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Abstract

In the multiarmed bandit problem a gambler
chooses an arm of a slot machine to pull con-
sidering a tradeoff between exploration and
exploitation. We study the stochastic bandit
problem where each arm has a reward dis-
tribution supported in [0, 1]. For this model,
there exists a policy which achieves the the-
oretical bound asymptotically. However the
optimal policy requires a computation of a
convex optimization which involves the em-
pirical distribution of each arm. In this pa-
per, we propose a policy which exploits the
first d empirical moments for arbitrary d fixed
in advance. We show that the performance of
the policy approaches the theoretical bound
as d increases. This policy can be imple-
mented by solving polynomial equations and
we derive the explicit solution for d smaller
than 5. By choosing appropriate d, the pro-
posed policy realizes a tradeoff between the
computational complexity and the expected
regret.

1 Introduction

The multiarmed bandit problem is one of the formula-
tions of the tradeoff between exploration and exploita-
tion. This problem is based on an analogy with a
gambler playing a slot machine with more than one
arm. The gambler pulls arms sequentially so that the
total reward is maximized.

We consider a K-armed stochastic bandit problem
originally considered in Lai and Robbins (1985). There
are K arms and each arm i = 1, · · · ,K has a prob-
ability distribution Fi with the expected value µi.
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The gambler chooses an arm to pull based on a pol-
icy and receives a reward according to Fi indepen-
dently in each round. For the largest expected value
µ∗ ≡ maxi µi, we call an arm i optimal if µi = µ∗ and
suboptimal if µi < µ∗. Then, the goal of the gambler
is to maximize the sum of the rewards by pulling opti-
mal arms as often as possible. Much research has been
conducted for the stochastic bandit problem (Agrawal,
1995; Even-Dar et al., 2002; Strens, 2000; Vermorel
& Mohri, 2005; Gittins, 1989) as well as the non-
stochastic bandit problem(Auer et al., 2002b).

In this paper we consider the model F , the family of
distributions with supports contained in the bounded
interval [0, 1]. The gambler knows that each distribu-
tion Fi is included in F . For this model Upper Con-
fidence Bound (UCB) policies are popular for their
simple form and fine performance (Auer et al., 2002a;
Audibert et al., 2009). Recently Honda and Take-
mura (2010) proposed Deterministic Minimum Empir-
ical Divergence (DMED) policy which satisfies for ar-
bitrary suboptimal arm i that

E[Ti(n)] ≤
1 + o(1)

Dmin(Fi, µ∗)
logn , (1)

where Ti(n) denotes the number of times that arm i
has been pulled over the first n rounds and

Dmin(F, µ) ≡ min
G∈F :EG[X]≥µ

D(F‖G)

with Kullback-Leibler divergence D(·‖·). DMED
is asymptotically optimal since the coefficient
1/Dmin(Fi, µ

∗) of log n on the right-hand side of (1)
coincides with the theoretical bound given in Burne-
tas and Katehakis (1996). However, the complexity of
the DMED policy is still larger than e.g. UCB policies,
although the computation involved in DMED is formu-
lated as a univariate convex optimization problem. It
is mainly because DMED requires the empirical distri-
butions of the arms themselves whereas other popular
policies can be computed only by the empirical mo-
ments of the arms, such as means and variances.

Now, our question is how we can bring the perfor-
mance close to the right-hand side of (1) by a pol-
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icy which only considers the first d empirical moments
of the arms at each round. In this paper, we pro-
pose DMED-M policy which is a variant of DMED
and is computable only by the empirical moments of
the arms. For arbitrary suboptimal arm i, DMED-M
satisfies

E[Ti(n)] ≤
1 + o(1)

infF∈F :E(d)(F )=E(d)(Fi) Dmin(F, µ∗)
log n ,

(2)

where E(d)(F ) ≡ (EF [X], · · · ,EF [X
d]) denotes the

first d moments of F and this upper bound approaches
(1) as d → ∞.

