not irreducible.

Property 8 is algebraic, as we can check it through
the vanishing of a system of generalized discriminant
polynomials. One can show that it is also irreducible
since the subset ofMk in question corresponds to the
image of a Veronese map (homogenization to degree k
is a strategy); however, since we will not need such a
result, we do not prove it here.



F. J. Király, P. von Bünau, J. S. Müller, D. A. J. Blythe, F. C. Meinecke, K.-R. Müller

Property 9 is algebraic, since factorization can also
be checked by sets of equations. One has to be care-
ful here though, since those equations depend on the
degrees of the factors. For example, a polynomial of
degree 4 may factor into two polynomials of degree 1
and 3, or in two polynomials of degree 2 each. Since
in general each possible combination defines different
sets of equations and thus different algebraic subsets of
Mk, property 8 is in general not irreducible (for k ≤ 3
it is).

The idea defining a choice of polynomial as generic
follows the intuition of the affirmed non-sequitur: a
generic, resp. generically chosen polynomial should not
fulfill any algebraic property. A generic polynomial,
having a particular simple (i.e. irreducible) algebraic
property, should not fulfill any other algebraic prop-
erty which is not logically implied by the first one.
Here, algebraic properties are regarded as the natural
model for restrictive and degenerate conditions, while
their logical negations are consequently interpreted as
generic, as we have seen in Example B.2. These con-
siderations naturally lead to the following definition of
genericity in a probabilistic context:

Definition B.3 Let X be a random variable with val-
ues in Mk. Then X is called generic, if for any irre-
ducible algebraic events A,B, the following holds:

The conditional probability PX(A|B) vanishes if and
only if B does not imply A.

In particular, B may also be the sure event.

Note that without giving a further explication, the
conditional probability PX(A|B) is not well-defined,
since we condition on the event B which has probabil-
ity zero. There is also no unique way of remedying
this, as for example the Borel-Kolmogorov paradox
shows. In section B.2, we will discuss the technical
notion which we adopt to ensure well-definedness.

Intuitively, our definition means that an event has
probability zero to occur unless it is logically implied
by the assumptions. That is, degenerate dependencies
between events do not occur.

For example, non-degenerate multivariate Gaussian
distributions or Gaussian mixture distributions onMk

are generic distributions. More general, any positive
continuous probability distribution which can be ap-
proximated by Gaussian mixtures is generic (see Ex-
ample B.9). Thus we argue that non-generic ran-
dom variables are very pathological cases. Note how-
ever, that our intention is primarily not to analyze the
behavior of particular fixed generic random variables
(this is part of classical statistics). Instead, we want
to infer statements which follow not from the partic-

ular structure of the probability function, but solely
from the fact that it is generic, as these statements
are intrinsically implied by the conditional postulate
in Definition B.3 alone. We will discuss the definition
of genericity and its implications in more detail in sec-
tion B.2.

With this definition, we can introduce the terminology
of a generic object: it is a generic random variable
which is object-valued.

Definition B.4 We call a generic random variable
with values in Mk a generic polynomial of degree k.
When the degree k is arbitrary, but fixed (and still
≥ 1), we will say that f is a generic polynomial, or
that f is generic, if it is clear from the context that
f is a polynomial. If the degree k is zero, we will
analogously say that f is a generic constant.

We call a set of constants or polynomials f1, . . . , fm
generic if they are generic and independent.

We call an ideal generic if it is generated by a set of
m generic polynomials.

We call an algebraic set generic if it is the vanishing
set of a generic ideal.

Let P be an algebraic property on a polynomial,
a set of polynomials, an ideal, or an algebraic set
(e.g. homogenous, contained in an ideal et.). We will
call a polynomial, a set of polynomials, or an ideal,
a generic P polynomial, set, or ideal, if it the con-
ditional of a generic random variable with respect to P.

If A is a statement about an object (polynomial, ideal
etc), and P an algebraic property, we will say briefly
“A generic P object is A” instead of saying “A generic
P object is A with probability one”.

Note that formally, these objects are all polynomial,
ideal, algebraic set etc -valued random variables.
By convention, when we state something about a
generic object, this will be an implicit probability-one
statement. For example, when we say

“A generic green ideal is blue”,

this is an abbreviation for the by definition equivalent
but more lengthy statement

“Let f1, . . . , fm be independent generic random
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variables with values in Mk1 , . . . ,Mkm . If the ideal
〈f1, . . . , fm〉 is green, then with probability one, it is
also blue - this statement is independent of the choice
of the ki and the choice of which particular generic
random variables we use to sample.

On the other hand, we will use the verb “generic” also
as a qualifier for “constituting generic distribution”.
So for example, when we say

“The Z of a generic red polynomial is a generic yellow
polynomial”,

this is an abbreviation of the statement

“Let X be a generic random variable on Mk, let X ′

be the yellow conditional of X. Then the Z of X ′ is
the red conditional of some generic random variable
- in particular this statement is independent of the
choice of k and the choice of X.”

It is important to note that the respective random
variables will not be made explicit in the following
subsections, since the statements will rely only on its
property of being generic, and not on its particular
structure which goes beyond being generic.

As an exemplary application of these concepts, we
can formulate the noise-free version of the common
marginals problem in terms of generic algebra:

Problem B.5 Let s = I(S), where S is an unknown
d-dimensional subspace of CD. Let

I = 〈f1, . . . , fm〉

with fi ∈ s generic of fixed degree each (in our case,
one and two), such that

√
I = s.

Then determine a reduced H-basis (or another simple
generating system) for s.

We will derive a noisy version for the more general
setting of ideal regression in section C.

B.2 Zero-measure conditionals, and relation
to other types of genericity

In this section, se will discuss the definition of gener-
icity in Definition B.3 and ensure its well-definedness.
Then we will invoke alternative definitions for generic-
ity and show their relation to our probabilistic intuitive
approach from section B.1. As this section contains
technical details and is not necessary for understand-

ing the rest of the appendix, the reader may opt to
skip it.

An important concept in our definition of genericity in
Definition B.3 is the conditional probability PX(A|B).
As B is an algebraic set, its probability PX(B) is zero,
so the Bayesian definition of conditional cannot apply.
There are several ways to make it well-defined; in the
following, we explain the Definition of conditional we
use in Definition B.3. The definition of conditional we
use is one which is also often applied in this context.

Remark B.6 Let X be a real random variable
(e.g. with values in Mk) with probability measure µ.
If µ is absolutely continuous, then by the theorem of
Radon-Nikodym, there is a unique continuous density
p such that

µ(U) =

∫
U

p dλ

for any Borel-measurable set U and the Lebesgue mea-
sure λ. If we assume that p is a continuous function,
it is unique, so we may define a restricted measure µB
on the event set of B by setting

ν(U) =

∫
U

p dH,

for Borel subsets of U and the Hausdorff measure H
on B. If ν(B) is finite and non-zero, i.e. ν is abso-
lutely continuous with respect to H, then it can be
renormalized to yield a conditional probability mea-
sure µ(.)|B = ν(.)/ν(B). The conditional probability
PX(A|B) has then to be understood as

PX(A|B) =

∫
B

1(A ∩B) dµ |B ,

whose existence in particular implies that the Lebesgue
integrals ν(B) are all finite and non-zero.

As stated, we adopt this as the definition of conditional
probability for algebraic sets A and B. It is important
to note that we have made implicit assumptions on the
random variable X by using the conditionals PX(A|B)
in Remark B.6 (and especially by assuming that they
exist): namely, the existence of a continuous density
function and existence, finiteness, and non-vanishing
of the Lebesgue integrals. Similarly, by stating Defini-
tion B.3 for genericity, we have made similar assump-
tions on the generic random variable X, which can be
summarized as follows:

Assumption B.7 X is an absolutely continuous ran-
dom variable with continuous density function p, and
for every algebraic event B, the Lebesgue integrals∫

B

p dH,
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where H is the Hausdorff measure on B, are non-zero
and finite.

