
Online Clustering of Processes

Azadeh Khaleghi
Azadeh.Khaleghi@inria.fr

Daniil Ryabko
Daniil.Ryabko@inria.fr

Jérémie Mary
Jeremie.Mary@inria.fr

Philippe Preux
Philippe.Preux@inria.fr

SequeL-INRIA/LIFL-CNRS, Université de Lille, France

Abstract

The problem of online clustering is consid-
ered in the case where each data point is a
sequence generated by a stationary ergodic
process. Data arrive in an online fashion
so that the sample received at every time-
step is either a continuation of some previ-
ously received sequence or a new sequence.
The dependence between the sequences can
be arbitrary. No parametric or indepen-
dence assumptions are made; the only as-
sumption is that the marginal distribution of
each sequence is stationary and ergodic. A
novel, computationally efficient algorithm is
proposed and is shown to be asymptotically
consistent (under a natural notion of consis-
tency). The performance of the proposed al-
gorithm is evaluated on simulated data, as
well as on real datasets (motion classifica-
tion).

1 Introduction

The focus of this work is on online clustering of time-
series data. This involves the clustering of a grow-
ing body of sequences of data, when each sequence
is generated by some discrete-time stochastic process.
The clustering is done “online,” meaning that at ev-
ery time-step we receive some new samples that either
form a new sequence or are a continuation of some pre-
viously observed sequence. Therefore at each time step
t a total of N(t) sequences x1, . . . ,xN(t) are to be clus-
tered, where each sequence xi is of length ni(t) ∈ N for
i = 1..N(t). The total number of observed sequences
N(t) as well as the individual sequence-lengths ni(t)
grow with time.

Appearing in Proceedings of the 15th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2012, La Palma, Canary Islands. Volume XX of JMLR:
W&CP XX. Copyright 2012 by the authors.

We assume that each sequence is generated by one of
k unknown stationary ergodic distributions, for some
prescribed k. This is a very general assumption, sub-
suming most of the modeling and independence as-
sumptions traditionally used in time-series clustering.
We require (following the approach of [11]) that those
and only those sequences generated by the same dis-
tribution be placed into the same cluster. A cluster-
ing function that, for each fixed portion of sequences,
achieves this objective in asymptotic is asymptotically
consistent.

Motivation. The analysis of time-series data in gen-
eral, and the particular problem of time-series cluster-
ing is motivated by many research problems from a
variety of disciplines, such as marketing and finance,
biological and medical research, video/audio analysis,
etc. In many applications data arrive dynamically,
with both new sources being added and previously
available sources generating more data. It is important
for a clustering algorithm to cluster recently observed
data points as soon as possible, without changing its
decision about those that have already been clustered
correctly.

The main challenge in online time-series clustering can
be identified with “bad” sequences: recently-observed
sequences for which sufficient information has not yet
been collected to allow for their distinction based on
their generating distribution. Thus (as will be thor-
oughly discussed in the paper), using a batch algo-
rithm in this setting results in not only miscluster-
ing such “bad” sequences, but also in clustering incor-
rectly those for which sufficient data is already avail-
able. That is, such “bad” sequences could render the
entire batch clustering useless, leading the algorithm
to miscluster even the “good” sequences. Since new
(bad) sequences may arrive in a data-dependent fash-
ion, any batch algorithm will fail in this scenario.

Results. We present a novel non-parametric online
clustering algorithm for time-series data, and evaluate
it both theoretically and empirically.

601

Online Clustering of Processes

Theoretically, we demonstrate that our algorithm is
consistent provided solely that the marginal distribu-
tion of each sequence is stationary ergodic; there can
be any (adversarial) dependence between the samples.
We further show that our algorithm is computationally
efficient: it is at most quadratic in each argument.

To test the empirical performance of the proposed al-
gorithm, we first optimized and implemented the of-
fline method of [11], and evaluated the studied meth-
ods on both synthetic and real data. In the batch set-
ting, the error-rates of both methods go to zero with
sequence-length. In the online setting with new sam-
ples arriving at every time-step, the error-rate of the
offline algorithm remains consistently high, whereas
that of the online algorithm converges to zero. This
demonstrates that unlike the offline algorithm, the on-
line algorithm is robust to “bad” sequences.

To reflect the generality of the suggested framework
in the experimental setup, we had our synthetic data
generated by processes that, while being stationary
ergodic, do not belong to any “simpler” class of pro-
cesses, and in particular cannot be modeled as a hid-
den Markov process with a countable set of states.

To demonstrate the applicability of the studied frame-
work to real data, we chose the problem of cluster-
ing motion-capture sequences of human locomotion.
This application area has also been studied in recent
works [9] and [6], which (to the best of our knowl-
edge) constitute the state-of-the-art performance on
the datasets they consider, and against which we com-
pare the performance of our methods. We obtained
consistently better performance on the datasets involv-
ing motion that can be considered ergodic (walking,
running), and competitive performance on those in-
volving non-ergodic motions (single jumps).

