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Abstract

This material provides additional information
about the paper “Subset Infinite Relational Mod-
els” appeared in AISTATS 2012.

1 A Gibbs solution for the one-domain
SIRM

1.1 The generative model

First, we review the full description of the “one-domain”
SIRM model.

φ|a, b ∼ Beta (a, b) , (1)
θk,l|ck,l, dk,l ∼ Beta

(
ck,l, dk,l

)
, (2)

λi|e, f ∼ Beta (e, f ) , (3)
ri|λi ∼ Bernoulli (λi) , (4)

zi|ri = 1, α ∼ CRP (α) (5)
zi|ri = 0 ∼ I (zi = 0) , (6)

xi, j|Z, R, {θ}, φ ∼ Bernoulli
(
θ

rir j
zi,z jφ

1−rir j
)
. (7)

Eq. (1) defines the distribution of a relation strength for ir-
relevant data entries φ. Eq. (2) defines an relation strength
from the clsuter k to cluster l for relevant data entries.
λi, i = 1, 2, . . . ,N in Eq. (3) denotes the probability of a
relevancy flag variable ri being 1. ri = {0, 1} in Eq. (4)
indicates whether the object i is relevant or not.

zi = k ∈ {1, 2, . . . } indicates the clsuter assignment of the
object i. zi is also represented as a 1-of-K type vector: i.e. if
zi = k, then zi,k = 1 and zi,k′,k = 0. The relevancy variables
R = {ri}i=1,...,N affects the remaining generative process. If
ri = 1, then zi is chosen based on the CRP as in Eq. (5).
Otherwise (ri = 0), then its cluster assignments is set to
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zi = 0 with a probability 1 as in Eq. (6). I (·) denotes that
the predicate always hold with a probability 1. Finally, the
observed relation xi, j, 1 ≤ i, j ≤ N is conditioned by Z
and R. Eq. (7) is slightly tricky: if the both of items i and
j is assumed as relevant objects i.e. ri = r j = 1, then
“relevant” relation strengths θ is used as a parameter of a
Bernoulli trial. Otherwise, “irrelevant” relation strength φ
is employed.

1.2 Probability distributions

p (φ; a, b) = φa−1 (1 − φ)b−1 B−1 (a, b) . (8)

p (Θ = {θ}; c, d)

=
∏
k=1

∏
l=1

θ
ck,l−1
k,l
(
1 − θk,l

)dk,l−1 B−1 (ck,l, dk,l
)
. (9)

p (Λ = {λ}; e, f ) =
∏

i

λe−1
i (1 − λi) f−1 B−1 (e, f ) . (10)

p (R = {r};Λ) =
∏

i

λri
i (1 − λi)1−ri . (11)

When the number of the clusters is K excluding the 0th
cluster,

p (Z = {z}; R, α) = αK
∏K

k=1 (mk − 1)!∏M
i=1 (α + i − 1)

, (12)

where mk is defined later in Eq. (16), and M =
∑

k mk.

p (X = {x}; Z, R,Θ, φ)

=

N∏
i=1

N∏
j=1

(
θ

rir j
zi,z jφ

1−rir j
)xi, j
(
1 − θrir j

zi,z jφ
1−rir j
)(1−xi, j)

=
∏

i

∏
j

∏
k

∏
l

[
θ

xi, j

k,l
(
1 − θk,l

)(1−xi, j)
]rizi,kr jz j,l

×
∏

i

∏
j

[
φxi, j (1 − φ)(1−xi, j)

](1−rir j)
, (13)

where zi,k and z j,l are the aforementioned 1-of-K vector rep-
resentations.
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1.3 Sampling Hidden Variables

As described in the main article paper, simultaneous sam-
pling of ri and zi leads to a simpler inference for SIRM than
deriving a solution for each variable independently. There-
fore we explain how to simultaneously sample ri and zi.

Regarding the sampling of the ith object, let us denote the
current number of realized clusters by K. And we divide
the observations X into two parts: data entries who relates
to the object i X+i = {xi,·, x·,i}, and those who does not X\i =
{X \ X+i}. Also we define the following quantities:

nk,l =
∑

i

∑
j

rizi,kr jz j,lxi, j, (14)

n̄k,l =
∑

i

∑
j

rizi,kr jz j,l

(
1 − xi, j

)
, (15)

mk =
∑

i

rizi,k, (16)

q =
∑

i

∑
j

(
1 − rir j

)
xi, j, (17)

q̄ =
∑

i

∑
j

(
1 − rir j

) (
1 − xi, j

)
. (18)

The superscript \i denotes the above statistics computed on
X\i. Also the superscript +i0, +ik denotes that the same
statistics computed on X+i assuming ri = 0 or {ri = 1, zi =

k}, respectively.