DMED-M is obtained by an analogy with DMED. In-
tuitively, DMED exploits the fact that the maximum
likelihood that an arm i pulled t times is actually the
best is roughly exp(−tDmin(F̂i, µ̂

∗)), where F̂i is the
empirical distribution of the arm i and µ̂∗ is the cur-
rently best sample mean. When ignoring properties of
the distribution F̂i except for its first d moments, we
overestimate the maximum likelihood as

exp
(
− t inf

F∈F :E(d)(F )=E(d)(F̂i)
Dmin(F, µ̂

∗)
)

instead of exp(−tDmin(F̂i, µ̂
∗)) and the bound (2) ap-

pears correspondingly.

In DMED-M, it is necessary to compute the mini-
mum infF∈F :E(d)(F )=(M1,··· ,Md) Dmin(F, µ) for the ar-

gument (M1, · · · ,Md) ∈ [0, 1]d at every round. Classi-
cal results on Tchebycheff systems and moment spaces
reveal that the objective function Dmin( · , µ) is con-
tained in a class in which the optimal solution F̄ is
determined only by the value of the first d moments
M = (M1, · · · ,Md). Therefore the infimum is ob-
tained by computing firstly the optimal solution F̄ and
then the value of the function Dmin(F̄ , µ). Both are
obtained by solving polynomial equations and DMED-
M can be computed efficiently for small d.

Note that the above minimization problem is written
as a minimization of Kullbuck-Leibler divergence with
moment constraints for two distributions, say

inf
F,G :

EG[X] ≥ µ ,

EF [Xi] = Mi , i = 1, · · · , d

D(F‖G) . (3)

Such a minimization of a divergence function on
moment constraints has been researched extensively
(Csiszar & Matus, 2009). However, these results do
not necessarily give an explicit solution of the min-
imization although they transform the minimization
into a simpler form. Then, our result can be regarded
as a special case that the minimization can be solved
explicitly by the theory of Tchebycheff systems.

This paper is organized as follows. In Sect. 2, we give
definitions used throughout this paper. We propose
DMED-M policy in Sect. 3 and consider its practical
implementation in Sect. 4. In Sect. 5, we discuss an
improvement of DMED-M in terms of the worst case
performance. We present some simulation results on
DMED-M in Sect. 6. We conclude the paper with some
remarks in Sect. 7. We introduce the theory of Tcheby-
cheff systems and moment spaces and give a proof of
the main theorem applying this theory in the supple-
mentary material.

2 Preliminaries

Let F be the family of probability distributions on
[0, 1] and Fi ∈ F be the distribution of the arm i =
1, . . . ,K. EF [·] denotes the expectation under F ∈ F .
When we write e.g. EF [u(X)] for a function u : R →
R, X denotes a random variable with distribution F .
The expected value of arm i is denoted by µi ≡ EFi [X]
and the optimal expected value is denoted by µ∗ ≡
maxi µi.

Let Ti(n) be the number of times that arm i has been
pulled through the first n rounds. F̂i(n) and µ̂i(n)
denote the empirical distribution and the mean of arm
i after the first n rounds, respectively. The highest
empirical mean after the first n rounds is denoted by
µ̂∗(n) ≡ maxi µ̂i(n). We call an arm i a current best
if µ̂i(n) = µ̂∗(n).

Now we review results in Honda and Takemura (2010).
Define an index for F ∈ F and µ ∈ [0, 1]

Dmin(F, µ) ≡ min
G∈F :E(G)≥µ

D(F‖G) ,

where Kullback-Leibler divergenceD(F‖G) is given by

D(F‖G) ≡
{
EF

[
log dF

dG

]
dF
dG exists,

+∞ otherwise.

Under DMED policy proposed in Honda and Take-
mura (2010), the expectation of Ti(n) for any subop-
timal arm i is bounded as

E[Ti(n)] ≤
1 + ǫ

Dmin(Fi, µ∗)
log n+O(1) , (4)

where ǫ > 0 is arbitrary. The coefficient of the loga-
rithmic term 1/Dmin(Fi, µ

∗) is the best possible (Bur-
netas & Katehakis, 1996) and the following property
holds for the function Dmin(F, µ).

