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Abstract

This document contains detailed proofs of theorems stated in the main article entitled Random
Feature Maps for Dot Product Kernels.

1 Proof of Theorem 1

We first recollect Schoenberg’s result in its original form

Theorem 1 (Schoenberg (1942), Theorem 2). A function f : [−1, 1]→ R constitutes a positive definite
kernel K : S∞ × S∞ → R, K : (x,y) 7→ f(〈x,y〉) iff f is an analytic function admitting a Maclaurin

expansion with only non-negative coefficients i.e. f(x) =
∞∑
n=0

anx
n, an ≥ 0, n = 0, 1, 2, . . .. Here S∞ =

{x ∈ H : ‖x‖2 = 1} for some Hilbert space H.

Corollary 2 (Theorem 1 restated). A function f : R → R constitutes a positive definite kernel
K : B2 (0, 1) × B2 (0, 1) → R, K : (x,y) 7→ f(〈x,y〉) iff f is an analytic function admitting a Maclau-

rin expansion with only non-negative coefficients i.e. f(x) =
∞∑
n=0

anx
n, an ≥ 0, n = 0, 1, 2, . . .. Here

B2 (0, 1) ⊂ H for some Hilbert space H.

Proof. To see that the non-negativeness of the coefficients of the Maclaurin expansion is necessary just
apply Theorem 1 to points on S∞. Since {〈x,y〉 : x,y ∈ B2 (0, 1)} = {〈x,y〉 : x,y ∈ S∞}, the result
extends to the general case when the points are coming from B2 (0, 1). To see that this suffices we
make use of some well known facts regarding positive definite kernels (for example refer to Schölkopf and
Smola, 2002).

Fact 3. If Kn, n ∈ N are positive definite kernels defined on some common domain then the following
statements are true

1. cmKm + cnKn is also a positive definite kernel provided cm, cn ≥ 0.

2. KmKn is also a positive definite kernel.

3. If lim
n→∞

Kn = K and K is continuous then K is also a positive definite kernel.

Starting with the fact that the dot product kernel is positive definite on any Hilbert space H, applying

Fact 3.1 and Fact 3.2, we get that for every n ∈ N , the kernel Kn(x,y) =
n∑
i=0

ai 〈x,y〉i is positive definite.

An application of Fact 3.3 along with the fact that the Maclaurin series converges uniformly within its
radius of convergence then proves the result.
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2 Positive definite dot product kernels over finite dimensional
spaces

As noted in the main paper, the original result of Schoenberg characterizing functions that yield a
positive definite dot product kernel over finite dimensional Euclidean spaces in terms of those admitting
positive Gegenbauer expansions is not very useful in practice. This is because of two reasons. Firstly,
as we shall show below, functions that have non-negative Gegenbauer expansions include those that
yield positive definite kernels only up to a certain dimensionality i.e. these kernels are positive definite
up to Rd0 for some fixed d0 and indefinite on all Euclidean spaces of dimensionality d > d0. Secondly,
from an algorithmic perspective, the Gegenbauer expansions do not seem amenable to the type of feature
construction methods described in this paper - this is because Gegenbauer polynomials themselves admit
negative coefficients.

The result characterizing positive definite functions over Hilbert spaces in terms of positive Maclaurin
expansions on the other hand is appealing for the very same reasons - functions satisfying this stronger
condition are positive definite over all finite dimensional spaces and the method readily lends itself to
feature construction methods.

Lemma 4. A function f : R→ R yields positive definite dot product kernels over all finite dimensional
Euclidean spaces iff it yields positive definite dot product kernels over Hilbert spaces.

Proof. We shall first prove this result for the special case of `2, the Hilbert space of all square summable
sequences. Schoenberg’s result (Corollary 2) will then allow us to extend it to all Hilbert spaces. The
if part follows readily from the observation that `2 contains all finite dimensional Euclidean spaces as
subspaces and the fact that any kernel that is positive definite over a set is positive definite over all its
subsets as well.