Related work. Even though clustering is a classical
problem in machine learning and statistics, the exist-
ing literature on non-parametric time-series clustering
approaches as well as on the theoretical analysis of
their consistency results is rather scarce. This is par-
tially due to the fact that in most cases even defining
what it means for a clustering result to be correct,
can be notoriously difficult (if not impossible) [7, 17].
For this reason the most common approaches to time-
series clustering is to study specific algorithms (like
k-means) or specific models, for example, assuming
that the data is generated by a specific family of hid-
den Markov chains, or using some other parametric
families [2, 3, 8, 16, 18].

Recently, [11] proposed a natural notion of consistency
along with a methodology to obtain consistent algo-
rithms for the particular case of the (offline) cluster-
ing of stationary ergodic time-series. The proposed

approach, which we extend to the online setting, is
based on estimating the so-called distributional dis-
tance between process distributions. This approach
has been previously used in [14, 13] to solve several
other statistical problems about time series.

The main advantage of this framework is that it al-
lows for the development of simple non-parametric al-
gorithms that are consistent and are not limited by
any modeling assumptions on the data.

Outline The rest of this paper is organized as follows.
In Section 2 we introduce some notation and defini-
tions, and formalize the online clustering problem con-
sidered. We present our theoretical and experimental
results in Sections 3 and 4 respectively. Finally, we
provide some concluding remarks in Section 5.

2 Preliminaries

Notation. LetA be an alphabet. In this work we con-
sider the case where A = R; extensions to more gen-
eral spaces are straightforward. Consider the Borel σ-
algebra B generated by {B×A∞ : B ∈ Bm,l,m, l ∈ N}
on A∞ where the sets Bm,l,m, l ∈ N are obtained
via the partitioning of Am into cubes of dimension m
and volume 2−ml (starting at the origin). Let also
Bm := ∪l∈NBm,l. Processes are probability measures
on the space (A∞,B). Similarly, we can define dis-
tributions on the space ((A∞)2,B2) of infinite ma-
trices where the Borel sigma algebra B2 is generated
by cylinders (B1 × A∞) × · · · × (Br × A∞) × (A∞)2,
Bi ∈ Bm, i = 1..r where m, r ∈ N. For a se-
quence X1, . . . , Xn we use the abbreviation X1..n. For
x = X1..n ∈ An and B ∈ Bm let ν(x, B) denote
the frequency with which x falls in the set B, i.e.

ν(x, B) := I{n≥m}
n−m+1

∑n−m+1
i=1 I{Xi..i+m−1 ∈ B}.

A process ρ is stationary if for a sequence x =
X1..n and any i, j ∈ 1..n and B ∈ Bm, m ∈ N,
we have ρ(X1..j ∈ B) = ρ(Xi..i+j−1 ∈ B). A
stationary process ρ is called (stationary) ergodic if
ρ(limn→∞ ν(X1..n, B) = ρ(B)) = 1 for all B ∈ B.

Online Clustering Protocol. We consider infinitely
many one-way infinite sequences, each of which is gen-
erated by one out of k unknown stationary ergodic dis-
tributions. At time-step 1 initial segments of some of
the first sequences are available to the learner. At each
subsequent time step, new data is revealed, either as a
subsequent segment of a previously observed sequence,
or as a new sequence. Although it is known that the
eventual number of different time-series distributions
producing the sequences is k, the number of observed
distributions at each individual time-step is unknown.

602

Azadeh Khaleghi, Daniil Ryabko, Jérémie Mary, and Philippe Preux

More formally, consider the matrix of random variables

X :=



X1

1 X1
2 X1

3 · · ·
X2

1 X2
2 . . . · · ·

...
...

. . .
. . .


 ∈ (A∞)2, (1)

(with an infinite number of rows and columns), gen-
erated by some (unknown) probability distribution P
on ((A∞)2,B2). We assume that the marginal distri-
bution of P on each row of X is one of k unknown
stationary ergodic processes {ρ1, ρ2, · · · , ρk}. Here k
is assumed known. Besides the assumption that ρi,
i = 1..k are stationary ergodic, we do not make any
further assumptions on the distribution P that gener-
ates X. This means that the samples in X are allowed
to be dependent, and the dependence can be arbitrary;
one can even think of the dependence between samples
as “adversarial”. For convenience of notation we as-
sume that the distributions ρi, i = 1..k are ordered in
the order of appearance of their first samples in X.

At every time step t ∈ N, a part S(t) of X is observed
corresponding to the first N(t) ∈ N rows of X, each
of length ni(t), i ∈ 1..N(t), i.e. S(t) = {xt1, · · ·xtN(t)}
where xti := Xi

1..ni(t)
. Once revealed, data is never

taken away: N(t) is non-decreasing in t, as are ni(t)
for each i ∈ N. In our theoretical results we assume
that the number of samples, as well as the individ-
ual sample-lengths tend to infinity with time; that is,
limt→∞ ni(t)→∞ for all i ∈ 1..N(t).

1

1

2

1

3

C
la

ss
 l
a
b
e
ls

 (
n
e
v
e
r

v
is

ib
le

 t
o
 t

h
e
 l
e
a
rn

e
r)

n1(t+1)n1(t)

x1(t+1)

x1(t)

S(t)

S(t+1)

Figure 1: Online Protocol: solid rectangles correspond
to sequences observed at time t, dashed rectangles cor-
respond to segments arrived at time t+ 1.