This assumption implies the existence of all condi-
tional probabilities PX(A|B) in Definition B.3, and
are also necessary in the sense that they are needed
for the conditionals to be well-defined. On the other
hand, if those assumptions are fulfilled for a random
variable, it is automatically generic:

Remark B.8 Let X be a Mk-valued random vari-
able, fulfilling the Assumptions in B.7. Then, the
probability density function of X is strictly positive.
Moreover, X is a generic random variable.

proof 1 Let X be a Mk-valued random variable ful-
filling the Assumptions in B.7. Let p be its continuous
probability density function.

We first show positivity: If X would not be strictly
positive, then p would have a zero, say x. Taking B =
{x}, the integral

∫
B
p dH vanishes, contradicting the

assumption.

Now we prove genericity, i.e. that for arbitrary irre-
ducible algebraic properties A,B such that B does not
imply A, the conditional probability PX(A|B) van-
ishes. Since B does not imply A, the algebraic set
defined by B is not contained in A. Moreover, as B
and A are irreducible and algebraic, A ∩ B is also of
positive codimension in B. Now by assumption, X
has a positive continuous probability density function
f which by assumption restricts to a probability den-
sity on B, being also positive and continuous. Thus
the integral

PX(A|B) =

∫
B

1Af(x) dH,

where H is the Hausdorff measure on B, exists. More-
over, it is zero, as we have derived that A has positive
codimension in B.

This means that already under mild assumptions,
which merely ensure well-definedness of the statement
in the Definition B.3 of genericity, random variables
are generic. The strongest of the comparably mild
assumptions are the convergence of the conditional in-
tegrals, which allow us to renormalize the conditionals
for all algebraic events. In the following example, a
generic and a non-generic probability distribution are
presented.

Example B.9 Gaussian distributions and Gaussian
mixture distributions are generic, since for any alge-
braic set B, we have∫

B

1B(t) dH = O(tdimB),

where B(t) = {x ∈ Rn ; ‖x‖ < t} is the open disc with
radius t. Note that this particular bound is false in
general and may grow arbitrarily large when we omit
B being algebraic, even if B is a smooth manifold.
Thus PX(A|B) is bounded from above by an integral
(or a sum) of the type∫ ∞

0

exp(−t2)ta dt with a ∈ N

which is known to be finite.

Furthermore, sums of generic distributions are again
generic; also, one can infer that any continuous prob-
ability density dominated by the distribution of a
generic density defines again a generic distribution.

An example of a non-generic but smooth distribution
is given by the density function

p(x, y) =
1

N
e−x

4y4

where N is some normalizing factor. While p is in-
tegrable on R2, its restriction to the coordinate axes
x = 0 and y = 0 is constant and thus not integrable.

Now we will examine different known concepts of
genericity and relate them briefly to the one we have
adopted.

A definition of genericity in combinatorics and geome-
try which can be encountered in different variations is
that there exist no degenerate interpolating functions
between the objects:

Definition B.10 Let P1, . . . , Pm be points in the vec-
tor space Cn. Then P1, . . . , Pm are general position (or
generic, general) if no n+1 points lie on a hyperplane.
Or, in a stronger version: for any d ∈ N, no (possi-
bly inhomogenous) polynomial of degree d vanishes on(
n+d
d

)
+ 1 different Pi.

As Mk is a finite dimensional C-vector space, this
definition is in principle applicable to our situation.
However, this definition is deterministic, as the Pi are
fixed and no random variables, and thus preferable
when making deterministic statements. Note that the
stronger definition is equivalent to postulating general
position for the points P1, . . . , Pm in any polynomial
kernel feature space.

Since not lying on a hyperplane (or on a hypersurface
of degree d) in Cn is a non-trivial algebraic property
for any point which is added beyond the n-th (resp. the(
n+d
d

)
-th) point Pi (interpreted as polynomial inMk),

our definition of genericity implies general position.
This means that generic polynomials f1, . . . , fm ∈Mk

(almost surely) have the deterministic property of be-
ing in general position as stated in Definition B.11. A
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converse is not true for two reasons: first, the Pi are
fixed and no random variables. Second, even if one
would define genericity in terms of random variables
such that the hyperplane (resp. hypersurface) condi-
tions are never fulfilled, there are no statements made
on conditionals or algebraic properties other than con-
tainment in a hyperplane, also Lebesgue zero sets are
not excluded from occuring with positive probability.

Another example where genericity classically occurs is
algebraic geometry, where it is defined rather general
for moduli spaces. While the exact definition may de-
pend on the situation or the particular moduli space
in question, and is also not completely consistent, in
most cases, genericity is defined as follows: general,
or generic, properties are properties which hold on a
Zariski-open subset of an (irreducible) variety, while
very generic properties hold on a countable intersec-
tion of Zariski-open subsets (which are thus paradoxi-
cally ”less” generic than general resp. generic proper-
ties in the algebraic sense, as any general resp. generic
property is very generic, but the converse is not nec-
essarily true). In our special situation, which is the
affine parameter space of tuples of polynomials, these
definitions can be rephrased as follows:

Definition B.11 Let B ⊆ Ck be an irreducible alge-
braic set, let P = (f1, . . . , fm) be a tuple of polynomi-
als, viewed as a point in the parameter space B. Then
a statement resp. property A of P is called very generic
if it holds on the complement of some countable union
of algebraic sets in B. A statement resp. property A
of P is called general (or generic) if it holds on the
complement of some finite union of algebraic sets in
B.

This definition is more or less equivalent to our own;
however, our definition adds the practical interpreta-
tion of generic/very generic/general properties being
true with probability one, while their negations are
subsequently true with probability zero. In more de-
tail, the correspondence is as follows: If we restrict
ourselves only to algebraic properties A, it is equiv-
alent to say that the property A is very generic, or
general for the P in B, and to say with our original
definition that a generic P fulfilling B is also A; since if
A is by assumption an algebraic property, it is both an
algebraic set and a complement of a finite (countable)
union of algebraic sets in an irreducible algebraic set,
so A must be equal to an irreducible component of B;
since B is irreducible, this implies equality of A and
B. On the other hand, if A is an algebraic property,
it is equivalent to say that the property not-A is very
generic, or general for the P in B, and to say with our
original definition that a generic P fulfilling B is not
A - this corresponds intuitively to the probability-zero
condition P (A|B) = 0 which states that non-generic

cases do not occur. Note that by assumption, not-
A is then always the complement of a finite union of
algebraic sets.

B.3 Arithmetic of generic polynomials

In this subsection, we study how generic polynomials
behave under classical operations in rings and ideals.
This will become important later when we study
generic polynomials and ideals.

To introduce the reader to our notation of genericity,
and since we will use the presented facts and similar
notations implicitly later, we prove the following:

Lemma B.12 Let f ∈ C[X1, . . . , XD] be generic of
degrees k. Then:

(i) The product αf is generic of degree k for any
fixed α ∈ C \ {0}.

(ii) The sum f + g is generic of degree k for any
g ∈ C[X1, . . . , XD] of degree k or smaller.
(iii) The sum f + g is generic of degree k for any

generic g ∈ C[X1, . . . , XD] of degree k or smaller.

proof 2 (i) is clear since the coefficients of g1 are mul-
tiplied only by a constant. (ii) follows directly from the
definitions since adding a constant g only shifts the
coefficients without changing genericity. (iii) follows
since f, g are independently sampled: if there were al-
gebraic dependencies between the coefficients of f + g,
then either f or g was not generic, or the f, g are not
independent, which both would be a contradiction to
the assumption.