For the only if part consider any set of n points S = {x1,x2, . . . ,xn} ⊂ `2. Clearly there exists an
embedding Φ : S → Rn such that for all i, j ∈ [n], 〈Φ(xi),Φ(xj)〉 = 〈xi,xj〉 (note that the left and the
right hand sides are inner products over different spaces). Such an embedding can be constructed, for
example, by taking the Cholesky decomposition of the Gram matrix given by the inner product on `2
(the entries of the Gram matrix are finite by an application of Cauchy-Schwarz inequality).

Consider the matrix A = [aij ] where aij = f (〈Φ(xi),Φ(xj)〉). Since f yields positive definite kernels
over all finite dimensional Euclidean spaces, we have A � 0. However, by the isometry of the embedding,
we have aij = f (〈xi,xj〉). Hence, for any n <∞, for any arbitrary n points, the gram matrix given by
f(〈·, ·〉) is positive definite (here 〈·, ·〉 is the dot product over `2). Thus f yields a positive definite kernel
over `2 as well.

To finish off the proof we now use Schoenberg’s theorem to extend this result to all Hilbert spaces.
If a dot product kernel is positive definite over all finite dimensional spaces then the above argument
shows it to be positive definite over `2. Hence, by Corollary 2, the function f defining this kernel must
have a non-negative Maclaurin’s expansion. From here on an argument similar to the one used to prove
the sufficiency part of Corollary 2 (using Fact 3) can be used to show that this kernel is positive definite
over all Hilbert spaces.

On the other hand, if a dot product kernel is positive definite over Hilbert spaces, then we use its
positive-definiteness over `2, along with the argument used in showing the if part above, to prove that
the kernel is positive definite over all finite dimensional Euclidean spaces.

An easy application of Corollary 2 then gives us the following result :

Corollary 5. A function f : R→ R yields positive definite kernels over all finite dimensional Euclidean
spaces iff it is an analytic function admitting a Maclaurin expansion with only non-negative coefficients.

However, we note that even functions that have only positive Gegenbauer expansions (and not positive
Maclaurin expansions) may admit low dimensional feature maps. This is indicated by the Johnson-
Lindenstrauss Lemma (for example see Indyk and Motwani, 1998) that predicts the existence of low-
distortion embeddings from arbitrary Hilbert spaces (thus, in particular from the reproducing kernel
Hilbert spaces of these kernels) to finite dimensional Euclidean spaces. Interestingly, it is very tempting
to view the constructions of Rahimi and Recht (2007) and Vedaldi and Zisserman (2010) (among others)
as algorithmic versions of the Johnson-Lindenstrauss Lemma. The challenge in all such cases, however,
is to make these constructions explicit, uniform, as well as algorithmically efficient.
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3 Proof of Lemma 2

Lemma 6 (Lemma 2 restated). Let ω ∈ Rd be a vector each of whose coordinates have been chosen
pairwise independently using fair coin tosses from the set {−1, 1} and consider the feature map Z : Rd →
R, Z : x 7→ ω>x. Then for all x,y ∈ Rd, E

ω
[Z(x)Z(y)] = 〈x,y〉.

Proof. We have E
ω

[Z(x)Z(y)] = E
ω

[
ω>x · ω>y

]
= E

ω

[(
d∑
i=1

ωixi

)(
d∑
i=1

ωiyi

)]

= E
ω

 d∑
i=1

ω2
ixiyi +

d∑
i 6=j

ωiωjxiyj


=

d∑
i=1

E
ω

[
ω2
i

]
xiyi +

d∑
i 6=j

E
ω

[ωi]E
ω

[ωj ]xiyj

=

d∑
i=1

xiyi + 0 = 〈x,y〉

where in the third equality we have used linearity of expectation and the pairwise independence of the
different coordinates of ω. The fourth equality is arrived at by using properties of the distribution.
Notice that any distribution that is symmetric about zero with unit second moment can be used for
sampling the coordinates of ω. This particular choice both simplifies the analysis as well as is easy to
implement in practice.

4 Proof of Lemma 3

Lemma 7 (Lemma 3 restated). Let Z : Rd → R be the feature map constructed above. Then for all
x,y ∈ Ω, we have E [Z(x)Z(y)] = K(x,y) where the expectation is over the internal randomness of the
feature map.