An online clustering function is a mapping
f(S(t), k) 7→ C(t) = {C1(t), · · · , Ck(t)} that for
each t ∈ N gives a partitioning of the index-set 1..N(t)
into k disjoint subsets Ci(t), i = 1..k.

Of the many ways a set of k disjoint subsets of S(t)
may be produced, the most natural partitioning in this

scenario is to put into the same cluster those and only
those sequences that were generated by the same distri-
bution. With this observation, following the approach,
set in [11] we define the ground-truth clustering of X
as follows:

Definition 2.1 (Ground-Truth Clustering)
Define the ground-truth clustering of X as the
partitioning I = {I1, · · · , Ik} of N such that
j ∈ Ii ⇔ xj ∼ ρi (where xj denotes the jth row of X).

A clustering function is (asymptotically) consistent if,
with probability 1, for each N ∈ N from some time
on the first N sequences are clustered correctly (with
respect to the ground-truth clustering). More formally
we have the following definition:

Definition 2.2 (Consistency) A clustering func-
tion is said to be (strongly) asymptotically consistent,
if with probability 1 for every N ∈ N there exists some
time T such that for all t ≥ T we have,

{Ci(t) ∩ 1..N : i = 1..k} = {Ii ∩ 1..N : i = 1..k}.

For every pair of processes ρ1 and ρ2 the distributional
distance between them is defined as follows

d(ρ1, ρ2) :=

∞∑

m,l=1

wm,l
∑

B∈Bm,l

|ρ1(B)− ρ2(B)|,

where wm,l := wmwl and wi = 2−i, i ∈ N. 1 It is
easy to see that d(·, ·) is a metric. For more on the
distributional distance and its properties see [5].

The algorithms presented in this work are based on
empirical estimates of this distance:

d̂(x1,x2) :=
∞∑

m,l=1

wm,l
∑

B∈Bm,l

|ν(x1, B)− ν(x2, B)|,

where xi = Xi
1..ni

∈ Ani , ni,∈ N, i = 1, 2. Simi-
larly, the empirical estimate of the distance between a
sequence x ∈ An, n ∈ N and a process ρ is defined as:

d̂(x, ρ) :=

∞∑

m,l=1

wm,l
∑

B∈Bm,l

|ν(x, B)− ρ(B)|.

As shown in [11] d̂(·, ·) is asymptotically consistent: for
every pair of sequences x1 = X1

1..n1
and x2 = X2

1..n2
,

each generated by a stationary ergodic distribution ρi,
i = 1, 2 with a stationary ergodic joint distribution ρ,
we have

lim
n1,n2→∞

d̂(X1
1..n1

, X2
1..n2

) = d(ρ1, ρ2), ρ− a.s., and (2)

lim
ni→∞

d̂(Xi
1..ni

, ρj) = d(ρi, ρj), i, j = 1, 2, ρ− a.s. (3)

1Any summable sequence of positive weights also works.

603

Online Clustering of Processes

Moreover a more general estimate of the distributional
distance may be obtained as

ď(x1,x2) :=

mn∑

m=1

ln∑

l=1

wm,l
∑

B∈Bm,l

|ν(x, B)−ρ(B)|, (4)

where mn and ln are any sequences of integers that go
to infinity with n. As shown in [11] the consistency

results for d̂(·, ·) (Equations 2 and 3) equally hold for
ď(·, ·) as long as mn, ln →∞ with n→∞.

Algorithm 1 Offline Clustering Subroutine [11]

1: INPUT: sequences {x1, · · · ,xN}, # of clusters k

\∗ Initialize k-farthest points as cluster-centers:

2: C1 ← {1}
3: Cj ← {argmax

i=1..N
min

i′∈⋃j−1

j′=1
Cj′

d̂(xi,xi′)}, j = 2..k

\∗ Assign the remaining points to closest centers:

4: for i = 1..N do
5: j ← argmini′∈⋃k

j′=1
Cj′

d̂(xi,xi′)

6: Cj ← Cj ∪ {i}
7: end for
\∗ Search for the lowest index in each cluster:

8: for i = 1..k do
9: ri ← minr∈Ci

r
10: end for

\∗ Output the lowest index in each cluster:

11: OUTPUT: (r1, r2, · · · , rk)

Offline Clustering Algorithm. Alg 1 is a consistent
batch method of [11], slightly modified to serve as a
subroutine in our online algorithm. It is essentially one
iteration of k-means with farthest-point initialization,
using d̂(·, ·) as the distance between sequences.

3 Theoretical Results

We present via Alg 2 an online clustering procedure
which, as the following theorem shows, is consistent
under the most general assumptions.