Proposition 1 (Honda and Takemura, (2010, The-
orems 5 and 8)). If EF [X] ≥ µ then Dmin(F, µ) = 0.
If EF [X] < µ = 1 then Dmin(F, µ) = ∞. If EF [X] <
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µ < 1,

Dmin(F, µ)

= max
0≤ν≤ 1

1−µ

EF [log(1− (X − µ)ν)]

=





EF [log (1−X)]− log(1− µ) EF

[
1

1−X

]
≤ 1

1−µ ,

max
0<ν< 1

1−µ

EF [log(1− (X − µ)ν)] otherwise,

(5)

where we define log 0 = −∞ and 1/0 = +∞.

Let E(d)(F ) ≡ (EF [X], · · · ,EF [X
d]) denote the first d

moments of F . The set of distributions with the first
d moments equal to M = (M1, · · · ,Md) is defined as

F(M) ≡ {F ∈ F : E(d)(F ) = M}. Now D
(d)
min(M , µ)

in (3) is written as

D
(d)
min(M , µ) = inf

F∈F(M)
Dmin(F, µ) .

This functionD
(d)
min plays a central role throughout this

paper.

3 DMED-M Policy

In this section we propose DMED-M policy. This pol-
icy determines an arm to pull based on the empirical
moments of the arms. DMED-M requires computation

of the function D
(d)
min and we analyze this function in

the next section.

In Algorithm 1, each arm is pulled at most once in
one loop. Through the loop, the list of arms pulled
in the next loop is determined. LC denotes the list of
arms to be pulled in the current loop. LN denotes the
list of arms to be pulled in the next loop. LR ⊂ LC

denotes the list of remaining arms of LC which have
not yet been pulled in the current loop. The criterion
for choosing an arm i is the occurrence of the event
Ji(n) given by

Ji(n) ≡
{Ti(n)D

(d)
min(E

(d)(F̂i(n)), µ̂
∗(n)) ≤ logn− log Ti(n)} ,

(6)

where E(d)(F̂i(n)) represents the first d empirical mo-
ments of arm i.

As shown in the algorithm, |LC | arms are pulled in
one loop. At every round, arm i is added to LN if
Ji(n) occurs unless i ∈ LR, that is, arm i is planned to
be pulled in the remaining rounds in the current loop.
Note that if arm i is a current best for the n-th round
then Ji(n) holds since D

(d)
min(E

(d)(F̂i(n)), µ̂
∗(n)) = 0

for this case. Then LC is never empty. Note

Algorithm 1 DMED-M Policy

Parameter: Integer d > 0.
Initialization:
LC , LR := {1, · · · ,K}, LN := ∅, n := K.
Pull each arm once.

Loop:
1. For i ∈ LC in ascending order,

1.1. n := n+1 and pull arm i. LR := LR \{i}.
1.2. LN := LN ∪ {j} (without a duplicate) for

all j /∈ LR such that Jj(n) occurs.

2. LC , LR := LN and LN := ∅.

that DMED in Honda and Takemura (2010) is ob-

tained by replacing D
(d)
min(E

(d)(F̂i(n)), µ̂
∗(n)) in (6)

by Dmin(F̂i(n), µ̂
∗(n)). In view of Theorem 2 below,

DMED can be regarded as DMED-M with d = ∞.

Theorem 1. Under DMED-M policy, for any subop-
timal arm i and ǫ > 0 it holds that

E[Ti(n)] ≤
1 + ǫ

D
(d)
min(E

(d)(Fi), µ∗)
log n+O(1) (7)

where O(1) denotes a constant independent of n.

We can prove this theorem in a similar way as Theorem
4 of Honda and Takemura (2010) using the fact that

Dmin(F, µ) ≥ D
(d)
min(E

(d)(F ), µ) always holds. How-
ever, we omit the proof because it is long and very
similar to the proof of Theorem 4 of Honda and Take-
mura (2010). The bound in Theorem 1 approaches
that of DMED given by (4) as d → ∞ from the fol-
lowing theorem, which we show in Appendix A .