Recall again what this Lemma means: for example,
Lemma B.12 (i) does not say, as one could think:

“Let X be a generic random variable with values
in the vector space of degree k polynomials. Then
X = αX for any α ∈ C \ {0}.”

The correct translation of Lemma B.12 (i) is:

“Let X be a generic random variable with values
in the vector space of degree k polynomials. Then
X ′ = αX for any fixed α ∈ C\{0} is a generic random
variable with values in the vector space of degree k
polynomials”

The other statements in Lemma B.12 have to be
interpreted similarly.

The following remark states how genericity translates
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through dehomogenization:

Lemma B.13 Let f ∈ C[X1, . . . , XD] be a generic
homogenous polynomial of degree d.
Then the dehomogenization f(X1, . . . , XD−1, 1) is a
generic polynomial of degree d in the polynomial ring
C[X1, . . . , XD−1].

Similarly, let s ⊆ C[X1, . . . , XD] be a generic homoge-
nous ideal. Let f ∈ s be a generic homogenous poly-
nomial of degree d.
Then the dehomogenization f(X1, . . . , XD−1, 1) is a
generic polynomial of degree d in the dehomogeniza-
tion of s.

proof 3 For the first statement, it suffices to note that
the coefficients of a homogenous polynomial of degree
d in the variables X1, . . . , XD are in bijection with the
coefficients of a polynomial of degree d in the variables
X1, . . . , XD−1 by dehomogenization. For the second
part, recall that the dehomogenization of s consists
exactly of the dehomogenizations of elements in s. In
particular, note that the homogenous elements of s of
degree d are in bijection to the elements of degree d
in the dehomogenization of s. The claims then follows
from the definition of genericity.

B.4 Dimension of generic spans and ideals

In this subsection, we will derive the first results on
generic ideals. We will derive an statement about
spans of generic polynomials, and generic versions
of Krull’s principal ideal and height theorems which
will be the main tool in controlling the structure of
generic ideals. This has immediate applications for
the cumulant comparison problem.

We begin with a probably commonly known result,
formulated in terms of genericity:

Proposition B.14 Let P be an algebraic property
such that the polynomials with property P form a vec-
tor space V . Let f1, . . . , fm ∈ C[X1, . . . XD] be generic
polynomials satisfying P. Then

rank span(f1, . . . , fm) = min(m,dimV ).

proof 4 It suffices to prove: if i ≤ M, then fi is
linearly independent from f1, . . . fi−1 with probabil-
ity one. Assuming the contrary would mean that for
some i, we have

fi =

i−1∑
k=0

fkck for some ck ∈ C,

thus giving several equations on the coefficients of fi.

But these are fulfilled with probability zero by the
genericity assumption, so the claim follows.

This may be seen as a straightforward generalization
of the statement: the span of n generic points in CD

has dimension min(n,D).

We now proceed to another nontrivial result which will
now allow us to formulate a generic version of Krull’s
principal ideal theorem:

Proposition B.15 Let Z ⊆ CD be a non-empty alge-
braic set, let f ∈ C[X1, . . . XD] generic. Then f is a
non-zero divisor in O(Z) = C[X1, . . . XD]/ I(Z).

proof 5 We claim: being a zero divisor in O(Z) is an
irreducible algebraic property. We will prove that the
zero divisors in O(Z) form a linear subspace of Mk,
and linear spaces are irreducible.

For this, one checks that sums and scalar multiples of
zero divisors are also zero divisors: if g1, g2 are zero di-
visors, there must exist h1, h2 such that g1h1 = g2h2 =
0. Now for any α ∈ C, we have that

(g1 + αg2)(h1h2) = (g1h1)h2 + (g2h2)αh1 = 0.

This proves that (g1 +αg2) is also a zero divisor, prov-
ing that the zero divisors form a linear subspace and
thus an irreducible algebraic property.

To apply the genericity assumption to argue that this
event occurs with probability zero, we must exclude
the possibility that being a zero divisor is trivial,
i.e. always the case. This is equivalent to proving that
the linear subspace has positive codimension, which
is true if and only if there exists a non-zero divisor in
O(Z). But a non-zero divisor always exists since we
have assumed Z is non-empty: thus I(Z) is a proper
ideal, and O(Z) contains C, which contains a non-zero
divisor, e.g. the one.

So by the genericity assumption, the event that f is a
zero divisor occurs with probability zero, i.e. a generic
f is not a zero divisor. Note that this does not depend
on the degree of f.

This result is already known, compare Conjecture B
in [5].

A straightforward generalization using the same proof
technique is given by the following

Corollary B.16 Let I ⊆ C[X1, . . . , XD], let P be a
non-trivial algebraic property. Let f ∈ C[X1, . . . XD]
be a generic polynomial with property P . If one can
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write f = f ′+ c, where f ′ is a generic polynomial sub-
ject to some property P ′, and c is a generic constant,
then f is non-zero divisor in C[X1, . . . , XD]/I.

proof 6 First note that f is a zero divisor in
C[X1, . . . , XD]/I if and only if f is a zero divisor in
C[X1, . . . , XD]/

√
I. This allows us to reduce to the

case that I = I(Z) for some algebraic set Z ⊆ CD.

Now, as in the proof of Proposition B.15, we see that
being a zero divisor in O(Z) is an irreducible algebraic
property and corresponds to a linear subspace ofMk,
where k = deg f. The zero divisors with property P
are thus contained in this linear subspace. Now let f
be generic with property P as above. By assumption,
we may write f = f ′ + c. But c is (generically) a non-
zero divisor, so f is also not a zero divisor, since the
zero divisors form a linear subspace of Mk. Thus f is
non-zero divisor. This proves the claim.

Note that Proposition B.15 is actually a special case
of Corollary B.16, since we can write any generic
polynomial f as f ′+ c, where f ′ is generic of the same
degree, and c is a generic constant.

The major tool to deal with the dimension of generic
intersections is Krull’s principal ideal theorem:

Theorem B.17 (Krull’s principal ideal theorem)
Let R be a commutative ring with unit, let f ∈ R be
non-zero and non-invertible. Then

ht〈f〉 ≤ 1,

with equality if and only if f is not a zero divisor in
R.

The reader unfamiliar with height theory may take

ht I = codim V(I)

as the definition for the height of an ideal (cave:
codimension has to be taken in R).

Reformulated geometrically for our situation, Krull’s
principal ideal theorem implies:

Corollary B.18 Let Z be a non-empty algebraic set
in CD.Then

codim(Z ∩V(f)) ≤ codimZ + 1.

proof 7 Apply Krull’s principal ideal theorem to the
ring R = O(Z) = C[X1, . . . , XD]/ I(Z).

Together with Proposition B.15, one gets a generic ver-
sion of Krull’s principal ideal theorem:

Theorem B.19 (Generic principal ideal theorem)
Let Z be a non-empty algebraic set in CD, let
R = O(Z), and let f ∈ C[X1, . . . , XD] be generic.
Then we have

ht〈f〉 = 1.

In its geometric formulation, we obtain the following
result.

Corollary B.20 Consider an algebraic set Z ⊆ CD,
and the algebraic set V(f) for some generic f ∈
C[X1, . . . , XD]. Then

codim(Z ∩V(f)) = min(codimZ + 1, D + 1).

proof 8 This is just a direct reformulation of Theo-
rem B.19 in the vein of Corollary B.18. The only ad-
ditional thing that has to be checked is the case where
codimZ = D + 1, which means that Z is the empty
set. In this case, the equality is straightforward.