Theorem 3.1 i. Alg 2 is asymptotically consistent,
provided that the marginal distribution of each se-
quence is stationary ergodic, and that the correct num-
ber of clusters k is supplied to the algorithm. The same
statement holds if ď(·, ·) is used instead of d̂(·, ·) with
any pairs of sequences mn, ln s.t. mn, ln →∞.
ii. The per symbol resource (space and time) complex-
ity of Alg 2 at time-step t is of order

O(kN(t)2 +N(t)nmax log s−1min),

where smin := min
u,v∈1..N(t)

i=1..nu,j=1..nv,X
u
i 6=Xv

j

|Xu
i − Xv

j | and

nmax := maxi=1..N(t) ni(t). If ď(·, ·) is used the com-

plexity becomes O({kN(t)2 +N(t)mnmax
log s−1min)

Algorithm 2 Online Clustering

1: INPUT: # of clusters k

2: for t = 1..∞ do
3: Obtain new sequences S(t) = {xt1, · · · ,xtN(t)}
4: Initialize the normalization factor: η ← 0
5: for j = k..N(t) do

\∗ Use Alg 1 to select k indices from 1..j to index

cluster-representatives within xt
1..x

t
j & store the

received k-tuple as the jth column of the represen-

tative matrix R. (so Rij indexes the representa-

tive of cluster i selected at iteration j):

6: R1..k,j ← Alg1({xt1, · · · ,xtj}, k)

\∗ Calculate the min inter-cluster distance γj:

7: γj ← mina 6=b∈1..k d̂(xtRa,j
,xtRb,j

)

\∗ Calculate the weight αj (corresponding to the
cluster-representatives xtR1j

..xtRkj
):

8: wj ← j−2;αj ← wjγj
\∗ Update the normalization factor:

9: η ← η + αj
10: end for

\∗ Form clusters: For every sequence xt
l , l ∈ 1..N(t)

find some c ∈ 1..k that minimizes the weighted

sum of the distances between xt
l & the sequences

xt
Rij

, i = 1..k, j = 1..N(t); let l join Cc(t).

11: for l = 1..N(t) do

12: c← argmini∈1..k
1
η

∑N
j=1 αj d̂(xtl ,x

t
Ri,j

)

13: Cc(t)← Cc(t) ∪ {l}
14: end for
15: OUTPUT: {C1(t), · · · , Ck(t)}
16: end for

The proof is deferred to Section 3.1. Here we infor-
mally explain how and why the algorithm works.

The proposed algorithm is based on combining sev-
eral clusterings, each obtained by running the offline
algorithm on different portions of data; more specif-
ically, the batch algorithm is run on each subset of
{xt1, · · · ,xtj} j = k..N(t) of the sequences S(t) ob-
served at time-step t. These clusterings are combined
with weights that depend on j and on the performance
of each clustering as reflected by the minimum inter-
cluster distance.

To see the intuition behind this approach, first note
that d̂(·, ·) is consistent, meaning that the empirical
distributional distance between a given pair of se-
quences converges to the distributional distance be-
tween their generating processes. As shown in [11]
this is the key reason why, Alg 1 is asymptotically
consistent in a batch setting. Knowing that the batch
algorithm is consistent, it can be tempting to view the
solution to the online clustering problem as the direct

604

Azadeh Khaleghi, Daniil Ryabko, Jérémie Mary, and Philippe Preux

application of this algorithm to the batch of sequences
S(t) observed at every time-step t. However, with new
sequences arriving at every time step, there are always
some sequences for which the distance estimate is far
from being correct. This leads to producing incorrect
clusterings of (potentially) all sequences at every time
step. An alternative solution would be to take some
fixed portion of the samples, run the batch algorithm
on it, then simply assign every remaining sequence to
the nearest cluster. This procedure would be asymp-
totically consistent, if we were guaranteed that the se-
lected portion of the sequences contains at least one
sequence sampled from each and every one of the k
distributions. However, we cannot know this. In other
words, there is no way to select a portion of data that
would have sequences long enough to result in a correct
clustering and at the same time contain a representa-
tive of each distribution.

A key observation we make is that any k-partitioning
of a batch containing sequences generated by at most
k− 1 processes results in a minimum inter-cluster dis-
tance γ that, as follows from the asymptotic consis-
tency of d̂(·, ·), converges to 0. On the other hand,
if the observed batch of sequences {x1, · · · ,xN} con-
tains sequences generated by all k processes, then the
estimated minimal inter-cluster distance converges to
a non-zero value: to the minimal distance between dis-
tributions generating the data.

Therefore, given the N = N(t) sequences in S(t) ob-
served at time t, we use Alg 1 to generate N cluster-
ings, each based on the first j sequences x1, · · · ,xj for
j = k...N . These clusterings are then combined with
two sets of weights: 1. γj to penalize for small inter-
cluster distance, annulling those clusterings produced
based on sets of sequences generated by less than k
distributions. 2. wj to give precedence to chronolog-
ically earlier clusterings, protecting the clustering de-
cisions from the presence of the (potentially “bad”)
newly formed sequences, whose corresponding distance
estimates may still be far from accurate.

This approach may be reminiscent of prediction with
expert advice [4], where experts are combined based
on their past performance. A key difference is that
we cannot measure the performance of each clustering
directly.