Theorem 2. For arbitrary F ∈ F it holds that

lim
d→∞

D
(d)
min(E

(d)(F ), µ) = Dmin(F, µ) .

Note that this theorem is not necessarily useful practi-
cally since the convergent speed is not mentioned. We
examine the speed by simulations in Sect 6.

Remark 1. The significance of this theorem rather
lies in the consequence that DMED coincides with
DMED-M with d = ∞. From this theorem we can infer
that DMED-M will be asymptotically optimal among
policies exploiting the first d moments of the arms,
since it is true at least for d = ∞, although we were
not able to prove it for finite d.

4 Practical Implementation

For a computation and a theoretical evaluation of
DMED-M, it is essential to analyze the function
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D
(d)
min(M , µ). In this section we study an explicit

representation of this function and the complexity of
DMED-M implemented by this representation.

4.1 Explicit Representation of D
(d)
min

The key to the explicit representation is a theory of
Tchebycheff systems (see the supplementary material
for detail).

Define the index of a positive measure on [0, 1] as the
size of its support under the special convention that
the points 0, 1 are counted as one half. When consider-
ing an optimization under the moment constraints, the
index plays an important role for the classification of
the feasible region F(M) = {F ∈ F : E(d)(F ) = M}.

First we consider a representation of D
(d)
min for a degen-

erate case.

Lemma 1. If the index of F ∈ F is smaller than

(d+ 1)/2 then D
(d)
min(E

(d)(F ), µ) = Dmin(F, µ).

This lemma is straightforward from Prop. 4 in the sup-
plementary material.

Now we consider a general case. Define a principal rep-
resentation of M as a probability measure such that
the first d moment is equal to M and its index is
(d+1)/2. The principal representation is called upper
if its support contains 1 and lower otherwise. There
always exist precisely one lower and one upper prin-
cipal representations except for the case in Lemma 1
(see Prop. 5). These representations are the key to the

simple expression of D
(d)
min.

Theorem 3. Assume that the index of F is larger
than or equal to (d + 1)/2. Then, (i) Dmin(F, µ), (ii)
−EF [X

d+1] and (iii) −EF [1/(1−X)] are minimized by
the upper principal representation F̄ over distributions
with first d moments equal to M = E(d)(F ). Similarly,
they are maximized by the lower principal representa-
tion F over these distributions.

We see from (i) (ii) of this theorem that Dmin(F, µ)
is minimized by the distribution such that (d + 1)-st
moment is smallest. The meaning of (iii) is described
in Sect. 5. An important point of this theorem is that
the minimizer F̄ of Dmin(F, µ) do not depend on the
argument µ. Thus, we can decompose the computa-

tion of D
(d)
min(M , µ) into two parts: the computation

of the upper principal representation F̄ and the value
of function Dmin(F̄ , µ).

For the former part, we see from the definition of the
upper principal representation that the support and its
weight {(xi, fi)}i=1,··· ,l of F̄ are the (unique) solution

of

l∑

i=1

fix
m
i = Mm (m = 0, · · · , d), x1 = 0, xl = 1 (8)

for odd d and

l∑

i=1

fix
m
i = Mm (m = 0, · · · , d), xl = 1 (9)

for even d, where l = ⌈d/2⌉+1 and the zeroth moment
is defined as M0 = 1.

For the latter part, we eventually have to solve the
maximization in (5) as in the case of DMED. However,
since the argument F̄ has a finite support, the optimal
solution ν∗ attaining the maximum is the solution of
l-th degree polynomial equation

d

dν
EF̄ [log(1− (X − µ)ν)]

=

∑l
i=1 fi(µ− xi)

∏
j 6=i(1− (xj − µ)ν)

∏l
i=1(1− (xi − µ)ν)

= 0 . (10)

We give an explicit form of D
(d)
min(M , µ) for d ≤ 4 in

the following theorem.