The generic version of the principal ideal theorem
straightforwardly generalizes to a generic version of
Krull’s height theorem. We first mention the original
version:

Theorem B.21 (Krull’s height theorem) Let R
be a commutative ring with unit, let I =
〈f1, . . . , fm〉 ⊆ R be an ideal. Then

ht I ≤ m,

with equality if and only if f1, . . . , fm is an R-regular
sequence, i.e. fi is not invertible and not a zero divisor
in the ring R/〈f1, . . . , fi−1〉 for all i.

The generic version can be derived directly from the
generic principal ideal theorem:

Theorem B.22 (Generic height theorem) Let Z
be an algebraic set in CD, let I = 〈f1, . . . , fm〉 be a
generic ideal in C[X1, . . . , XD]. Then

ht(I(Z) + I) = min(codimZ +m, D + 1).

proof 9 We will write R = O(Z) for abbreviation.

First assume m ≤ D+ 1− codimZ. It suffices to show
that f1, . . . , fm forms an R-regular sequence, then
apply Krull’s height theorem. In Proposition B.15,
we have proved that fi is not a zero divisor in
the ring O(Z ∩ V(f1, . . . , fi−1)) (note that the lat-
ter ring is nonzero by Krull’s height theorem). By
Hilbert’s Nullstellensatz, this is the same as the ring
R/
√
〈f1, . . . , fi−1〉. But by the definition of radical,

this implies that fi is a non-zero divisor in the ring
R/〈f1, . . . , fi−1〉, since if fi · h = 0 in the first ring, we
have

(fi · h)N = fi · (fN−1i hN ) = 0
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in the second. Thus the fi form an R-regular sequence,
proving the theorem for the case m ≤ D+1−codimZ.

If now m > k := D + 1 − codimZ, the above reason-
ing shows that the radical of I(Z) + 〈f1, . . . , fk〉 is the
module 〈1〉, which means that those are equal. Thus

I(Z) + 〈f1, . . . , fk〉 = I(Z) + 〈f1, . . . , fm〉 = 〈1〉,

proving the theorem.

Note that we could have proved the generic height the-
orem also directly from the generic principal ideal the-
orem by induction.

Again, we give the geometric interpretation of Krull’s
height theorem:

Corollary B.23 Let Z1 be an algebraic set in CD, let
Z2 be a generic algebraic set in CD. Then one has

codim(Z1 ∩ Z2) = min(codimZ1 + codimZ2, D + 1).

proof 10 This follows directly from two applications
of the generic height theorem B.22: first for Z = CD

and Z2 = V(I), showing that codimZ2 is equal to the
number m of generators of I; then, for Z = Z1 and
Z2 = V(I), and substituting m = codimZ2.

We can now immediately formulate a homogenous ver-
sion of Proposition B.23:

Corollary B.24 Let Z1 be a homogenous algebraic
set in CD, let Z2 be a generic homogenous algebraic
set in CD. Then one has

codim(Z1 ∩ Z2) = min(codimZ1 + codimZ2, D).

proof 11 Note that homogenization and dehomoge-
nization of a non-empty algebraic set do not change
its codimension, and homogenous algebraic sets al-
ways contain the origin. Also, one has to note that by
Lemma B.13, the dehomogenization of Z2 is a generic
algebraic set in CD−1.

Finally, using Corollary B.16, we want to give a more
technical variant of the generic height theorem, which
will be of use in later proofs. First, we introduce some
abbreviating notations:

Definition B.25 Let f ∈ C[X1, . . . XD] be a generic
polynomial with property P . If one can write f = f ′+
c, where f ′ is a generic polynomial subject to some
property P ′, and c is a generic constant, we say that
f has independent constant term. If c is generic and
independent with respect to some collection of generic
objects, we say that f has independent constant term
with respect to that collection.

In this terminology, Corollary B.16 rephrases as: a
generic polynomial with independent constant term is
a non-zero divisor. Using this, we can now formulate
the corresponding variant of the generic height theo-
rem:

Lemma B.26 Let Z be an algebraic set in CD. Let
f1, . . . , fm ∈ C[X1, . . . , XD] be generic, possibly sub-
ject to some algebraic properties, such that fi has
independent constant term with respect to Z and
f1, . . . , fi−1. Then

ht(I(Z) + I) = min(codimZ +m, D + 1).

proof 12 Using Corollary B.16, one obtains that fi
is non-zero divisor modulo I(Z)+ 〈f1, . . . , fi+1〉. Using
Krull’s height theorem yields the claim.

B.5 Dimension of conditioned generic ideals

The generic height theorem B.22 has allowed us to
make statements about the structure of ideals gener-
ated by generic elements without constraints. How-
ever, the ideal I in our the cumulant comparison prob-
lem is generic subject to constraints: namely, its gener-
ators are contained in a prescribed ideal, and they are
homogenous. In this subsection, we will use the the-
ory developed so far to study generic ideals and generic
ideals subject to some algebraic properties, e.g. generic
ideals contained in other ideals. We will use these re-
sults to derive an identifiability result on the marginal-
ization problem which has been derived already less
rigourously in the supplementary material of [6] for
the special case of Stationary Subspace Analysis.

Proposition B.27 Let s ⊆ C[X1, . . . , XD] be an
ideal, having an H-basis g1, . . . , gn. Let

I = 〈f1, . . . , fm〉, m ≥ max(D + 1, n)

with generic fi ∈ s such that

deg fi ≥ max
j

(deg gj) for all 1 ≤ i ≤ m.

Then I = s.

proof 13 First note that since the gi form a degree-
first Groebner basis, a generic f ∈ s is of the form

f =

n∑
k=1

gkhk with generic hk,

where the degrees of the hk are appropriately chosen,
i.e. deg hk ≤ deg f − deg gk.

So we may write

fi =

n∑
k=1

gkhki with generic hki,
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where the hki are generic with appropriate degrees,
and independently chosen. We may also assume that
the fi are ordered increasingly by degree.

To prove the statement, it suffices to show that gj ∈ I
for all j. Now the height theorem B.22 implies that

〈h11, . . . h1m〉 = 〈1〉,

since the hki were independently generic, and m ≥
D+1. In particular, there exist polynomials s1, . . . , sm
such that

m∑
i=1

sih1i = 1.

Thus we have that

m∑
i=1

sifi =

m∑
i=1

si

n∑
k=1

gkhki =

n∑
k=1

gk

m∑
i=1

sihki

= g1 +

n∑
k=2

gk

m∑
i=1

sihki =: g1 +

n∑
k=2

gkh
′
k.

Subtracting a suitable multiple of this element from
the f1, . . . , fm, we obtain

f ′i =

n∑
k=2

gk(hki − h1ih′k) =:

n∑
k=2

gkh
′
ki.

We may now consider h1ih
′
k as fixed, while the hki are

generic. In particular, the h′ki have independent con-
stant term, and using Lemma B.26, we may conclude
that

〈h′21, . . . , h′2m〉 = 〈1〉,

allowing us to find an element of the form

g2 +

n∑
k=3

gk · . . .

in I. Iterating this strategy by repeatedly applying
Lemma B.26, we see that gk is contained in I, because
the ideals I and s have same height. Since the num-
bering for the gj was arbitrary, we have proved that
gj ∈ I, and thus the proposition.

The following example shows that in general, we may
not take the degrees of the fi lower than the maximal
degree of the gj in the proposition, i.e. the condition
on the degrees is necessary:

Example B.28 Keep the notations of Proposi-
tion B.27. Let s = 〈X2 −X2

1 , X3〉, and fi ∈ s generic
of degree one. Then

〈f1, . . . , fm〉 = 〈X3〉.