Proof. We have E [Z(x)Z(y)]

= E
N

[
E

ω1,...,ωN

[Z(x)Z(y)]

∣∣∣∣N]

= E
N

aNpN+1 E
ω1,...,ωN

 N∏
j=1

ω>j x

N∏
j=1

ω>j y


= E

N

[
aNp

N+1
(
E
ω

[
ω>x · ω>y

])N]
= E

N

[
aNp

N+1 〈x,y〉N
]

=

∞∑
n=0

1

pn+1
· anpn+1 〈x,y〉n

= K(x,y).

where the first step uses the fact that the index N and the vectors ωi are chosen independently, the
fourth step uses the fact that the vectors ωi are chosen independently among themselves and the fifth
step uses Lemma 2.

5 Proof of Lemma 4

Lemma 8 (Lemma 4 restated). For all x,y ∈ Ω, we have |Z(x)Z(y)| ≤ pf(pR2).
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Proof. Since Z(x)Z(y) = aNp
N+1

N∏
j=1

ω>j x
N∏
j=1

ω>j y, by Hölder’s inequality we have, for all j,
∣∣ω>j x∣∣ ≤

‖ωj‖∞ ‖x‖1 ≤ R since every coordinate of ωj is either 1 or −1 and x ∈ Ω ⊆ B1 (0, R). A similar result

holds for
∣∣ω>j y∣∣ as well. Thus we have |Z(x)Z(y)| ≤ aNpN+1R2N ≤ p ·

∞∑
n=0

anp
nR2n = pf(pR2).

6 Proof of Lemma 5

Lemma 9 (Lemma 5 restated). If a bivariate function f defined over a domain Ω ⊆ Rd is L-Lipschitz
in both its arguments then for every x,y ∈ Ω, sup

x′∈B2(x,r)∩Ω
y′∈B2(y,r)∩Ω

|f(x,y)− f(x′,y′)| ≤ 2Lr.

Proof. We have |f(x,y)− f(x′,y′)| ≤ |f(x,y)− f(x,y′)| + |f(x,y′)− f(x′,y′)| ≤ L · ‖y − y′‖ + L ·
‖x− x′‖ ≤ 2Lr where in the second step we have used the fact that x,y′ ∈ Ω.

7 Proof of Lemma 6

Lemma 10 (Lemma 6 restated). We have

sup
x,y∈Ω

‖∇xK(x,y)‖ ≤ f ′(R2)

sup
x,y∈Ω

‖∇yK(x,y)‖ ≤ f ′(R2)

Proof. We have ∇xK(x,y) = ∇x

( ∞∑
n=0

an 〈x,y〉n
)

=
∞∑
n=0

an∇x 〈x,y〉n = y
∞∑
n=0

nan 〈x,y〉n−1
. Thus we

have ‖∇xK(x,y)‖ =

∥∥∥∥y ∞∑
n=0

nan 〈x,y〉n−1

∥∥∥∥ ≤ ∞∑
n=0

nan |〈x,y〉|n−1 ≤
∞∑
n=0

nan(R2)n−1 = f ′(R2) where in

the third step we have used the fact that x,y ∈ Ω ⊆ B1 (0, R) ⊂ B2 (0, R). Similarly we can show
sup

x,y∈Ω
‖∇yK(x,y)‖ ≤ f ′(R2).

8 Proof of Lemma 7

Lemma 11 (Lemma 7 restated). We have

sup
x,y∈Ω

‖∇x (Z1(x)Z1(y))‖ ≤ p2R
√
df ′(pR2)

sup
x,y∈Ω

‖∇y (Z1(x)Z1(y))‖ ≤ p2R
√
df ′(pR2)

Proof. Since 〈Z(x),Z(y)〉 = 1
D

D∑
i=1

Zi(x)Zi(y) and ∇x 〈Z(x),Z(y)〉 = 1
D

D∑
i=1

∇x (Zi(x)Zi(y)) we have

‖∇x 〈Z(x),Z(y)〉‖ ≤ 1
D

D∑
i=1

‖∇x (Zi(x)Zi(y))‖ by triangle inequality. Since all the Zi feature maps are

identical it would be sufficient to bound ‖∇x (Z1(x)Z1(y))‖ and by the above calculation, the same

bound would hold for ‖∇x 〈Z(x),Z(y)〉‖ as well. Let Z1 : x 7→
√
aNpN+1

N∏
j=1

ω>j x for some N ≤ k.