Theorem 4. Assume that M1 < µ < 1 and the same

condition as in Theorem 3 holds. Then D
(d)
min(M , µ) is

expressed for d = 1, 2 as

D
(1)
min(M , µ) = (1−M1) log

1−M1

1− µ
+M1 log

M1

µ
,

D
(2)
min(M , µ)

=
(1−M1)

2

1− 2M1 +M2
log

(
1−

(
M1 −M2

1−M1
− µ

)
ν(2)

)

+
M2 −M2

1

1− 2M1 +M2
log
(
1− (1− µ) ν(2)

)

where

ν(2) =
(1−M1)(M1 − µ)

(1−M1)µ2 − (1−M2)µ+M1 −M2
.

For d = 3, 4, it is expressed as

D
(d)
min(M , µ) =

3∑

l=1

f
(d)
l log(1− (x

(d)
l − µ)ν(d)) ,

where

ν(d) =

{
−b+

√
b2+4ac
2a , a 6= 0,

c
b , a = 0,

for

a =(x
(d)
1 − µ)(x

(d)
2 − µ)(x

(d)
3 − µ)

b =(M2 + µM1 − 2µ2) + (x
(d)
1 + x

(d)
2 + x

(d)
3 )(µ−M1)

c = µ−M1 ,
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and {x(d)
l } and {f (d)

l } are given as follows:

(x
(3)
1 , x

(3)
2 , x

(3)
3 ) =

(
0,

M2 −M3

M1 −M2
, 1

)

f
(3)
2 =

(M1 −M2)
3

(M2 −M3)(M1 − 2M2 +M3)

f
(3)
3 =

M1M3 −M2
2

M1 − 2M2 +M3

f
(3)
1 = 1− f

(3)
2 − f

(3)
3 , (11)

and

(x
(4)
1 , x

(4)
2 , x

(4)
3 )=

(
β −

√
β2 − 4α

2
,
β +

√
β2 − 4α

2
, 1

)

f
(4)
1 =

x
(4)
2 (M1 − 1) + (M1 −M2)

(x
(4)
1 − 1)(x

(4)
2 − x

(4)
1 )

f
(4)
2 =

−x
(4)
1 (M1 − 1)− (M1 −M2)

(x
(4)
2 − 1)(x

(4)
2 − x

(4)
1 )

f
(4)
3 = 1− f

(4)
1 − f

(4)
2 , (12)

where

α =

−M4(M1 −M2) +M3(M1 −M3)−M2(M2 −M3)

M2(M1 −M2)−M1(M1 −M3) + (M2 −M3)

β =
M2(M2 −M3)−M1(M2 −M4) + (M3 −M4)

M2(M1 −M2)−M1(M1 −M3) + (M2 −M3)
.

This theorem is obtained by solving (10) with the so-
lution of (8) and (9) given in Lemma 2 below.

Lemma 2. Assume that the same condition as in The-
orem 4 holds. Then the solution ({x(d)

i }, {f (d)
i }) of (8)

and (9) is expressed for d = 1, 2 as

(x
(1)
1 , x

(1)
2 ) = (0, 1)

(f
(1)
1 , f

(1)
2 ) = (1−M1,M1)

(x
(2)
1 , x

(2)
2 ) =

(
M1 −M2

1−M1
, 1

)

(f
(2)
1 , f

(2)
2 ) =

(
(1−M1)

2

1− 2M1 +M2
,

M2 −M2
1

1− 2M1 +M2

)
,

and is given by (11) and (12) for d = 3, 4.

This lemma can be confirmed by substitution of

({x(d)
i }, {f (d)

i }) into (8) and (9).

Remark 2. For d more than 4, it is required to solve
a polynomial equation of degree more than 2 and the

explicit representation of D
(d)
min is unrealistic or un-

available. However, simulation results in Sect. 6 shows
that Dmin(E

(d)(F ), µ) is very close to Dmin(F, µ) for
d = 3, 4 and it seems to be sufficient to consider these
degrees to achieve performance near DMED in prac-
tice.