This example can be generalized to yield arbitrarily
bad results if the condition on the degrees is not ful-
filled.

However note that when s is generated by linear forms,
as in the marginalization problem, the condition on the
degrees vanishes.

We may use Proposition B.27 also in another way to
derive a more detailed version of the generic height
theorem for constrained ideals:

Proposition B.29 Let V be a fixed d-codimensional
algebraic set in CD. Assume that there exist d gen-
erators g1, . . . , gd for I(V ). Let f1, . . . , fm be generic
forms in I(V ) such that deg fi ≥ deg gi for 1 ≤ i ≤
min(m, d). Then we can write V(f1, . . . , fm) = V ∪ U
with U an algebraic set of

codimU ≥ min(m, D + 1),

the equality being strict for m < codimV.

proof 14 If m ≥ D + 1, this is just a direct conse-
quence of Proposition B.27.

First assume m = d. Consider the image of the situa-
tion modulo Xm, . . . , XD. This corresponds to looking
at the situation

V(f1, . . . , fm) ∩H ⊆ H ∼= Cm−1,

where H is the linear subspace given by Xm = · · · =
XD = 0. Since the coordinate system was generic, the
images of the fi will be generic, and we have by Propo-
sition B.27 that V(f1, . . . , fm)∩H = V ∩H. Also, the
H can be regarded as a generic linear subspace, thus
by Corollary B.23, we see that V(f1, . . . , fm) consists
of V and possibly components of equal or higher codi-
mension. This proves the claim for m = codimV.

Now we prove the case m ≥ d. We may assume that
m = D + 1 and then prove the statement for the
sets V(f1, . . . , fi), d ≤ i ≤ m. By the Lasker-Noether-
Theorem, we may write

V(f1, . . . , fd) = V ∪ Z1 ∪ · · · ∪ ZN

for finitely many irreducible components Zj with
codimZj ≥ codimV. Proposition B.27 now states that

V(f1, . . . , fm) = V.

For i ≥ d, write now

Zji = Zj ∩V(f1, . . . , fi) = Zj ∩V(fd+1, . . . , fi).
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With this, we have the equalities

V(f1, . . . , fi) = V(f1, . . . , fd) ∩V(fd+1, . . . , fi)

= V ∪ (Z1 ∩V(fd+1, . . . , fi)) ∪ . . .
∪ (ZN ∩V(fd+1, . . . , fi))

= V ∪ Z1i ∪ · · · ∪ ZNi.

for i ≥ d. Thus, reformulated, Proposition B.27 states
that Zjm = ∅ for any j. We can now infer by Krull’s
principal ideal theorem B.17 that

codimZji ≤ codimZj,i−1 + 1

for any i, j. But since codimZjm = D + 1, and
codimZjd ≥ d, we thus may infer that codimZji ≥ i
for any d ≤ i ≤ m. Thus we may write

V(f1, . . . , fi) = V ∪ U with U = Z1i ∪ · · · ∪ ZNi

with codimU ≥ i, which proves the claim for m ≥
codimV.

The case m < codimV can be proved again similarly
by Krull’s principal ideal theorem B.17: it states that
the codimension of V(f1, . . . , fi) increases at most by
one with each i, and we have seen above that it is equal
to codimV for i = codimV. Thus the codimension of
V(f1, . . . , fi) must have been i for every i ≤ codimV.
This yields the claim.

Note that depending on V and the degrees of the fi, it
may happen that even in the generic case, the equality
in Proposition B.29 is not strict for m ≥ codimV :

Example B.30 Let V be a generic linear subspace
of dimension d in CD, let f1, . . . , fm ∈ I(V ) be generic
with degree one. Then V(f1, . . . , fm) is a generic linear
subspace of dimension max(D−m, d) containing V. In
particular, if m ≥ D − d, then V(f1, . . . , fm) = V.
In this example, U = V(f1, . . . , fm), if m < codimV,
with codimension m, and U = ∅, if m ≥ codimV, with
codimension D + 1.

Similarly, one may construct generic examples with
arbitrary behavior for codimU when m ≥ codimV, by
choosing V and the degrees of fi appropriately.

As in the geometric version for the height theorem, we
may derive the following geometric interpretation of
this result:

Corollary B.31 Let V ⊆ Z1 be fixed algebraic sets in
CD. Let Z2 be a generic algebraic set in CD containing
V. Then

codim(Z1 ∩ Z2 \ V ) ≥
min(codim(Z1 \ V ) + codim(Z2 \ V ), D + 1).

Informally, we have derived a height theorem type
result for algebraic sets under the constraint that they
contain another prescribed algebraic set V .

We also want to give a homogenous version of Propo-
sition B.29, since the ideals in the paper are generated
by homogenous forms:

Corollary B.32 Let V be a fixed homogenous alge-
braic set in CD. Let f1, . . . , fm be generic homoge-
nous forms in I(V ), satisfying the degree condition as
in Proposition B.29. Then V(f1, . . . , fm) = V +U with
U an algebraic set fulfilling

codimU ≥ min(m, D).

In particular, if m > D, then V(f1, . . . , fm) = V. Also,
the maximal dimensional part of V(f1, . . . , fm) equals
V if and only if m > D − dimV.

proof 15 This follows immediately by dehomogeniz-
ing, applying Proposition B.29, and homogenizing
again.

B.6 Hilbert series of generic ideals

In this section we will study the dimension of the vec-
tor spaces of homogenous polynomials of fixed degrees.
A classical tool to do this in commutative algebra are
Hilbert series; let us introduce some notations first.

Notation B.33 We will write R = C[X1, . . . , XD].
Let I be some ideal of R, or R itself. We will de-
note the C-vector space of homogenous polynomials of
degree k in I by Ik.

The Hilbert series links the dimensions of those vector
spaces to the graded structure of the whole ideal:

Definition B.34 Let I be some ideal of R. Then the
Hilbert series of I is the power series

H(I)(t) =

∞∑
k=0

tk (dim(Rk)− dim(Ik)) .

It is classically known that the ak satisfy a polynomial
relation for k ≥ M with a big enough M . However,
we will be mainly interested in the exact coefficients ak
below k ≤M when the ideal I is conditioned generic.
I.e. we are interested in the situation where we have
some ideal s, and an ideal I generated by generic ho-
mogenous polynomials f1, . . . , fm in s. Since in this
situation, we have I ⊆ s, we will consider the Hilbert
series of the difference

H(I/s)(t) = H(I)(t)−H(s)(t)

=

∞∑
k=0

tk (dim(sk)− dim(Ik)) .
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The following homogenous version of Proposition B.27
will allow us to study this further:

Proposition B.35 Let s ⊆ R be a homogenously sat-
urated ideal generated by n homogenous elements of
degree at most δ. Let

I = 〈f1, . . . , fm〉, m ≥ max(D + 1, n)

with generic fi ∈ s such that

deg fi ≥ δ for all 1 ≤ i ≤ m.

For any 1 ≤ j ≤ D, we then have

s = (I : Xj)

= {g ∈ R : gXn
D ∈ I for some n ∈ N}.

proof 16 Since the fi are generic, we may make
a permutation of variables without altering the
statement; i.e. we may assume that j = D. The
proof strategy will be to derive a homogenous version
of Proposition B.27. In order to do this, we first
dehomogenize every object with respect to XD, i.e. we
substitute 1 for XD. Then, we will be in the situation
of Proposition B.27 for the dehomogenized objects,
and from that, we can conclude the statement for our
homogenous version.