3.1 Proofs

Proposition 3.1 Let the sequence x1 = X1
1..n1

be ob-
tained when x′1 = X1

1..n1−1 is extended by a single ele-

ment. Given d̂(x′1,x2) the computational complexity of

obtaining d̂(x1,x2) is of order O(max{n1, n2} log s−1),
where s := min

Xu
i 6=Xv

j

u,v∈1,2,i=1..nu,j=1..nv

|Xu
i −Xv

j |.

Proof Define Tm,l ,
∑
B∈Bm,l |ν(x1, B) − ν(x2, B)|.

For all l ≥ log s−1 the cubes B ∈ Bm,l contain at most
a single m-tuple of the form Xu

i..i+m, i = 1..nu, u =
1, 2. Thus,

∑

l∈N
wm,lT

m,l =

wm(1−
log s−1∑

l=1

wl)T
m,log s−1

+

log s−1∑

l=1

wm,lT
m,l.

Moreover, for fixed m, l ∈ N every cube in Bm,l can be
partitioned into 2m cubes in Bm,l+1 so that, ν(x, B)
can be obtained recursively for all B ∈ Bm,l, i.e.

ν(x, B) =
∑

B′∈Bm,l+1:B′⊂B
ν(x, B′). (5)

The frequency values ν(xi, B), i = 1, 2 may be stored
in a 2m-ary tree of depth log s−1, whose nodes
at each level l ∈ 1.. log s−1 hold a tuple vj,l =
(ν(x1, Bj), ν(x2, Bj)), j = 1..2ml where Bj ∈ Bm,l;
inter-node connections are based on containment so
that the node corresponding to vj,l, j = 1..2ml is con-
nected to a node vj′,l+1, j

′ = 2m(l+1) if and only

if Bj′ ⊂ Bj . For a fixed m, let B∗ ∈ Bm,log s
−1

be the cube containing X1
n1−m+1..n1

. Let v′jl =

(ν(x′1, B), ν(x2, B)), j = 1..2ml, l = 1.. log s−10 , where
s0 := max{s, min

Xu
i 6=X1

n1
u=1,2,i=1..nu

|Xu
i − X1

n1
|}. To obtain

the 2m-ary tree corresponding to vj,l, j = 1..2ml, l =
1.. log s−1 we can first extend that already generated
for v′j,l, j = 1..2ml, l = 1.. log s−10 to include a path to
B∗, and next traverse the path bottom-up to update
the frequency values. This entails log s−1 computa-
tions as this path is of length log s−1. Moreover, by
definition we have that ν(x, B) = 0, for all B ∈ Bm,l,
with m ≥ max{n1, n2} and l ∈ N, therefore a total of
max{n1, n2} log s−1 frequency updates are required to

obtain d̂(x1,x2) from d̂(x′1,x2).

Proof of Theorem 3.1 i. Consistency: To show
the consistency of Alg 2 we show that for every fixed
number N ∈ N of sequences, there exists some time T ,
such that for all t ≥ T and all r ∈ Ii ∩ 1..N , i ∈ 1..k,

we have that argmini′∈1..k
1
η

∑N(t)
j=1 αj d̂(xtr,x

t
Ri′j

) = i,

so that from T on, r is mapped to the correct target
cluster, (i.e. {Ci(t) ∩ 1..N} = {Ii ∩ 1..N}, for all i =
1..k).

Fix an ε > 0. We can find an index J such that∑∞
j=J wj ≤ ε. Denote by S(t)|j = {xt1, · · · ,xtj}, the

subset of S(t) consisting of the first j sequences for
j ∈ 1..N(t). For i = 1..k let si := minxt

j∼ρi j index

the first sequence in S(t) that is generated by ρi, and
denote by

m := max
i∈1..k

si, (6)

605

Online Clustering of Processes

the maximum such index. Let t(j, ε) be the time-step
such that for all t ≥ t(j, ε) we have

|d̂(x, ρy)− d(ρx, ρy)| ≤ ε, (7)

|d̂(x,y)− d(ρx, ρy)| ≤ ε (8)

for all pairs of sequences x ∼ ρx, and y ∼ ρy in
S(t)|j , and that Alg1(S(t)|j , k) is consistent unless of-
course if j < m. Such time-step always exists (with

probability 1), due to the consistency of d̂(·, ·) (Equa-
tions 2 and 3), the consistency of Alg 1 [11], and the
assumption that the sequence lengths grow indefinitely
with time.

Let δ := 1
2 mini6=j∈1..k d(ρi, ρj) and define

t(j) := max{t(m, δ), max
j=1..J

t(j, ε)}.

By (6) and (8) for all t ≥ t(j) we have,

|γtm − min
i 6=j∈{1,··· ,k}

d(ρi, ρj)| ≤ δ.

