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Abstract

We study online prediction of individual se-
quences under logarithmic loss with paramet-
ric constant experts. The optimal strategy,
normalized maximum likelihood (NML), is
computationally demanding and requires the
length of the game to be known. We con-
sider two simpler strategies: sequential nor-
malized maximum likelihood (SNML), which
computes the NML forecasts at each round as
if it were the last round, and Bayesian pre-
diction. Under appropriate conditions, both
are known to achieve near-optimal regret. In
this paper, we investigate when these strate-
gies are optimal. We show that SNML is opti-
mal iff the joint distribution on sequences de-
fined by SNML is exchangeable. This prop-
erty also characterizes the optimality of a
Bayesian prediction strategy for an exponen-
tial family. The optimal prior distribution is
Jeffreys prior.

1 Introduction

The aim of online learning under logarithmic loss is
to predict a sequence of outcomes xi ∈ X , revealed
one at a time, almost as well as a set of experts.
At round t, the forecaster’s prediction takes the form
of a conditional probability density qt(· | xt−1), where
xt−1 ≡ (x1, x2, · · · , xt−1) and the density is with re-
spect to a fixed measure λ on X . For example, if X is
discrete, λ could be the counting measure; for X = Rd,
λ could be Lebesgue measure. The loss that the fore-
caster suffers at that round is − log qt(xt | xt−1), where
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xt is the outcome revealed after the forecaster’s pre-
diction. The performance of the prediction strategy
is measured relative to the best in a reference set of
experts. The difference between the accumulated loss
of the prediction strategy and the best expert in the
reference set is called the regret. The goal is to min-
imize the regret in the worst case over all possible
data sequences. In this paper, we only consider i.i.d
canonical exponential families, parametrized by θ ∈ Θ,
which is a subset of the class of parametric constant
experts. A parametric constant expert is a parameter-
ized probability density pθ such that for all t > 0 and
for all x ∈ X , pθ

(
x | xt−1

)
= pθ (x).

Let xn ≡ (x1, x2, · · · , xn), xn
m ≡

(xm, xm+1, · · · , xn) and x0 ≡ (). We call any
sequential probability assignment of the form
qt(· | xt−1), a strategy. The regret of a strategy
on sequence xn with respect to a class of parametric
constant experts indexed by Θ, is defined as follows.

Definition 1 (Regret)

RΘ(xn, q(n))

=

n∑

t=1

− log qt(xt | xt−1)

− inf
θ∈Θ

n∑

t=1

− log pθ(xt | xt−1)

= sup
θ∈Θ

log
pθ(x

n)

q(n)(xn)
.

Note that any sequential probability assignment of
length n defines a joint distribution on the n outcomes
and vice versa [see Cesa-Bianchi and Lugosi, 2006, pg.
248]. In our definition of regret, q(n) denotes the joint
probability defined by the product of the n sequen-
tial probability assignments qt(xt | xt−1). Note that
q1(x1 | x0) = q1(x1).

The optimal strategy for this problem is known to be
normalized maximum likelihood (NML) [see chap. 7
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[Grunwald, 2007] and see Definition 3 below]. NML
suffers from two major drawbacks: the horizon n of
the problem needs to be known in advance, and the
strategy can be computationally expensive since it in-
volves marginalizing over subsequences. In this pa-
per, we consider the optimality of two approaches that
address these difficulties: Bayesian strategies, and se-
quential normalized maximum likelihood (SNML). We
consider the questions: what classes is SNML optimal;
for what classes does there exist a prior for which the
Bayesian strategy is optimal; and, in those cases, what
is the optimal prior? For certain parametric classes of
experts, Bayesian prediction with a particular choice of
prior (Jeffreys prior) has been shown to be asymptot-
ically optimal [see Grunwald, 2007, chaps 7,8]. SNML
is within a constant of the minimax regret [Kotlowski
and Grünwald, 2011]. We give characterizations of the
optimality of these strategies in terms of an elemen-
tary property of the joint distribution defined by the
SNML strategy. We show that SNML is optimal pre-
cisely when its joint distribution is exchangeable. In
the case of canonical exponential family distributions
on Rd, that is,

pθ(x) = h(x) exp (xᵀθ −A(θ)) ,

where θ, x ∈ Rd, h is a reference measure, and the
log normalization A ensures that pθ is a probability
distribution, we show that the optimal strategy is a
Bayesian strategy iff SNML is exchangeable and in this
case the optimal prior is Jeffreys prior.