Let us first fix some notation: Let g1, . . . , gn be some
generators for s. Let s′ be the dehomogenization
of s. The ideal s′ is generated by g′1, . . . , g

′
n in

the D − 1 variables X1, . . . , XD−1, where g′i is the
dehomogenization of gi. The dehomogenization of I
is also an ideal in D − 1 variables, generated by the
dehomogenizations f ′i of fi. By Lemma B.13, the f ′i
are generic polynomials in s′, of same degrees as the fi.

Now we are in the situation of Proposition B.27: I ′ is
an ideal generated by the generic polynomials f ′i in
s′. We also have deg f ′i ≥ maxi deg g′i. Thus we may
conclude that I ′ = s′.

To prove the main statement from this, it now suffices
to prove that g1 ∈ (I : XD), since the numbering of
the gi is arbitrary, and thus it will then follow that
gi ∈ (I : XD) for any i, which implies (I : XD) ⊇ s.
On the other hand, as s is saturated, we have that
(I : XD) ⊆ (s : XD) = s, and thus have proved both
inclusions, when seeing that g1 ∈ (I : XD).

By our above reasoning, we have I ′ = s′, so there exist
polynomials Pi ∈ C[X1, . . . , XD−1] such that

g′1 = f ′1P1 + · · ·+ f ′mPm.

Let a = deg g′1, let di = deg(f ′1P1), and let d′ =
maxi di. By polynomial arithmetic, we have a ≤ d′.
Let Qi be the homogenization of the Pi. We then have

g1X
d′−a
D = f1Q1X

d′−d1
D + · · ·+ fmQmX

d′−dm
D .

The right hand side is an element of the ideal I, thus
the left hand side must be also in I. In particular, this
implies that g1 ∈ (I : XD), what had to be proven.

(Note that we have implicitly re-proved that the ho-
mogenization of the dehomogenization of an ideal is
its homogenous saturation).

Readers familiar with algebra may note that Proposi-
tion B.35 is only a description of the homogenization
of the ideal s′, respectively the homogenous saturation
of the ideal s. This is no surprise, since it is merely
the homogenous reformulation of Proposition B.27.

This Proposition directly implies that the coefficients
of H(I/s)(t) stabilize to zero if I has enough genera-
tors:

Proposition B.36 Let fi, I, s be as in Proposi-
tion B.35. Then there exists an N ∈ N such that

IN = sN .

proof 17 Let us fix a homogenous generating set
g1, . . . , gn for s, let δ = maxj deg gj . The set consisting
of all elements giM where 1 ≤ i ≤ n and deg gi ≤ k
and M a monomial in X1, . . . , XD of degree k−deg gi
is a generating set for sk. By Corollary B.35 we know
that for each i and each j, there exists a number qij
such that giX

qij
j ∈ I. Let q be the maximum of the

qij , 1 ≤ i ≤ n, 1 ≤ j ≤ D. Then giX
q
j ∈ I for every

i, j. Now by the pigeonhole principle, every monomial
M in X1, . . . , XD of degree D(q− 1) + 1 will be divisi-
ble by Xq

j for some j. In particular, giM ∈ I for every
i and every monomial M of degree D(q − 1) + 1. In
particular,

sN ⊆ IN
for N = δ +D(q − 1) + 1, which proves the claim.

For the case where instead of s we take the whole ring
C[X1, . . . , XD], Fröberg’s famous conjecture [3] states
what the Hilbert function would be expected to be:

Conjecture B.37 Let f1, . . . , fm be generic homoge-
nous polynomials in R of fixed degrees d1, . . . , dm, let
I = 〈f1, . . . , fm〉. Then

H(I)(t) =

∣∣∣∣∏m
i=1(1− t)di
(1− t)D

∣∣∣∣ ,
where for a power series,

∣∣∑∞
k=0 akt

k
∣∣ denotes setting

all coefficients a` to zero for which there exists k such
that k < ` and ak < 0.



F. J. Király, P. von Bünau, J. S. Müller, D. A. J. Blythe, F. C. Meinecke, K.-R. Müller

The Conjecture is known to be true for several cases,
Fröberg has proved the following [2, 3]:

Theorem B.38 Let f1, . . . , fm be any homogenous
polynomials in R of fixed degrees d1, . . . , dm, let I =
〈f1, . . . , fm〉. Let

H(I)(t) =

∞∑
k=0

bkt
k

be the true Hilbert series of I, and

∞∑
k=0

akt
k =

∣∣∣∣∏m
i=1(1− t)di
(1− t)D

∣∣∣∣
the Hilbert series from Conjecture B.37. Then one has

bk ≥ ak.

Equality holds if the fi are generic and m ≤ D.

In view of the evidence we have gathered in numeri-
cal computer experiments, we formulate the following
generalization of Fröberg’s conjecture B.37 for the con-
ditioned case:

Conjecture B.39 Let s ⊆ R be a homogenous ideal,
having a generating set in degree ≤ δ. Let f1, . . . , fm be
generic homogenous polynomials in s of fixed degrees
d1, . . . , dm ≥ δ. Let I = 〈f1, . . . , fm〉. Then

H(I/s)(t) =

∣∣∣∣∏m
i=1(1− t)di
(1− t)D

−H(s)(t)

∣∣∣∣ .
One can generalize Fröberg’s theorem B.38 to the con-
ditioned case:

Theorem B.40 Let s ⊆ R be a homogenous ideal,
having a generating set in degree ≤ δ. Let f1, . . . , fm
be any homogenous polynomials in R of fixed degrees
d1, . . . , dm ≥ δ, let I = 〈f1, . . . , fm〉. Let

H(I/s)(t) =

∞∑
k=0

bkt
k

be the true Hilbert series of I/s, and

∞∑
k=0

akt
k =

∣∣∣∣∏m
i=1(1− t)di
(1− t)D

−H(s)(t)

∣∣∣∣
the Hilbert series from Conjecture B.39. Then one has

bk ≥ ak.

Equality holds for m ≤ d, where d is the Krull dimen-
sion of R/s.

proof 18 For the first part, we use Fröberg’s original
theorem B.38. Let us denote

∞∑
k=0

ckt
k =

∣∣∣∣∏m
i=1(1− t)di
(1− t)D

∣∣∣∣ .
The theorem then implies that

dim Ik ≤ dimRk − ck.

Also, since I ⊆ s, we have

dim Ik ≤ dim sk.

Translating this into differences to s, we obtain

bk = dim sk − dim Ik ≥ dim sk − dimRk + ck

and
bk = dim sk − dim Ik ≥ 0.

On the other hand,

ak = dim sk − dimRk + ck

for all k until the right hand side would become neg-
ative, from where it is zero. Together with the above,
this implies bk ≥ ak.

Now we will prove Conjecture B.39 for m ≤ d.
We can assume that I and s are in Noether posi-
tion, i.e. the chosen coordinate system X1, . . . , XD

is generic (with respect to unitary linear transfor-
mations). Since d is the Krull dimension of s, we
may assume that X1, . . . , Xd are transcendental vari-
ables in R/s. Let f̃1, . . . , f̃m be the polynomials in
C[X1, . . . , XD], obtained from setting all terms in
f1, . . . , fm to zero which are not divisible by one of
the variables X1, . . . , Xd. These generate an ideal
Ĩ ⊆ C[X1, . . . , XD]. Since theX1, . . . , Xd are transcen-
dental in R/s, and I and s are in Noether position, the
remaining monomials are linearly independent. Thus
we have that dim Ĩk ≤ dim Ik = dim sk − bk. But the
f̃1, . . . , f̃m form a regular sequence, since the coeffi-
cients are generic, so we may use Fröberg’s original
theorem B.38, obtaining the correct dimension.