Remark 3. The expression of D
(1)
min(M , µ) coin-

cides with the KL divergence D(B(M1)‖B(µ)) between
Bernoulli distributions with expectations M1 and µ.
The divergence between the Bernoulli distributions
with these expectations is also considered by Gariv-
ier and Cappé (2011). In their paper, it is shown
that their KL-UCB policy achieves the same asymp-
totic bound as (7) for d = 1 with a finite-time regret
bound. In the viewpoint of our paper, KL-UCB can
be extended formally so that first d moments can be
exploited. Since UCB-type policies are generally good
at performance for small rounds, these extensions may
satisfy both of good performance for small rounds and
fine asymptotic behavior.

4.2 Complexity of DMED-M

In this subsection we first compare the complexity of
DMED-M with DMED, i.e. DMED-M with d = ∞,
and next examine the complexity of DMED-M for
varying d.

In DMED, we have to compute

Dmin(F̂i(n), µ̂
∗(n))

= max
0≤ν≤ 1

1−µ

EF̂i(n)
[log(1− (X − µ̂∗(n))ν)]

for all currently suboptimal arms. Since the objective
function is an expectation of the empirical distribution
from Ti(n) = O(log n) samples, it has complexity at
least O(K log n) per round.

On the other hand in DMED-M, D
(d)
min(E

(d)(F ), µ̂∗(n))
is computed in constant time on n. It is because the
empirical moments can be computed from the sums∑Ti(n)

t=1 Xm
i,t, (m = 1, · · · , d) of samples Xi,1, · · · , Xi,t

from arms i, which can be updated by d additions for
each round. Therefore DMED-M has an advantage
over DMED since the complexity do not grows with
number of rounds.

Next we consider the complexity of DMED-M for vary-
ing degree d. The complexity for one computation of
the solution of (8) or (9) is denoted by C1(d) and that
of the solution of (10) is denoted by C2(d). They cor-
respond to the complexity for computing the upper
principal representation F̄ from M and the value of
the function Dmin(F̄ , µ), respectively.

It is difficult to formulate C1(d), the complexity of
solving simultaneous polynomial equations for general
d. However, since the principal representation only
depends on the empirical moments of the arm, we have
to compute it at most once per round. Furthermore,
the principal representation has to be computed only
for currently suboptimal arms. Since suboptimal arms
are pulled at most O(log n) times, the probability that
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a currently suboptimal arm is pulled at n-th round is
roughly O(1/n) from d(log n)/dn = 1/n. As a result,
the complexity coming from the computation of the
principal representation is O(C1(d)/n) per round and
vanishes as n increases.

Next we consider C2(d), the complexity for solving
(10), which is generally computed by an iterative
method, such as Newton’s method. Whereas it is nec-
essary to compute for almost all rounds and arms,
the arguments F̄ and µ do not deviate from those of
the last round very much. Then the iteration halts
very quickly and the complexity mainly depends on
the complexity of computing the objective function,
which consists of l = ⌈d/2⌉+ 1 = O(d) terms. There-
fore C2(d) ≈ O(d) and the complexity coming from
the computation of Dmin(F̄ , µ) is roughly O(Kd) per
round. This is the complexity of DMED-M itself after
sufficiently large rounds from the argument on C1(d).

5 Improvement of DMED-M Policy

In DMED-M, Dmin(F, µ) is bounded from below by

D
(d)
min(E

(d)(F ), µ). When the gap between D
(d)
min and

Dmin is small, DMED-M behaves like the asymptoti-
cally optimal policy, DMED. In this section, we pro-
pose DMED-MM policy which is obtained by a slight
modification to DMED-M. We discuss that DMED-
MM works successfully for the case where the gap be-

tween D
(d)
min and Dmin is large.

Define a function D̃
(d)
min(F, µ) by

D̃
(d)
min(F, µ) ≡

{
Dmin(F, µ) EF

[
1

1−X

]
≤ 1

1−µ ,

D
(d)
min(E

(d)(F ), µ) otherwise,

where recall thatDmin(F, µ) = EF [log(1−X)]−log(1−
µ) for the first case. DMED-MM (DMED-M Mixed) is

the policy obtained by replacing D
(d)
min(E

(d)(F̂i(n)), µ)

in DMED-M with D̃
(d)
min(F̂i(n), µ). Then the criterion

for choosing an arm is the same as DMED for the case
EF̂i(n)

[1/(1−X)] ≤ 1/(1−µ) and the same as DMED-
M otherwise.