2 Definitions and Notations

We consider a generalization of the regret of Defini-
tion 1. This is because sometimes some strategies are
only defined conditioned on a fixed initial sequence of
observations xm−1. Refer to Section 4 for two exam-
ples of these kinds of strategies. For such cases we
define the conditional regret of xn, given a fixed initial
sequence xm−1, in the following way [see Grunwald,
2007, chap. 11].

Definition 2 (Conditional Regret)

RΘ(xn
m, q(n) | xm−1)

=

n∑

t=m

− log qt(xt | xt−1)

− inf
θ∈Θ

n∑

t=1

− log pθ(xt | xt−1)

= sup
θ∈Θ

log
pθ(x

n)

q(n)(xn
m | xm−1)

.

Notice that the strategy q(n) defines only the condi-
tional distribution q(n)(xn

m | xm−1). We call such a

strategy a conditional strategy. In what follows, where
we consider a conditional strategy, we assume that
xm−1 is such that these conditional distributions are
always well defined.

Definition 3 (NML) Given a fixed horizon n, the
normalized maximum likelihood (NML) strategy is de-

fined via the joint probability distribution p
(n)
nml, defined

as

p
(n)
nml(x

n) =
supθ∈Θ pθ(x

n)∫
Xn supθ∈Θ pθ(yn) dλn(yn)

,

provided that the integral in the denominator exists.
For t ≤ n, the conditional probability distribution is

p
(n)
nml(xt | xt−1) =

p
(n)
nml(x

t)

p
(n)
nml(x

t−1)
,

where p
(n)
nml(x

t) and p
(n)
nml(x

t−1) are marginalized joint

probability distributions of p
(n)
nml(x

n):

p
(n)
nml(x

t) =

∫

Xn−t

p
(n)
nml(x

n) dλn−t(xn
t+1).

The regret of the NML strategy achieves the min-

imax bound, that is, q(n) = p
(n)
nml minimizes

maxxn RΘ(xn, q(n)). Furthermore, this strategy is an
equalizer, meaning that the regrets of all sequences of

observations of length n are equal. Note that p
(n)
nml

might not be defined if the normalization is infinite.
In some cases, there exits an m > 0, such that for all
n ≥ m, we can define the conditional probabilities

p
(n)
nml(x

n
m | xm−1) =

supθ∈Θ pθ(x
n)∫

Xn−m+1 supθ∈Θ pθ(xn) dλn−m+1(xn
m)

.

For these cases the conditional NML again at-

tains the minimax bound, that is, q(n) = p
(n)
nml

minimizes maxxn
m
RΘ(xn

m, q(n) | xm−1) [see Grunwald,
2007, chap. 11].

Definition 4 (SNML) In the sequential normalized
maximum likelihood (SNML) update, the conditional
probability distribution is defined in the following way.

psnml(xt | xt−1) =
supθ∈Θ pθ(x

t)∫
X supθ∈Θ pθ(xt) dλ(xt)

.

This update does not depend on the horizon. Under
mild conditions, the regret of SNML is no more than a
constant (independent of n) larger than the minimax
regret [Kotlowski and Grünwald, 2011]. Once again,
psnml is not defined if the integral in the denomina-
tor is infinite. In some cases, there exists an m > 0,
such that for all t ≥ m, the conditional probability
psnml(xt | xt−1) is properly defined.
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Definition 5 (Bayesian) In a Bayesian strategy,
the joint probability for t observations xt, is defined
in the following way:

pπ(x
t) =

∫

θ∈Θ

pθ(x
t) dπ(θ).