These considerations give us important bounds on the
N from Proposition B.36:

Corollary B.41 Let s ⊆ R be an ideal generated
by n homogenous elements of degree at most δ. Let
f1, . . . , fm ∈ s be generic with degrees d1, . . . , dm ≥ δ
and m ≥ max(D + 1, n). Let I = 〈f1, . . . , fm〉. Let N ′

be the smallest number such that the coefficient aN ′ in
the power series

∞∑
k=0

akt
k =

∏m
i=1(1− t)di
(1− t)D

−H(s)(t)
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is non-positive. Then

IN = sN

only if N ≥ N ′. If Conjecture B.39 holds, the converse
is also true.

B.7 An Algorithm to prove the generalized
Fröberg conjecture

In this subsection, we will present an algorithm with
which one can use in a computer assisted proof of Con-
jecture B.39 for fixed di, D and s.

The basic observation is that given polynomials
f1, . . . , fm ∈ s of fixed degrees d1, . . . , dm and the ideal
I = 〈f1, . . . , fm〉, the assertion A(c) = [dim Ik ≤ c] is
an algebraic property for every c, since it corresponds
to the vanishing of (sub-)minors of a matrix whose co-
efficients can be expressed in those of fi. Note that
A(c) depends on the fi resp. di, but for reading conve-
nience we do not write that explicitly out. By Theo-
rem B.40, A(dim sk − ak) (with ak as in the theorem)
is the sure event resp. the true property, which is also
irreducible.

If we can now find a single set of polynomials
f̃1, . . . , f̃m ∈ s of degrees d1, . . . , dm for which
A(dim sk − ak) holds but not A(dim sk − ak − 1), this
implies that A(dim sk−ak) does not imply A(dim sk−
ak − 1) or any of its irreducible sub-properties. Thus,
by the definition of genericity, we would have proved
that generic polynomials f1, . . . , fm fulfill A(dim sk −
ak), but not A(dim sk − ak − 1). Checking this for all
k up to the N for which IN = sN then proves Conjec-
ture B.39 for the fixed set of di, D and s.

These considerations give rise to Algorithm 1, which
can be used to prove Conjecture B.39 for specific sub-
cases.

In order to check Conjecture B.39 for fixed d1, . . . , dm
and s, one executes Algorithm 1 for k = 1, 2, . . .
and stops when IN = sN . This terminates if Con-
jecture B.39 is true. It is important to note that the
computations in Algorithm 1 only constitute a proof
if they are carried out exactly, or with floating point
arithmetic where one additionally has to ensure that
the initial numerical error cannot increase the rank r.
This can be for example ensured by computing r as the
approximate rank of Q with respect to a high enough
threshold, depending on the machine precision and the
propagation of initial errors.

We have checked Conjecture B.39 in the case where s
is an ideal of dimension d generated by D − d linear
forms, and the fi are quadrics - the simplest case rel-
evant for the statistical marginalization problem. As
the coordinate system can be regarded as generic, it

Algorithm 1 Checking Conjecture B.39.
Input: Degrees d1, . . . , dm, number of variables D; the
ideal s.
Output: Terminates if bk = ak in Theorem B.40.

1: Randomly sample polynomials f1, . . . , fm of de-
grees d1, . . . , dm from s

2: Initialize Q← [ ] with the empty matrix.
3: for i = 1 . . . n do
4: for all monomials M of degree k − deg fi do
5:

Add a row vector of coefficients, Q←
[
Q
fiM

]
6: end for
7: end for
8: Calculate r = rankQ.
9: if r = dim sk − ak then

10: Terminate
11: else
12: Goto step 1
13: end if

suffices to check Conjecture B.39 for a specific choice
of s where d is fixed, as the genericity phenomena stay
invariant under linear transformations.

Theorem B.42 Conjecture B.39 is true for linear s,
d1, . . . , dm ≤ 2 and D ≤ 11.

proof 19 This follows from the above considerations
and executing Algorithm 1 for any of the finitely many
possible cases. As the algorithm is correct and we have
found that it terminates, Conjecture B.39 is true.

Of course, Algorithm 1 as it is cannot be used to prove
Conjecture B.39 in total, as this would require to check
a countably infinite number of cases for every s. On
the other hand, even if Conjecture B.39 does not hold,
it can be slightly modified to Algorithm 2 which may
be used for computing the N in Proposition B.36.

If the calculations are performed exactly, then the al-
gorithm yields the smallest N from Proposition B.36.
If the calculations are performed in floating point
arithmetic, it is not guaranteed that it finds the small-
est N , but it terminates with probability one.

C Applications to ideal regression

In this section, we present some fundamental prop-
erties for the ideal regression problem which can be
derived from the results on genericity in section B.
Recall our formulation for ideal regression, which was
derived e.g. as Problem A.6:

Problem C.1 Let Fθ be a parametric family of rad-
ical ideals in C[X1, . . . , XD]. Given input polynomials
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Algorithm 2 Compute N in Proposition B.36.
Input: Degrees d1, . . . , dm, number of variables D; the
ideal s.
Output: An N such that sN = IN .

1: Calculate N ′ as in Corollary B.41, k ← N ′.
2: Randomly sample polynomials f1, . . . , fm of de-

grees d1, . . . , dm from s
3: Initialize Q← [ ] with the empty matrix.
4: for i = 1 . . . n do
5: for all monomials M of degree k − deg fi do
6:

Add a row vector of coefficients, Q←
[
Q
fiM

]
7: end for
8: end for
9: Calculate r = rankQ.

10: if r = dim sk then
11: Terminate
12: else
13: k ← k + 1, goto step 2
14: end if

q1, . . . , qm, estimate a regression parameter θ such that
Fθ is “close” to the inputs q1, . . . , qm.

Before continuing, will give a generative version of the
problem. In ordinary regression, it is a common as-
sumption that there exists a true regressor hyperplane,
and the data are generatively sampled from this regres-
sor hyperplane, with some centered noise added. This
naturally generalizes to the following assumption on
the inputs qi in ideal regression:

Assumption C.2 There is a true regressor parame-
ter θ and a true regressor ideal Fθ. Moreover, for every
polynomial qi, we have that

qi = fi + εi,

where fi is a generic polynomial of some fixed degree
di in Fθ, and εi is some generic polynomial.

This formulation models the classical splitting of sam-
pling randomness and error randomness: the random-
ness in fi models the sampling process, while the ran-
domness in εi represents the noise.

Also note that while this assumption is natural for the
common marginals problem, it may be too narrow for
the general case; a broader assumption would be that
fi is a generic polynomial from an ideal or a class of
ideals (e.g. ideals with fixed Hilbert function or Krull
dimension) contained in Fθ. However, due to brevity,
we restrict to this class of ideal regression problems for
the rest of the exposition.

In the following, we will restrict to the homogenous
case, which is basically equivalent to the inhomoge-

nous case. Finding a generating set for a homoge-
nously generated Fθ corresponds to finding a H-basis
for an inhomogenous Fθ. Thus, in all what follows, the
parametric family Fθ will be homogenously generated,
and the qi, fi, εi will homogenous polynomial-valued.
Note that since the fi and εi are generic, the fi, qi and
the εi are in fact polynomial-valued random variables.

Under these assumptions, the ideal regression problem
can be expressed as follows:

Problem C.3 Let Fθ be a parametric family of ho-
mogenously generated, radical ideals in C[X1, . . . , XD].
For 1 ≤ i ≤ m, let fi be generic polynomials in Fθ for
some fixed ground truth θ, let εi be generic polynomi-
als. Let

qi = fi + εi

the noisy inputs. Given q1, . . . , qm, estimate θ.