Note that the complexity of DMED-MM is almost
the same as DMED-M since EF̂i(n)

[1/(1 − X)] and

EF̂i(n)
[log(X − µ)] can be computed in constant time

from the sums
∑

t 1/(1 − Xi,t) and
∑

t log(1 − Xi,t),
which can be updated in constant time per round.

The relation between DMED, DMED-M and DMED-
MM can be illustrated as follows. From Theorem 3
(i), we see that for the lower principal representation
F DMED-M behaves most differently from DMED
among distributions with common moments. On the
other hand, from Theorem 3 (iii), the lower principal
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Figure 1: The ratio of gap Dmin(F, µ) − D
(d)
min

(E(d)(F ), µ) to Dmin(F, µ) for beta distributions
Be(α, β) as d increases.

representation is the most typical measure satisfying
EF [1/(1 − X)] ≤ 1. Once this condition is satisfied,
DMED-MM works the same as DMED. In this sense
DMED-MM improves the worst case performance of
DMED-M.

6 Numerical Experiments

In this section we examine the properties of D
(d)
min and

the performance of DMED-M and DMED-MM numer-
ically. We use beta distributions Be(α, β) for distribu-
tions of the arms since they cover various forms of
distributions on [0, 1].

First we examine the speed of the convergence

of D
(d)
min(E

(d)(F ), µ) to Dmin(F, µ). Fig. 1 shows

(Dmin(F, µ) − D
(d)
min(E

(d)(F ), µ))/Dmin(F, µ), i.e. the

ratio of the gap between Dmin and D
(d)
min, as d in-

creases for various F and µ. We used µ = 0.55, 0.65
and beta distributions Be(0.6, 0.9), Be(1.2, 1.8) as F .
These beta distributions have the same expectation
0.4, but the density of Be(0.6, 0.9) has two peaks at
0 and 1 whereas that of Be(1.2, 1.8) has one peak
around its expectation. In these settings, the gap ra-
tio is roughly less than 10% even for d = 4, where

D
(d)
min is expressed explicitly. Note that the speed of

the convergence is especially slow for the distribu-
tion Be(1.2, 1.8) and µ = 0.65. This difference seems
to come from the fact that only this setting satis-
fies EF [(1 − µ)/(1 − X)] ≤ 1 among those in Fig. 1.
As discussed in the previous section, we can compute
Dmin(F, µ) without optimization for this case.
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Figure 2: Empirical regrets for beta distributions with
heavy weights around x = 1.
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Figure 3: Empirical regrets for beta distributions with
small weights around x = 1.

Next we compare the average regret of 1–4th de-
gree DMED-M with DMED, UCB2, UCB-tuned (Auer
et al., 2002a) for 5-armed bandit problems. Note that
UCB2 is an example of a policy which determines an
arm to pull based on the empirical means of the arms.
Similarly, UCB-tuned is an example of a policy which
chooses an arm based on the empirical means and vari-
ances.

In Figs. 2 and 3, each plot is an average over 1000
different runs. The vertical axis denotes the re-
gret

∑
i:µi<µ∗(µ∗ − µi)Ti(n), which is the loss due

to choosing suboptimal arms. Parameters of beta
distributions are (α, β) = (0.45, 0.05), (0.35, 0.15),
(0.25, 0.25), (0.15, 0.35), (0.05, 0.45) for Fig. 2 and
(α, β) = (1.8, 0.2), (1.4, 0.6), (1, 1), (0.6, 1.4), (0.2, 1.8)
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Figure 4: Comparison between DMED-M and DMED-
MM.

for Fig. 3, where they have the same expectations
µ = 0.9, 0.7, 0.5, 0.3, 0.1.