Hence, recalling that (as specified in Alg 2) η =∑N(t)
j=1 wjγ

t
j we have η ≥ wmδ, and since d̂(·, ·) ≤ 1

we obtain,

1

η

N(t)∑

j=1

αj d̂(xtRij
, ρi) ≤

1

η

J∑

j=1

αj d̂(xtRij
, ρi)+

ε

wmδ
. (9)

The sequences in S(t)|j for j = 1..m− 1 are generated
by at most k− 1 out of the k generating distributions.
Therefore, γj ≤ ε for j = 1..m− 1, since there ex-
ists at least one pair of distinct cluster representatives
generated by the same distribution. We have,

1

η

m−1∑

j=1

wjγj d̂(xtRij
, ρi) ≤

1

η

m−1∑

j=1

wjγ
t
j ≤

ε

wmδ
. (10)

Noting that the clusters are ordered in the order of
appearance of the distributions, we have xtRij

= xsi
for all j = m..J and i = 1..k. Therefore,

1

η

J∑

j=m

αj d̂(xtRij
, ρi) =

1

η
d̂(xtsi , ρi)

J∑

j=m

αj ≤ ε, (11)

for every i = 1..k. Combining (9), (10), and (11) we
obtain

1

η

N(t)∑

j=1

αj d̂(xtRij
, ρi) ≤ 2

ε

wmδ
+ ε (12)

for every i = 1..k.

Consider an index r ∈ Ii∩1..N for some N ∈ 1..|S(t)|.
Let T := t(N). For all t ≥ T and all i′ 6= i ∈ 1..k we

have,

1

η

N(t)∑

j=1

αj d̂(xtr,x
t
Ri′j

)

≥ 1

η

N(t)∑

j=1

αj d̂(xtr, ρi′)−
1

η

N(t)∑

j=1

αj d̂(xtRi′j
, ρi′)

≥ d(ρi, ρi′)− ε−
1

η

N(t)∑

j=1

αj d̂(xtRi′j
, ρi′)

≥ 2δ − 2ε(1 +
1

wmδ
), (13)

where the first inequality follows from applying the tri-
angle inequality to d̂(·, ·), the second inequality follows
from (7) and the last inequality follows from (12) and
the definition of δ. Since the choice of ε is arbitrary,
from (7) and (13) we obtain,

argmin
i′∈1..k

1

η

N(t)∑

j=1

αj d̂(xtr,x
t
Ri′j

) = i,

implying the consistency statement. Moreover, by
Lemma 2 of [11] the same consistency result holds if

we replace d̂(·, ·) in the algorithm by any correspond-
ing consistent estimate ď(·, ·) defined by Equation 4.
ii. Computational Complexity: Let N := N(t)+1
and denote by D the (N − 1) × (N − 1) (symmetric)
matrix of pairwise distances between the sequences in
{x1, · · · ,xN−1}, i.e. Dij := d̂(xi,xj), i, j ∈ N−1. As-
sume that a new symbol X ∈ A arrives along with an
indicator of where it belongs, i.e. whether it is a con-
tinuation of a previous sequence xi for some i ∈ N−1
or that it is to start a new sequence, xN . In the
former case, the ith row and column of D need up-
dating whereas in the latter, a new row and column
are to be added to D so that for all i = 1..N − 1,
DNi = DiN = d̂(xN ,xi). In both cases a total of
N − 1 distance updates are required to update D,
which by Proposition 3.1 yield a computational com-
plexity of order O(N(t)nmax log s−1min}). Apart from
the distance calculations, the rest of the computa-
tions, namely those corresponding to updating 1. the
cluster-representative matrix R, 2. the weighted inter-
cluster distances αj = 2−jγj , j = 1..N and 3. the
clusters Ci(t), i = 1..k, are of order O(kN(t)2). Thus,
the per-symbol resource complexity of Alg 2 at time-
step t is of order O(kN(t)2 +N(t)nmax log s−1min). The
statement regarding ď(·, ·) can be derived analogously.

4 Experimental Results

We present empirical evaluations of the considered
framework. In our experiments ď(·, ·) is used with

606

Azadeh Khaleghi, Daniil Ryabko, Jérémie Mary, and Philippe Preux

mn = log n, in order to optimize running time. The
choice of this parameter value is justified as follows:
The expected waiting time before a word y = Y1..m is
repeated within a sequence x = X1..n is inversely pro-
portional to its probability of occurrence, P (y). For a
sequence generated by an ergodic source with entropy
rate h P (y) is asymptotically of order 2−mh. There-
fore, counting the frequencies of words y = Y1..m in x
form > log n does not result in a consistent estimate of
P (y). While the consistency of the distance estimates
and thus the algorithm is not affected by this choice, it
helps reduce the computational complexity (cf. Theo-
rem 3.1). Apart from this choice of the parametersmn,
no parameter tuning was used to achieve the empiri-
cal results (the values of the other parameters, such
as the weights wj , were set to defaults described in
Section 3).

4.1 Synthetic Data

In this section we present empirical evaluations of our
algorithms on synthetically generated data. To put the
generality of our approach to a test, we have selected
time-series distributions that, while being stationary
ergodic, do not belong to any “simpler” general class of
time-series, and are difficult to approximate by finite-
state models. The considered processes are taken from
[15], where they are used as an example of stationary
ergodic processes that are not B-processes. Such time-
series cannot be modeled by a hidden Markov model
with a finite or countably infinite set of states. More-
over, k-order Markov or hidden Markov approxima-
tions of this process do not converge to it in d̄ distance,
a distance that is stronger than d, and whose empir-
ical approximations are often used to study general
(non-Markovian) processes (see, e.g. [10]).