The conditional probability distribution is:

pπ(xt | xt−1) =
pπ(x

t)

pπ(xt−1)
.

We denote the conditional Bayesian strategy for a fixed
xm−1 as pπ(x

n
m | xm−1).

We shall focus on Bayesian strategies for canonical ex-
ponential family distributions. Under mild conditions,
the regret of this strategy is no more than a constant
(independent of n) larger than the minimax regret, and
for Jeffreys prior, the regret asymptotically approaches
the minimax regret [see Grunwald, 2007, chaps. 7,8].

3 Main Results

First, we show in Theorem 3.1 that SNML and NML
are equivalent if and only if psnml is exchangeable.
This happens only if NML is horizon-independent.
Then, we show in Theorem 3.3 that exchangeability
of psnml further implies the equivalence of NML, the
Bayesian strategy with Jeffreys prior, and SNML. This
theorem shows that the SNML and the Bayesian strat-
egy with Jeffreys prior are optimal in this case.

A stochastic process is called exchangeable if the joint
probability does not depend on the order of observa-
tions. In other words, for any n > 0 and any permuta-
tion σ, the joint probability of the first n observations
is equal to the joint probability of the same n observa-
tions permuted under σ. When we consider the con-
ditional distribution p(xn

m | xm−1) defined by a condi-
tional strategy, we are interested in exchangeability of
the conditional stochastic process, that is, invariance
under any permutation that leaves xm−1 unchanged.
Now we are ready to state and prove our main results.
The first result applies to any class (countable or un-
countable) for which the conditional strategies SNML
and NML are defined.

Theorem 3.1 SNML is equivalent to NML and hence
is minimax optimal if and only if psnml is exchange-
able.

Proof Fix the xm−1. Write the conditional regret un-

der SNML in the following way.

RΘ
snml(x

n | xm−1)

≡ RΘ(xn
m, psnml | xm−1)

= log sup
θ∈Θ

pθ(x
n) − log psnml(x

n
m | xm−1)

= log
pθ̂(x

n)

psnml(xn
m | xm−1)

,

where θ̂ is the maximum likelihood estimate of xn.
Now we show that the regret of SNML is independent
of xn:

psnml(x
n
m | xm−1)

= psnml(xn | xn−1)psnml(x
n−1
m | xm−1)

=
pθ̂(x

n)∫
supθ pθ(xn−1, x) dx

psnml(x
n−1
m | xm−1).

Combining the two previous equations, we get:

RΘ
snml(x

n | xm−1) = log

∫
supθ pθ(x

n−1, x) dx

psnml(x
n−1
m | xm−1)

. (1)

Therefore the regret is independent of the last ob-
servation. Now, we show that if psnml is exchange-
able, then the regret becomes independent of other
observations, which implies that it is an equalizer and
hence equivalent to NML. Let yn = xm−1znm be a
sequence of observations where znm is different from
xn
m. We show that the regret of yn is equal to that of

xn. Under any permutation of xn
m, sup θ∈Θ pθ (x

n)
does not change due to the fact that pθ(x

n) =∏n
i=1 pθ(xi). On the other hand psnml(· | xm−1) is ex-

changeable meaning that psnml

(
xn
m | xm−1

)
is permu-

tation invariant. Consequently, for any permutation
σ of xn that leaves xm−1 fixed, RΘ

snml(x
n | xm−1) =

RΘ
snml(σ(x

n) | xm−1). These two properties give us
the following.

RΘ
snml(x

m−1, xn
m | xm−1)

= RΘ
snml(x

m−1, xm, . . . , xn−1, ym | xm−1)

= RΘ
snml(x

m−1, ym, xm+1, . . . , xn−1, xm | xm−1)

= RΘ
snml(x

m−1, ym, xm+1, . . . , xn−1, ym+1 | xm−1)

= RΘ
snml(x

m−1, ym, ym+1, xm+2, . . . , xn−1, xm+1 | xm−1).