Thus we can bound the quantity ∇x (Z1(x)Z1(y)) as ∇x

(
aNp

N+1
N∏
j=1

ω>j x
N∏
j=1

ω>j y

)
which simpli-

fies to

(
aNp

N+1
N∏
j=1

ω>j y

)
∇x

(
N∏
j=1

ω>j x

)
and further to

(
aNp

N+1
N∏
j=1

ω>j y

)
N∑
j=1

(∏
i 6=j

ω>i x

)
ωi.
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We note that for any ω chosen, ‖ω‖ =
√
d. Moreover, as we have seen before, for any ω, sup

x∈Ω

∣∣ω>x∣∣ ≤
R by Hölder’s inequality. Thus we can bound ‖∇x (Z1(x)Z1(y))‖ as∥∥∥∥∥∥

aNpN+1
N∏
j=1

ω>j y

 N∑
j=1

∏
i6=j

ω>i x

ωi

∥∥∥∥∥∥
= aNp

N+1

 N∏
j=1

∣∣ω>j y∣∣
∥∥∥∥∥∥

N∑
j=1

∏
i 6=j

ω>i x

ωi

∥∥∥∥∥∥
≤ aNp

N+1

 N∏
j=1

∣∣ω>j y∣∣
 N∑

j=1

∏
i6=j

∣∣ω>i x∣∣
 ‖ωi‖

≤ aNp
N+1RN

N∑
j=1

RN−1
√
d = NaNp

N+1R2N−1
√
d

≤ p2R
√
d

∞∑
n=0

nan(pR2)n−1 = p2R
√
df ′(pR2)

where we have used the triangle inequality in the third step. Similarly we can show sup
x,y∈Ω

‖∇y (Z1(x)Z1(y))‖ ≤

p2R
√
df ′(pR2).

9 Alternate Feature Maps with Reduced Randomness Usage

Suppose we have a positive definite dot product kernel K defined on a domain Ω ⊂ B1 (0, R) in some

Euclidean space Rd by a function f(x) =
∞∑
n=0

anx
n. If we choose k = k(ε, R) such that

k∑
n=0

anR
2n =

f(R2) − ε (or select some set S ⊂ N ∪ {0} such that
∑
n∈S

anR
2n = f(R2) − ε and |S| = k) and cre-

ate a new kernel K̃(x,y) =
k∑

n=0
an 〈x,y〉n, then the residual error Rk = sup

x,y∈Ω

∣∣∣K̃(x,y)−K(x,y)
∣∣∣ =

sup
x,y∈Ω

∣∣∣∣∣ ∞∑i=k+1

an 〈x,y〉n
∣∣∣∣∣ ≤ ∞∑

i=k+1

anR
2n ≤ ε since Ω ⊂ B1 (0, R) ⊂ B2 (0, R) and

∞∑
n=0

anR
2n = f(R2).

Thus for all x,y ∈ Ω, K(x,y) − ε ≤ K̃(x,y) ≤ K(x,y) + ε. Since K̃ also satisfies the conditions of
Corollary 2, one can now obtain ε1-accurate feature maps for K̃ using the techniques mentioned above
and those feature maps would provide an (ε+ ε1)-accurate estimate to K.

10 Designing Feature Maps for Compositional Kernels

We are given a compositional kernel Kco defined as Kco(x,y) = Kdp(K(x,y)) for some positive definite
dot product kernel Kdp and an arbitrary positive definite kernel K for which we wish to provide random
feature maps. We assume that we have black-box access to a (possibly randomized) feature map selection
routine A which when invoked, returns a feature map W : Rd → R for K. We first formally state the
assumptions made about the kernel K and the feature maps returned by A :

1. K is defined over some domain Ω ⊂ Rd.

2. K is bounded i.e. we have sup
x,y∈Ω

|K(x,y)| ≤ CK for some CK ∈ R+.