Time-series generation. To generate a sequence
x = X1..n we proceed as follows: Fix some parame-
ter α ∈ (0, 1). Select r0 ∈ [0, 1]; then, for each i = 1..n
obtain ri by shifting ri−1 by α to the right, and remov-
ing the integer part, i.e. ri := ri−1 + α − bri−1 + αc.
The sequence x = (X1, X2, · · ·) is then obtained from
ri by thresholding at 0.5, that is Xi := I{ri > 0.5}.
We call this procedure DAS(α). If α is irrational then
x forms a stationary ergodic time-series. 2

For the purpose of our experiments, first we use five
process distributions different processes DAS(αi), i =
1..5, with α1 = 0.31..., α2 = 0.33..., α3 = 0.35..., α4 =
0.37..., α5 = 0.39. Next we generate an N ×M data
matrix X, each row of which is a sequence generated by
one of the five DAS(αi), i = 1..5 processes. Our task
in both the online and the batch setting is to cluster
the rows of X into k = 5 clusters. The selected αi are

2We simulate α by a longdouble with a long mantissa.

intentionally chosen to be close, making the processes
harder to distinguish.

Experiment 1. (Batch Setting) In this experi-
ment we demonstrate that in the batch setting, the
clustering errors corresponding to both the online and
the offline algorithms converge to 0 as the sequence-
lengths grow. To this end, at every time-step t we take
an N × n(t) sub-matrix X|n(t) of X composed of the
rows of X terminated at length n(t), where n(t) = 5t.
Then at each iteration we let each of the algorithms,
(online and offline) cluster the rows of X|n(t) into five
clusters, and calculate the clustering error-rate of each
algorithm. As shown in Figure 2 (top) the error-rate
of both algorithms decrease with sequence-length.

0 100 200 300 400

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Timestep

M
ea

n
of

 th
e

E
rr

or
 R

at
e

Online
Offline

0 50 100 150

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Timestep

M
ea

n
of

 th
e

E
rr

or
 R

at
e

Online
Offline

Figure 2: Top: error-rate vs. sequence length in batch
setting, Bottom: error-rate vs. # of observed samples
in online setting. (error-rates averaged over 100 runs.)

Experiment 2. (Online Setting) In this exper-
iment we demonstrate that, unlike the online algo-
rithm, the offline algorithm is consistently confused
by the new sequences arriving at each time step in

607

Online Clustering of Processes

an online setting. To simulate an online setting, we
proceed as follows: At every time-step t, a triangular
window is used to reveal the first 1..ni(t), i = 1..t el-
ements of the first t rows of the data-matrix X, with
ni(t) := 5(t − i) + 1, i = 1..t. This gives a total of
t sequences, each of length ni(t), for i = 1..t, where
the ith sequence for i = 1..t corresponds to the ith

row of X terminated at length ni(t). At every time-
step t the online and offline algorithms are each used
to in turn cluster the observed t sequences into five
clusters. As shown in Figure 2 (bottom), in this set-
ting the clustering error-rate of the offline algorithm
remains consistently high, whereas that of the online
algorithm converges to zero.

4.2 Real Data

As a real application we consider the problem of clus-
tering motion capture sequences, where groups of se-
quences with similar dynamics are to be identified.
Data is taken from the Motion Capture database (MO-
CAP) [1] which consists of time-series data represent-
ing human locomotion. The sequences are composed
of marker positions on human body which are tracked
spatially through time for various activities.

We compare our results against two other methods,
namely those of [9] and [6], which (to the best of
our knowledge) constitute the state-of-the-art perfor-
mance on these datasets. Note that we have not imple-
mented these reference methods, rather we have taken
their numerical results directly from their correspond-
ing articles. In order to have common grounds for each
comparison we use the same sets of sequences,3 and the
same means of evaluation as those used in [9, 6].

In [9] two MOCAP datasets4 are used, where the se-
quences in each dataset are labeled with either run-
ning or walking as annotated in the database. Perfor-
mance is evaluated via the conditional entropy S of
the true labeling with respect to the prediction, i.e.
S = −∑

i,j
Mij∑

i′,j′Mi′j′
log

Mij∑
j′Mij′

where M denotes

the clustering confusion matrix. The motion sequences
used in [9] are reportedly trimmed to equal duration.
However, we use the original sequences as our method
is not limited by variation in sequence lengths. Table 1
lists performance of Alg 1 as well as that reported for
the method of [9]; Alg 1 performs consistently better.

In [6] four MOCAP datasets5 are used, corresponding
to four motions: run, walk, jump and forward jump.
Table 2 lists performance in terms of accuracy. The
datasets in Table 2 constitute two types of motions:
1. motions that can be considered ergodic (walk, run,

3marker position: the subject’s right foot.
4subjects #16 and #35.
5subjects #7, #9, #13, #16 and #35.

run/jog; displayed above the double line), and 2. non-
ergodic motions (single jumps; displayed below the
double line). As shown in Table 2, Alg 1 achieves
consistently better performance on the first group of
datasets, while being competitive (better on one and
worse on another) on the non-ergodic motions. The
time taken to complete each task is in the order of few
minutes on a standard laptop computer.