We see from the figures that DMED-M works better
than UCB polices for large rounds and approaches
DMED as d increases. Note that the gap between
DMED-M and DMED is larger in Fig. 3 than in Fig. 2.
It seems to be because the distributions have smaller
weights around x = 1 and are more different from up-
per principle representations in Fig. 3.

Finally we confirm that DMED-MM improves the
DMED-M for the case that the gap between DMED-M
and DMED is large. Fig. 4 shows a simulation result of
DMED-M and DMED-MM for the same distributions
as in Fig. 3. As shown in the figure, DMED-MM im-
proves DMED-M significantly although the complexi-
ties of these policies are very similar.

7 Conclusion

In this paper we proposed DMED-M policy which is
computed by the first d empirical moments of the
arms. The theoretical bound of DMED-M approaches
that of DMED, which is asymptotically optimal, as
d increases. The computation involved in DMED-M
is represented in an explicit form for d ≤ 4. We also
proposed DMED-MM policy which improves the worst
case performance of DMED-M with small increase of
the complexity.

An open problem is whether the asymptotic bound of
DMED-M is the best for all policies which only con-
sider the empirical moments. We may be able to prove
the optimality of DMED-M in this sense under some
regularity conditions.
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A Proof of Theorem 2

Theorem 2 is proved by a basic result on weak conver-
gence and Lévy distance (see, e.g., Lamperti (1996)).
We say that a sequence of probability distributions
{Fi} converges weakly to F if limi→∞ EFi [u(X)] =
EF [u(X)] for all bounded continuous functions u(x).
Define the Lévy distance L(·, ·) as

L(F,G) = inf{h > 0 : ∀x,
F (x− h)− h ≤ G(x) ≤ F (x+ h) + h} ,

where F (·) and G(·) denote cumulative distribution
functions. A weak convergence is equivalent to the
convergence of the Lévy distance, that is, {Fi} con-
verges weakly to F if and only if limi→∞ L(Fi, F ) = 0.

Proposition 2 (Honda and Takemura (2010), Theo-
rem 7). Dmin(F, µ) is continuous in F ∈ F with re-
spect to the Lévy distance.

Now we prove Theorem 2 by Prop. 2. In the following
proof we write M (d) for (M1, · · · ,Md) instead of M
to clarify the length of the vector.

Proof of Theorem 2. Define

L(d)(F ) = sup
G∈F(M(d))

L(G,F )

for M (d) = E(d)(F ). Since D
(d)
min(E

(d)(F ), µ) is
bounded as

Dmin(F, µ) ≥ D
(d)
min(E

(d)(F ), µ)

≥ inf
G:L(G,F )≤L(d)(F )

Dmin(G,µ) ,

it sufficies to show that

lim sup
d→∞

L(d)(F ) = lim sup
d→∞

sup
G∈F(M(d))

L(G,F ) = 0

from the continuity of Dmin(F, µ) in F .

Let {Gd ∈ F(M (d))}d=1,2,··· be a sequence such that

lim sup
d→∞

sup
G∈F(M(d))

L(G,F ) = lim sup
d→∞

L(Gd, F ) =: L̄ .

Since F ⊃ F(M (d)) is compact with respect to the
Lévy distance, there exist Ḡ ∈ F and a convergent
subsequence {Gdi

} of {Gd} such that

lim
i→∞

L(Gdi
, Ḡ) = 0 , (13)

lim
i→∞

L(Gdi
, F ) = L̄ , (14)

where (13) means that {Gdi} converges weakly to Ḡ.
From the definition of weak convergence, for all natural
numbers m ∈ N it holds that limi→∞ EGdi

[Xm] =

EḠ[X
m]. On the other hand, EGdi

[Xm] = EF [X
m]

for all di ≥ m from Gdi ∈ F(M (di)). Therefore we
obtain for all m ∈ N that

EF [X
m] = lim

i→∞
EGdi

[Xm] = EḠ[X
m] .

Note that a sequence of moments {EF [X
m]} has one-

to-one correspondence to a distribution F for the case
of the bounded support. Therefore Ḡ = F and we
obtain L̄ = 0 from (13) and (14).
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