3. K is Lipschitz i.e. we have sup
x,y∈Ω

‖∇xK(x,y)‖ ≤ LK and sup
x,y∈Ω

‖∇yK(x,y)‖ ≤ LK for some

LK ∈ R+.
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Algorithm 1 Random Maclaurin Feature Maps for Compositional Kernels

Require: A compositional positive definite kernel Kco(x,y) = Kdp(K(x,y)) = f(K(x,y)).
Ensure: A randomized feature map Z : Rd → RD such that 〈Z(x),Z(y)〉 ≈ Kco(x,y).

Obtain the Maclaurin expansion of f(x) =
∞∑
n=0

anx
n by setting an = f(n)(0)

n! .

Fix a value p > 1.
for i = 1 to D do

Choose a non negative integer N ∈ N ∪ {0} with P [N = n] = 1
pn+1 .

Get N independent instantiations of the feature map for K from A as W1, . . . ,WN .

Let feature map Zi : x 7→
√
aNpN+1

N∏
j=1

Wj(x).

end for
Output Z : x 7→ 1√

D
(Z1(x), . . . , ZD(x)).

4. W is an unbiased estimator of K i.e. for all x,y ∈ Ω, E [W (x)W (y)] = K(x,y) where the
expectation is over the internal randomness of W .

5. W is a bounded feature map i.e. there exists some CW ∈ R+ such that sup
x∈Ω
|W (x)| ≤

√
CW .

6. W is Lipschitz on expectation i.e. for some LW ∈ R+, sup
x∈Ω

E [‖∇xW (x)‖] ≤ LW .

Our feature map construction algorithm is similar to the one used for dot product kernels. We pick
a non-negative integer N ∈ N ∪ {0} with P [N = n] = 1

pn+1 for some fixed p > 1 and output the feature

map Z : Rd → R, Z : x 7→
√
aNpN+1

N∏
j=1

Wj(x) where W1, . . . ,WN are independent instantiations of

the feature map W associated with the kernel K. We concatenate D such feature maps to give our final
feature map.

It is clear that on expectation, the product of the feature map values is equal to the value of the
kernel i.e. E

N,W1,...,WN

[〈Z(x),Z(y)〉] = Kcomp(x,y) where Z : Rd → RD, Z : x 7→ 1√
D

(Z1(x), . . . , ZD(x)).

Yet again we expect that the concatenation of D such feature maps for a large enough D would provide
us a close approximation to Kco with high probability. For this we first prove that our feature map is
bounded.

Lemma 12. For all x,y ∈ Ω, |Z(x)Z(y)| ≤ pf(pCW ).

Proof. Z(x)Z(y) = aNp
N+1

N∏
j=1

Wj(x)
N∏
j=1

Wj(x). Using the bound on the feature maps we get the

inequality |Z(x)Z(y)| ≤ aNpN+1CNW ≤ pf(pCW )

Thus we have for any x,y ∈ Ω, P [|〈Z(x),Z(y)〉 −Kco(x,y)| ≤ ε] with probability at least 1 −
2 exp

(
−Dε

2

8C2
1

)
where C1 = pf(pCW ). We now investigate the Lipschitz properties of Kco and our feature

map.

Lemma 13. We have

sup
x,y∈Ω

‖∇xKco(x,y)‖ ≤ LKf
′(CK)

sup
x,y∈Ω

‖∇yKco(x,y)‖ ≤ LKf
′(CK)

Proof. Kcomp(x,y) =
∞∑
n=0

anK(x,y)n. Thus we have by linearity∇xKcomp(x,y) =
∞∑
n=0

an∇x (K(x,y)n) =

∞∑
n=0

nanK(x,y)n−1∇xK(x,y) i.e ‖∇xKcomp(x,y)‖ ≤ ‖∇xK(x,y)‖
∞∑
n=0

nanC
n−1
K ≤ LKf

′(CK). Simi-

larly we have sup
x,y∈Ω

‖∇yKco(x,y)‖ ≤ LKf ′(CK).
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We next move on to the Lipschitz properties of Z. Since we have only made assumptions on the
expected Lipschtiz properties of W , we would only be able to give guarantees on the expected Lipschitz
properties of Z. However, as we shall see, these would be sufficient to provide a uniform convergence
guarantee over the entire domain Ω. As before, we find that by linearity of expectation, analyzing the
expected Lipschitz properties of a single feature map Z are sufficient to guarantee, on expectation, similar
properties for Z as well.