Dataset [9] Alg 1
1. Walk vs. Run (#35) 0.1015 0
2. Walk vs.Run (#16) 0.3786 0.2109

Table 1: Comparison with [9]: Performance in terms
of entropy; data-sets concern ergodic motion captures.

Dataset [6] Alg 1
1. Run(#9) vs. Run/Jog(#35) 100% 100%
2. Walk(#7) vs. Run/Jog(#35) 95% 100%

3. Jump vs. Jump fwd.(#13) 87% 100%
4. Jump vs. Jump fwd.(#13, 16) 66% 60%

Table 2: Comparison with [6]: Performance in terms
of accuracy; Rows 1 & 2 concern ergodic, Rows 3 & 4
concern non-ergodic motion captures.

5 Outlook

The framework for clustering time-series considered
in this work is fairly new, giving rise to many open
problems and exciting directions for further research.
While in this work we have assumed that the num-
ber of clusters k is known, in practice this may not be
the case. Therefore, an interesting extension would be
to consider the case of unknown number of clusters.
As shown in [12] in general it is impossible to decide
whether a pair of observed sequences are generated by
the same or by two different stationary ergodic distri-
butions. One mitigation is to make stronger assump-
tions on the data. Another approach often considered
in the clustering literature is to construct a hierarchy
of clustering for different k, in such a way that the true
clustering is a pruning of this hierarchy.

Acknowledgements

This work is supported by the French Ministry of
Higher Education and Research, Nord-Pas-de-Calais
Regional Council and FEDER through CPER 2007-
2013, ANR projects EXPLO-RA (ANR-08-COSI-
004) and Lampada (ANR-09-EMER-007), by an
INRIA Ph.D. grant to Azadeh Khaleghi, by the
European Community’s Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement
231495 (project CompLACS), and by Pascal-2.

608

Azadeh Khaleghi, Daniil Ryabko, Jérémie Mary, and Philippe Preux

References

[1] CMU graphics lab motion capture database.
http://mocap.cs.cmu.edu/, 2009.

[2] F.R. Bach and M.I. Jordan. Learning graphical
models for stationary time series. IEEE Trans-
actions on Signal Processing, 52(8):2189 – 2199,
aug. 2004.

[3] C. Biernacki, G. Celeux, and G. Govaert. As-
sessing a mixture model for clustering with the
integrated completed likelihood. Pattern Analy-
sis and Machine Intelligence, IEEE Transactions
on, 22(7):719–725, 2000.

[4] N. Cesa-Bianchi and G. Lugosi. Prediction,
Learning, and Games. Cambridge University
Press, 2006.

[5] R. Gray. Probability, Random Processes, and Er-
godic Properties. Springer Verlag, 1988.

[6] T. Jebara, Y. Song, and K. Thadani. Spectral
clustering and embedding with hidden Markov
models. Machine Learning: ECML 2007, pages
164–175, 2007.

[7] J. Kleinberg. An impossibility theorem for clus-
tering. In 15th Conf. Neural Information Process-
ing Systems (NIPS’02), pages 446–453, Montreal,
Canada, 2002. MIT Press.

[8] M. Kumar, N.R. Patel, and J. Woo. Clustering
seasonality patterns in the presence of errors. In
Proceedings of the eighth ACM SIGKDD inter-
national conference on Knowledge Discovery and
Data mining, pages 557–563. ACM, 2002.

[9] Lei Li and B. Aditya Prakash. Time series clus-
tering: Complex is simpler! In Proceedings of the
28th International Conference on Machine Learn-
ing (ICML-11), pages 185–192, New York, NY,
USA, June 2011. ACM.

[10] D.S. Ornstein and B. Weiss. How sampling reveals
a process. Annals of Probability, 18(3):905–930,
1990.

[11] D. Ryabko. Clustering processes. In Proc. the
27th International Conference on Machine Learn-
ing (ICML 2010), pages 919–926, Haifa, Israel,
2010.

[12] D. Ryabko. Discrimination between B-processes
is impossible. Journal of Theoretical Probability,
23(2):565–575, 2010.

[13] D. Ryabko. Testing composite hypotheses about
discrete ergodic processes. Test, 2012 (to appear).

[14] D. Ryabko and B. Ryabko. Nonparametric statis-
tical inference for ergodic processes. IEEE Trans-
actions on Information Theory, 56(3):1430–1435,
2010.

[15] P. Shields. The Ergodic Theory of Discrete Sam-
ple Paths. AMS Bookstore, 1996.

[16] P. Smyth. Clustering sequences with hidden
Markov models. In Advances in Neural Infor-
mation Processing Systems, pages 648–654. MIT
Press, 1997.

[17] R. Zadeh and S. Ben-David. A uniqueness the-
orem for clustering. In A. Ng J. Bilmes, edi-
tor, Proceedings of the 25th Conference on Un-
certainty in Artificial Intelligence (UAI’09), Mon-
treal, Canada, 2009.

[18] Shi Zhong and Joydeep Ghosh. A unified frame-
work for model-based clustering. Journal of Ma-
chine Learning Research, 4:1001–1037, 2003.

609

