Variable Selection for Gaussian Graphical Models

A Technical Lemma

In Theorem 2, we use four matrix norm inequalities
that are less common in the literature. In this section,
we prove them in detail.

Lemma 8. For A € RVN*N | the following conditions
hold:

i [|All2 £ VN||A]o 2

ii. [|Allz < N[[Alloo

iii. All2 <[[All12

iv. A>0= HA||2 < ||A||1,oo

(14)

Proof. Claim i follows from [|Al2 < JAllz <
VN||A]so.2- The last inequality is equivalent
to [JAlZ < NIAIZ, = X0 =
Nmaxa, (5, @) Lot o] = S a2y, we
get >, [en;| £ Nmaxy, [cp,|. This is equivalent to
[lellr < Nlc|loo, and we prove our claim.

Claim ii follows from ||Alz < |JAllz < ||A]1 <
N||Al|so,1- The last inequality is equivalent to

anng |an1n2| S Nmaxnl (Zn'z |an1n2|)' Let |Cn1.| :
ZM |@nyny |, We get an |en,| < N maxy, |¢n,|. Thisis
equivalent to ||c|l1 < N||c||oo, and we prove our claim.
Claim iii follows from [[Al2 < [|Allz < [|All1,2-

/ 2
an’ﬂg anlnz <

2 _ 2
Let ¢, = >, an ,,, we get

The last inequality is equivalent to
an Z'ILQ angnQ °
\/ 2o, Cor < 2 n VCay = 2o, leng |- This is equiv-

alent to ||c||2 < ||c||1, and we prove our claim.

Claim iv further assumes that A is symmetric and
positive definite. In this case the spectral radius is
less than or equal to any induced norm, specifically
the ¢ 1-norm also called the maxz absolute row sum
norm. The inequality we want to prove is ||A|ls <
[Allco,1 < ||All1,00- The last inequality is equivalent
to maxy, (ZnQ |@nyn,|) < an (maxn, |@nyn,|), which
follows from the Jensen’s inequality. O

B Additional Experimental Results

In what follows, we test the performance of our meth-
ods with respect to edge density and the proportion
of connected nodes. The following results complement
Fig.2 which reported KL divergence between the re-
covered models and the ground truth for the “low
variance confounders” regime. Fig.5 and 6 show the
ROC curves and KL divergence between the recovered
models and the ground truth for the “high variance
confounders” regime. Our /¢; 5 and ¢; o, methods re-
cover ground truth edges better than competing meth-
ods (higher ROC) when edge density among connected
nodes is moderate (0.5) to high (0.8), regardless of the
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Figure 5: ROC curves for structures learnt for the “high
variance confounders” regime (N = 50 variables, different
connectedness and density levels). Our proposed meth-
ods £1,2 (L2) and ¢1,0c (LI) recover the ground truth edges
better than Meinshausen-Biihlmann with AND-rule (MA),
OR-rule (MO), graphical lasso (GL) and covariance selec-
tion (CS), when the edge density among the connected
nodes is moderate (center) to high (right).

proportion of connected nodes. Our proposed methods
get similarly good probability distributions (compara-
ble KL divergence) than the other techniques. In the
“low variance confounders” regime reported in Fig.7
and Fig.2, our proposed methods produce better prob-
ability distributions (lower KL divergence) than the re-
maining techniques. The behavior of the ROC curves
is similar to the “high variance confounders” regime.
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Figure 6: Cross-validated KL divergence for structures
learnt for the “high variance confounders” regime (N = 50
variables, different connectedness and density levels). Our
proposed methods ¢12 (L2) and ¢1,0c (LI) produce sim-
ilarly good probability distributions than Meinshausen-
Bithlmann with AND-rule (MA), OR-rule (MO), graphical
lasso (GL), covariance selection (CS) and Tikhonov regu-
larization (TR).
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Figure 7: ROC curves for structures learnt for the “low
variance confounders” regime (N = 50 variables, different
connectedness and density levels). Our proposed meth-
ods 41,2 (L2) and ¢1,c (LI) recover the ground truth edges
better than Meinshausen-Biihlmann with AND-rule (MA),
OR-rule (MO), graphical lasso (GL) and covariance selec-
tion (CS), when the edge density among the connected
nodes is moderate (center) to high (right).