We formulate the Gibbs posterior of {ri, zi} as follows:

p
(
zi = k, ri|X, Z\i, R\i

)
∝ p
(
zi = k, ri|Z\i, R\i

)
× p
(
X+i|zi = k, ri, X\i, Z\i, R\i

)
(19)

The first term of the right hand of Eq. (19) is easy. Multiply
Eq. (11), and Eq. (12) and marginalize λi out thanks to the
conjugacy.

p
(
zi = k, ri|Z\i, R\i

)
∝ p
(
zi = k|ri, Z\i

)
p
(
ri|R\i

)
=
[
p
(
zi = k|ri = 1, Z\i

)
+ p (zi = k|ri = 0)

]
×
∫

p (ri|λi) p
(
λi|R\i

)
dλi

∝


f +
∑

i′,i (1 − ri′) ri = 0, zi = 0,(
e +
∑

i′,i ri′
) m\ik

α+
∑

k m\ik
ri = 1, zi = k ∈ {1, 2, . . . ,K},(

e +
∑

i′,i ri′
) α

α+
∑

k m\ik
ri = 1, zi = K + 1.

(20)

The second term of the right hand of Eq. (19) requires some
computations. To see this, we rewrite the second term in

more detailed way:

p
(
X+i|zi = k, ri, X\i, Z\i, R\i

)
=

∫
p
(
X+i|zi = k, ri, φ,Θ

)
p
(
φ,Θ|X\i, Z\i, R\i

)
dφdΘ,

(21)

where Θ = {θk,l}. First, we need to compute the posterior
of paramters φ and θ excluding the information of the ithe
object. Then we compute the marginal lieklihood of X+i

given zi and ri.

Using Eq. (9), Eq. (8) and Eq. (13), the posterior of param-
eteres is calculated as follows:

p
(
φ,Θ|Z\i, R\i, X\i

)
∝ p
(
X\i|φ,Θ, Z\i, R

)
p (φ,Θ)

= Beta
(
φ; a + q\i, b + Q\i

)
×
∏

k

∏
l

Beta
(
θk,l; ck,l + n\ik,l, dk,l + N\ik,l

)
(22)

As you can see in Eq. (22), the posterior is a product of
Beta distributions. Since p

(
X+i|zi = k, ri, φ,Θ

)
is a prod-

uct of Bernoulli distributions (Eq. (13)), again we can use
conjugacy to obtain the second term of the right hand of
Eq. (19). Then we have the following euqations:

p
(
X+i|zi = 0, ri = 0, Z\i, R\i

)
=

B
(
a + q\i + q+i0, b + q̄\i + q̄+i0

)
B
(
a + q\i, b + q̄\i

) , (23)

and

p
(
X+i|zi = k, ri = 1, Z\i, R\i

)
=

B
(
a + q\i + q+i1k, b + q̄\i + q̄+i1k

)
B
(
a + q\i, b + q̄\i

)
×

B
(
ck,k + n\ik,k + n+i1k

k,k , dk,k + n̄\ik,k + n̄+i1k
k,k

)
B
(
ck,k + n\ik,k, dk,k + n̄\ik,k

)
×
∏
l,k

B
(
ck,l + n\ik,l + n+i1k

k,l , dk,l + n̄\ik,l + n̄+i1k
k,l

)
B
(
ck,l + n\ik,l, dk,l + n̄\ik,l

)
×
∏
l,k

B
(
cl,k + n\il,k + n+i1k

l,k , dl,k + n̄\il,k + n̄+i1k
l,k

)
B
(
cl,k + n\il,k, dl,k + n̄\il,k

) . (24)

1.4 Posteriors of parameters

p (φ|X, Z, R) = Beta (a + q, b + q̄) (25)

p
(
θk,l|X, Z, R

)
= Beta

(
ck,l + nk,l, dk,l + n̄k,l

)
(26)

p (λi|R) = Beta (e + ri, f + (1 − ri)) (27)
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2 A Gibbs solution for two-domain SIRM

2.1 The genarative model

In the case of cross-domain relational data (D1 × D2 →
{0, 1}), we need to augment the “two-domain” IRM model.
Its extension is easy: we just double the variables of “one-
domain” SIRM. The generative model for the two-domain
SRIM is described as follows:

φ|a, b ∼ Beta (a, b) , (28)
θk,l|ck,l, dk,l ∼ Beta

(
ck,l, dk,l

)
, (29)

λ1,i|e1, f1 ∼ Beta (e1, f1) , (30)
λ2, j|e2, f2 ∼ Beta (e2, f2) , (31)

r1,i|λ1,i ∼ Bernoulli
(
λ1,i
)
, (32)

r2, j|λ2, j ∼ Bernoulli
(
λ2, j

)
, (33)

z1,i|r1,i = 1, α1 ∼ CRP (α1) , (34)
z1,i|r1,i = 0 ∼ I (z1,i = 0

)
, (35)

z2, j|r2, j = 1, α2 ∼ CRP (α2) , (36)

z2, j|r2, j = 0 ∼ I
(
z2, j = 0

)
, (37)

xi, j|Z1,Z2,R1,R2,{θ},φ ∼ Bernoulli
(
θ

r1,ir2, j
z1,i,z2, jφ

1−r1,ir2, j
)
. (38)

Eq. (28) defines the distribution of a relation strength for ir-
relevant data entries φ. Eq. (29) defines an relation strength
from the first domain clsuter k to the second domain cluster
l for relevant data entries. λ1,i, i = 1, 2, . . . ,N1 in Eq. (30)
denotes the probability of a relevancy flag variable ri in
the first domain being 1. r1,i = {0, 1} in Eq. (32) indicates
whether the object i of the first domain is relevant or not.
z1,i ∈ {1, 2, . . . } indicates the clsuter assignment of the ob-
ject i in the first domain. If r1,i = 1, then z1,i is chosen based
on the CRP as in Eq. (34). Otherwise (r1,i = 0), then its
cluster assignments is set to 0 as in Eq. (35). In a symmet-
ric fashion, λ2, j, j = 1, 2, . . . ,N2 in Eq. (30), r2, j = {0, 1}
in Eq. (33), and z2, j ∈ {1, 2, . . . } are defined in the second
domain.

Finally, the observed relation xi, j, 1 ≤ i, j ≤ N is condi-
tioned by all hidden variables. If the both of items i and
j is assumed as relevant objects i.e. r1,i = r2, j = 1, then
“relevant” relation strengths θ is used as a parameter of a
Bernoulli trial. Otherwise, “irrelevant” relation strength φ
is employed.

2.2 Probability distributions

p (φ; a, b) = φa−1 (1 − φ)b−1 B−1 (a, b) (39)

p (Θ = {θ}; c, d)

=

K∏
k=1

K∏
l=1

θ
ck,l−1
k,l
(
1 − θk,l

)dk,l−1 B−1 (ck,l, dk,l
)

(40)

p
(
λ1 = {λ1,i}; e1, f1

)
=

N1∏
i=1

λe1−1
1,i
(
1 − λ1,i

) f1−1 B−1 (e1, f1) .

(41)

p
(
λ2 = {λ2, j}; e2, f2

)
=

N2∏
j=1

λe2−1
2, j

(
1 − λ2, j

) f2−1
B−1 (e2, f2) .

(42)

p
(
R1 = {r1,i}; λ1

)
=

N1∏
i=1

λ
r1,i

1,i
(
1 − λ1,i

)1−r1,i . (43)

p
(
R2 = {r2, j}; λ2

)
=

N2∏
j=1

λ
r2, j

2, j

(
1 − λ2, j

)1−r2, j
. (44)

When the number of clusters in the first domain is K1 ex-
cluding the k = 0th cluster,

p
(
Z1 = {z1,i}; R1, α1

)
= αK1

∏K1
k=1
(
m1,k − 1

)
!∏M1

i=1 (α1 + i − 1)
(45)

where m1,k is defined in Eq. (50) and M1 =
∑

k m1,k. Sim-
ilary, when the number of clusters in the second domain is
K2 excluding the l = 0th cluster,

p
(
Z2 = {z2, j}; R2, α2

)
= αK2

∏K2
l=1
(
m2,l − 1

)
!∏M2

j=1 (α2 + j − 1)
(46)

where m2,l is defined in Eq. (51) and M2 =
∑

l m2,l.

p (X = {x}; R1, R2, Z1, Z2,Θ, φ)

=

N1∏
i=1

N2∏
j=1

(
θ

r1,ir2, j
z1,i,z2, jφ

1−r1,ir2, j
)xi, j
(
1 − θr1,ir2, j

z1,i,z2, jφ
1−r1,ir2, j

)(1−xi, j)