Having well-definedness, the immediate question is
about identifiability: is there a consistent estimator for
θ in the q1, . . . , qm? That means, is there an estimator,
which converges to the true value θ, when the number
of i.i.d. samples for each qi (simultaneously) goes to in-
finity, or alternatively, the variance of the noise terms
εi (simultaneously) go to zero? In particular, consid-
ering their number m and the degrees d1, . . . , dm. One
necessary condition is that θ can be uniquely calcu-
lated from the noise-free sample f1, . . . , fm. In the
following subsections, we will give a necessary condi-
tion for the latter and a general estimation algorithm
for the noisy case.

C.1 Identifiability

In this section, we study the identifiability of the ideal
regression problem, in the formulation of Problem C.3.
By definition, identifiability is given if and only if there
exists a consistent estimator for θ. Equivalently, iden-
tifiability holds if and only if there is a consistent es-
timator for a system of generators of Fθ. As stated
above, a necessary condition for identifiability is that
Fθ is uniquely identifiable from f1, . . . , fm. We con-
jecture that this condition is also sufficient. What we
can say about identifiability is the following weaker,
but provable sufficient condition:

Proposition C.4 Let I = 〈f1, . . . , fm〉. If Fθ = (I :
XD), then the (noisy) ideal regression Problem C.3 is
identifiable.

proof 20 The assumption Fθ = (I : XD) gives a rule
of calculation to obtain Fθθ for the noise-free case, and
thus θ due to unique parameterization. It remains to
show that this rule can be adapted to deal with noise.
But this can be algorithmically done, as we will show in
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the next chapter by stating the approximate saturation
algorithm 3.

Thus, to get a sufficient condition on identifiability of
ideal regression, we can now check when we can obtain
Fθ from saturating the ideal generated by the fi. Since
the fi are generic, we can apply Proposition B.35 to
directly obtain an identifiability criterion:

Theorem C.5 Keep the notations for ideal regression
as stated in Problem C.3. Then, the true parameter θ
is identifiable if

m ≥ max(D + 1, n) and

deg fi ≥ δ for all 1 ≤ i ≤ m,

where n is the cardinality of an arbitrary H-basis of
Fθ, and δ = maxi deg fi.

For the common marginals problem, Theorem C.5 can
be used to obtain a more sharp identifiability criterion,
by noticing that any linearly generated homogenous
ideal has an H-basis of at most D elements in degree
one:

Corollary C.6 Keep the notations of Problem C.3.
Consider the ideal regression problem, where FS =
I(S), for a d-dimensional sub-vector space S of CD.
If m ≥ D + 1, then S is identifiable, independent of
the degrees of the fi.

In particular, this corollary also implies identifiability
for the noise-free version stated in Problem B.5. For
sake of clarity, we state the particular situation for the
noise-free case resp. the f1, . . . , fm:

Corollary C.7 Let I = 〈f1, . . . , fm〉 be an ideal gen-
erated by m ≥ D+ 1 generic homogenous polynomials
vanishing on a linear d-dimensional subspace S ⊆ CD,
let ` be any linear homogenous polynomial. Then

√
I = I(S) = (I : `).

proof 21 The rightmost equality is a direct conse-
quence of Proposition B.35 and the fact that the co-
ordinate system in Proposition B.35 is arbitrary. The
leftmost equality follows from Proposition B.36 and
the fact that hN ∈ I(S)N for any linear homogenous
element h of I(S).

C.2 Calculating approximate saturations

In this section, we will present an algorithm which is
able to estimate the parametric ideal Fθ consistently
when the conditions of the identifiability Theorem C.5
are fulfilled, thus completing the proof of the theorem.
If the conditions of the theorem are fulfilled, then from

Proposition B.35, we know that Fθ can be obtained as
the homogenous saturation of I = 〈f1, . . . , fn〉. While
this is a classical task in Computational Algebraic Ge-
ometry, we do not know the fi, but only the qi which
are endowed with noise. Thus, we will have to calcu-
late the saturation approximately.

For this, we the following Algorithm 3 to compute ho-
mogenous saturations approximately. In step 1, Algo-

Algorithm 3 Approximate homogenous saturation.
Input: A homogenous ideal I = 〈f1, . . . , fn〉.
Output: Homogenous generator set G for the approx-
imate saturation (I : XD).

1: Determine N such that IN = (I : XD)N .
2: Initialize Q← [ ] with the empty matrix, G← {}.
3: for i = 1 . . . n do
4: for all monomials M of degree N − deg fi do
5:

Add a row vector of coefficients, Q←
[
Q
fiM

]
6: end for
7: end for
8: for k = N . . . 2 do
9: Set G← G∪ an approximate row basis for Q

10: Set Q← ReduceDegreeHom(Q)
11: end for
12: Return G (or reduce it first)

rithm 3 first needs to find an N where the saturation
coincides with the ideal. Such an N exists, however
to find it is not a trivial task. Here, one needs ei-
ther knowledge on I or genericity assumptions as a
simple criterion. Then, it builds with Q an approx-
imate representation of (I : XD)N . From this, the
method ReduceDegreeHom, which can be found as Al-
gorithm 4, constructs an approximate representation
of (I : XD)N−1. This can be repeated until reaching
a k for which (I : XD)k is empty. The calculations
have to be performed approximately in the sense that
the principal components of the row-spans have to be
considered with a suitable singular value threshold.

Algorithm 4 estimates ((I : XD) ∩ 〈XD〉)N approxi-
mately and then divides out XD from the approximate
basis representation. Again, one has to consider prin-
cipal components of a suitable approximation thresh-
old. A more detailed description for the special case of
the marginalization problem can be found in the main
body along the algorithms presented there.

A similar strategy can be applied when computing sat-
urations (J : f) for arbitrary ideals.

However, we refrain from further explanations, as the
given version is already sufficient to prove the identi-
fiability Theorem C.5.
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Algorithm 4 ReduceDegreeHom (Q).
Input: Approximate basis for (I : XD)k
given as the rows of the matrix Q
Output: Approximate basis for (I : XD)k−1,
given as the rows of the matrix A

1: Let Q′ ← the submatrix of Q obtained by
removing all columns corresponding to
monomials divisible by XD

2: Compute L← an approximate
left null space matrix of Q′

3: Compute L′ ← an approximate
row span matrix of LiQ

4: Let L′′ ← the matrix obtained from L′ by
removing all columns corresponding to
monomials not divisible by XD

5: Compute A← an approximate
row span matrix of L′′

Using Corollary C.7, we can even obtain the satura-
tion s =

√
I = (I : `) more efficiently and stably un-

der genericity conditions which we have for example
in the ideal regression problem C.3. Namely, Corol-
lary B.41 allows us to obtain sN for some N from I.
Then it suffices to saturate the ideal 〈sN 〉 by any linear
polynomial `. As any polynomial ` will yield the same
saturation, so one can additionally simultaneously sat-
urate with respect to multiple linear polynomials and
then compare or average.

Finally, if we know s to be linear, or if we know the
Hilbert function of s, we know the exact dimensions
of the approximate spans and kernels (e.g. from The-
orem B.38). Algorithms 1 and 2 (found in the pa-
per) additionally use this specific knowledge in order
to compute the saturation more accurately.

Moreover, Corollaries ?? and B.41 guarantee correct-
ness and termination of the algorithm under genericity
conditions if the inputs are exact; if they are subject
to noise, the output of the algorithm approaches the
true solution with decreasing noise, or, alternatively,
increasing number of i.i.d. samples, equal in distribu-
tion to the fi.
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