Continuing inserting ym+i at the last position and
swapping it with xm+i we see that R

Θ
snml(x

n | xm−1) =
RΘ

snml(y
n | ym−1) (remember ym−1 = xm−1). This

means that SNML is an equalizer and hence it is equiv-
alent to conditional normalized maximum likelihood.
Now, we prove the other direction. If SNML is equiv-
alent to NML, meaning that for any n ≥ m and any
xn
m,

psnml(x
n
m | xm−1) = p

(n)
nml(x

n
m | xm−1) =

p
(n)
nml(x

n)

p
(n)
nml(x

m−1)
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then SNML is exchangeable. This is because

p
(n)
nml(x

n) ∝ sup
θ

n∏

i=1

pθ(xi),

which makes the probability permutation invariant
and hence exchangeable. That is for any n and xn

m

the conditional probability psnml(x
n
m | xm−1) is invari-

ant over permutations of xn
m.

The next theorem shows that some Bayesian strat-
egy is optimal for a canonical exponential family iff
SNML is exchangeable. In that case, the optimal prior
is Jeffreys prior. For the proof of this theorem we
need a different notion of exchangeability that we call
sum − exchangeability and was introduced originally
in [Diaconis and Freedman, 1990]. De Finetti’s theo-
rem says that a binary stochastic process is exchange-
able if and only if it is a mixture of Bernoulli distri-
butions, i.e. there exists a prior π such that for any
n > 0

p(xn) =

∫

θ∈[0,1]

θ(
Pn

i=1 xi)(1− θ)(n−
Pn

i=1 xi)π(θ) dθ

and the prior π in this equation is unique. Diaconis
and Freedman extended this to exponential families
[Diaconis and Freedman, 1990], as in Lemma 3.2. We
need two definitions for this lemma. Here x1, x2, x3, . . .
is a sample path of a stochastic process p.

Definition 6 (sum-compatible) Let h be a non-
negative, finite, and locally integrable Borel function
on Rd. We call a general stochastic process p sum-
compatible with respect to h if ∀n > 0

p

(
0 < h(n)

(
n∑

i=1

xi

)
< ∞

)
= 1, (2)

where h(n) is the nth convolution of h, i.e.

h(n)(s) =

∫ (n−1∏

i=1

h(xi)

)
h

(
s−

n−1∑

i=1

xi

)
d x1 · · · d xn−1

(3)

Definition 7 (sum-exchangeable) Let h be a non-
negative, finite, and locally integrable Borel function
on Rd. We call a general stochastic process p sum-
exchangeable with respect to h if ∀n > 0 ,∀ s ∈ Rd

p

(
x1, . . . , xn

∣∣∣∣∣
n∑

i=1

xi = s

)
=

∏n
i=1 h(xi)

h(n)(s)
, (4)

where h(n) is the nth convolution of h.

Lemma 3.2 ([Diaconis and Freedman, 1990])
Consider a canonical maximal exponential family
pθ(x) = h(x)ex

ᵀθ -A(θ) over Θ = {θ ∈ Rd | A(θ) < ∞}
where the carrier density h is a non-negative, finite,
and locally integrable Borel function on Rd. A
stochastic process p is a mixture of distributions from
this family if and only if p is sum-compatible and
sum-exchangeable with respect to the carrier density
h.

Theorem 3.3 Suppose the class of parametric con-
stant experts is a canonical maximal exponential fam-
ily as defined in Lemma 3.2. Then the following are
equivalent.

(a) SNML is exchangeable

(b) SNML = NML

(c) SNML is sum-exchangeable and sum-compatible
with respect to h

(d) SNML = Bayesian with Jeffreys prior

(e) NML = Bayesian

(f) NML = Bayesian with Jeffreys prior

Proof See the appendix.