=

N1∏
i=1

N2∏
j=1

K1∏
k=1

K2∏
l=1

[
θ

xi, j

k,l
(
1 − θk,l

)(1−xi, j)
]r1,iz1,i,kr2, jz2, j,l

×
N1∏
i=1

N2∏
j=1

[
φxi, j (1 − φ)(1−xi, j)

]1−r1,ir2, j
(47)

2.3 Sampling Hidden Variables

As in the case of the one-domain models, simultaneous
sampling of ri and zi leads to a simpler inference algorithm.
Further, solutions for two domains are completely symmet-
ric. Thus, we only present the sampling scheme for r1,i and
z1,i.

Regarding the sampling of the ith object in the first do-
main, let us denote the current number of realized clusters
in D1 and D2 by K1 and K2, respectively. And we divide
the observations X into two parts: data entries who relates
to the object i X+i = {xi, j} j=1,...,N2 , and those who does not
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X\i = {X \ X+i}. Also we define the following quantities:

nk,l =
∑

i

∑
j

r1,iz1,i,kr2, jz2, j,lxi, j, (48)

n̄k,l =
∑

i

∑
j

r1,iz1,i,kr2, jz2, j,l

(
1 − xi, j

)
, (49)

m1,k =
∑

i

r1,iz1,i,k, (50)

m2,l =
∑

j

r2, jz2, j,l, (51)

q =
∑

i

∑
j

(
1 − r1,ir2, j

)
xi, j, (52)

q̄ =
∑

i

∑
j

(
1 − r1,ir2, j

) (
1 − xi, j

)
. (53)

The superscript \i denotes the above statistics computed
on X\i. Also the superscript +i0, +ik denotes that the
same statistics computed on X+i assuming r1,i = 0 or
{r1,i = 1, z1,i = k}, respectively.

We formulate the Gibbs posterior of {ri, zi} as follows:

p
(
z1,i = k, r1,i|X, Z\i1 , Z2, R\i1 , R2

)
∝ p
(
z1,i = k, r1,i|Z\i1 , R

\i
1

)
× p
(
X+i|z1,i = k, r1,i, Z\i1 , Z2, R\i1 , R2, X\i

)
(54)

We can obtain the first term of the right hand of Eq. (54)
by following the computation of Eq. (20). We easily obtain
the followings for the prior term:

p
(
z1,i = k, r1,i|Z1,\i, R1,\i

)
∝


f1 +
∑

i′,i
(
1 − r1,i′

)
r1,i = 0, z1,i = 0(

e1 +
∑

i′,i r1,i′
) m\i1,k

α1+
∑

k m\i1,k
r1,i = 1, z1,i = k ∈ {1, . . . ,K1}(

e1 +
∑

i′,i r1,i′
) α1

α1+
∑

k m\i1,k
r1,i = 1, z1,i = K1 + 1

(55)

The second term of the right hand of Eq. (54) is a likelihood
term. Since the domain is separated for this case, the result-
ing solution is much simpler thant the case of one-domain
model. Again we just follow the same path with Eq. (23)
and Eq. (24), we can easily compute the likelihood terms.
The results are shonw below:

p
(
X+i|z1,i = 0, r1,i = 0, Z1,\i, Z2, R1,\i, R2, φ,Θ

)
=

B
(
a + q\i + q+i0, b + q̄\i + q̄+i0

)
B
(
a + q\i, b + q̄\i

) , (56)

p
(
X+i|r1,i = 1, z1,i = k, Z1,\i, Z2, R1,\i, R2, φ,Θ

)
=

B
(
a + q\i + q+ik, b + q̄\i + q̄+ik

)
B
(
a + q\i, b + q̄\i

)
×

K2∏
l=1

B
(
ck,l + n\ik,l + n+ik

k,l , dk,l + n̄\ik,l + n̄+ik
k,l

)
B
(
ck,l + n\ik,l, dk,l + n̄\ik,l

) . (57)

2.4 Posteriors of parameters

p (φ|X, Z1, Z2, R1, R2) = Beta (a + q, b + q̄) (58)

p
(
θk,l|X, Z1, Z2, R1, R2,Θ\(k,l)

)
= Beta

(
ck,l + nk,l, dk,l + n̄k,l

)
(59)

p
(
λ1,i|R1

)
= Beta

(
e1 + r1,i, f1 +

(
1 − r1,i

))
(60)