Lemma 14. We have

sup
x,y∈Ω

‖∇x (Z(x)Z(y))‖ ≤ LW p
2
√
CW f

′(pCW )

sup
x,y∈Ω

‖∇y (Z(x)Z(y))‖ ≤ LW p
2
√
CW f

′(pCW )

Proof. Since Z(x)Z(y) = aNp
N+1

N∏
j=1

Wj(x)Wj(y), by linearity we can write

∇xZ(x)Z(y) =

aNpN+1
N∏
j=1

Wj(y)

 N∑
j=1

∏
i 6=j

Wi(x)

∇xWj(x)

Thus we can then write ‖∇xZ(x)Z(y)‖ as

aNp
N+1

∣∣∣∣∣∣
N∏
j=1

Wj(y)

∣∣∣∣∣∣
∥∥∥∥∥∥
N∑
j=1

∏
i 6=j

Wi(x)

∇xWj(x)

∥∥∥∥∥∥ ≤ aNpN+1C
N
2

W

N∑
j=1

C
N−1

2

W ‖∇xWj(x)‖

which gives us, by linearity of expectation and the bound on the expected Lipschitz properties of the
individual estimators,

E [‖∇xZ(x)Z(y)‖] ≤ NaNp
N+1C

N− 1
2

W LW

= LW p
2
√
CW ·NaN (pCW )

N−1

≤ LW p
2
√
CW f

′(pCW )

The other part follows similarly.

Working as before we find that the error function E(x,y) = 〈Z(x),Z(y)〉−Kco(x,y) is, on expectation,
L1-Lipschitz for L1 = LKf

′(CK) + LW p
2
√
CW f

′(pCW ). Hence the probability that the error function
will not be ε

2r -Lipschitz is less than 2L1r
ε by an application of Markov’s inequality. However if this is not

the case then constructing an ε-net at scale r over the domain Ω and ensuring that the estimator provides
an ε/2-approximation at centers of these points would ensure an ε-accurate estimation to the kernel on

the entire domain Ω. Setting up such a net would require at most
(

4R
r

)d
centers if Ω ⊆ B1 (0, R). Adding

the failure probabilities of the estimator not being accurate on the ε-net centers to the probability of
the error function not being Lipschitz gives us the total error probability of our estimator giving an

inaccurate estimate over any point in the domain as 2
(

4R
r

)d
exp

(
−Dε

2

8C2
1

)
+ 2L1r

ε .

Looking at this quantity as of the form k1r
−d + k2r and setting r =

(
k1
k2

) 1
d+1

gives us the error

probability as 2k
1

d+1

1 k
d

d+1

2 ≤
(

32RL1

ε

)
exp

(
− Dε2

8C2
1d

)
if ε < 8RL1 which gives us the following theorem.

Theorem 15. Let Ω ⊆ B1 (0, R) be a compact subset of Rd and Kco(x,y) = Kdp(K(x,y)) be a
compositional kernel defined on Ω satisfying the necessary boundedness and Lipschitz conditions. As-
suming we have black-box access to a feature map selection algorithm for K also satisfying the nec-
essary boundedness and Lipschitz conditions, for the feature map Z defined in Algorithm 1, we have

P
[

sup
x,y∈Ω

|〈Z(x),Z(y)〉 −Kco(x,y)| > ε

]
≤
(

32RL1

ε

)
exp

(
− Dε2

8C2
1d

)
where C1 = pf(pCW ) and L1 = LKf

′(CK)+

LW p
2
√
CW f

′(pCW ) for some small constant p > 1. Moreover, with D = Ω
(
dC2

1

ε2 log
(
RL1

εδ

))
, one can

ensure the same with probability greater than 1− δ.
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