4 Examples

Bernoulli Distribution In this setting, the experts

are Bernoulli distributions, pµ(x
n) = µ(

Pn
i=1 xi)(1 −

µ)(n−
Pn

i=1 xi) with parameter space (0, 1). Con-
verting this to the canonical form we get pθ =
exp

(∑n
i=1 xiθ − log

(
eθ + 1

))
with Θ = R, where we

use the transformation θ = ln µ
1−µ . The SNML

is not defined for n = 1. However if xm−1 con-
tains at least one 0 and one 1, the conditional
SNML strategy is defined. Fix x2 = 10. Consider
x5 = (10011) and y5 = (10110). Then x5 is a
permutation of y5 with the initial x2 fixed. How-
ever psnml(x

5
3 | x2) = psnml(011 | 01) = 0.0930 6=

psnml(110 | 01) = psnml(y
5
3 | y2) = 0.0932. This means

that psnml( . | x2) is not exchangeable, hence SNML
and NML cannot be equivalent and neither is equiv-
alent to a Bayesian strategy. It turns out that the
regret of SNML in this case is better than Bayesian
with Jeffreys prior but worse than NML [Azoury and
Warmuth, 2001].

Exponential Distribution The distributions are of
the form pθ(x) =

1
θ e

−x/θ with Θ = (0,∞). It is easy

to check that for n = 1, psnml(x) ∝ 1
xe

−x/x ∝ 1
x which

does not normalize. Jeffreys prior is proportional to
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1/θ which does not normalize either. However for
x1, subsequent conditionals for Bayesian with Jeffreys
prior and SNML will be properly defined. For n > 1
the maximum likelihood estimate for θ is 1Pn

i=1
xi

n

and

therefore psnml(xn | xn−1) is proportional to

sup
θ

pθ(x
n) =

(
1Pn

i=1 xi

n

)n

exp

(
−
∑n

i=1 xiPn
i=1 xi

n

)

∝ 1

(
∑n

i=1 xi)n
.

Normalizing this we get

psnml(xn | xn−1) =

(
1Pn

i=1 xi

)n

∫∞
0

(
1Pn

i=1 xi

)n
d xn

=
(n− 1)

(∑n−1
i=1 xi

)n−1

(
∑n

i=1 xi)
n .

The conditional SNML becomes:

psnml(x
n
2 | x1) =

(2− 1)
(∑2−1

i=1 xi

)2−1

(∑2
i=1 xi

)2

×
(3− 1)

(∑3−1
i=1 xi

)3−1

(∑3
i=1 xi

)3

...

×
(n− 1)

(∑n−1
i=1 xi

)n−1

(
∑n

i=1 xi)
n

=
(n− 1)!x1

(
∑n

i=1 xi)
n .

As psnml(x
n
2 | x1) depends on

∑n
i=1 xi only, we get ex-

changeability, which in turn implies that SNML and
NML are equivalent. On the other hand, the exponen-
tial distribution can be converted to an instance of a
maximal canonical exponential family distribution by
the change of variable λ = −1

θ . Hence Theorem 3.3
implies that SNML and NML are also equivalent to
the Bayesian strategy with Jeffreys prior, conditioned
on the first observation. It is straightforward to verify
this.

Appendix

Proof of Theorem 3.3 Fix an appropriate xm−1 as
before. We prove the equivalence by showing that
(a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (e) ⇒ (f) and
(f) ⇒ (e) and (e) ⇒ (b) and finally (b) ⇒ (a).

(a) ⇐⇒ (b) : We showed this in Theorem 3.1.

(b) ⇒ (c) : psnml(x
n
m | xm−1) = p

(n)
nml(x

n
m | xm−1)

For ease of notation we let q(xn
m) ≡

psnml(x
n
m | xm−1) = p

(n)
nml(x

n
m | xm−1). Let∑m−1

i=1 xi = t, and let
∑n

i=m xi = s. The maximum

likelihood estimate is then θ̂ = (OA)
−1 ( s+t

n

)
. Writing

x̄n = s−∑n−1
i=m x̄i and x̄1 = x1, . . . , x̄m−1 = xm−1, we

have

p
(n)
nml

(
n∑

i=1

xi = s

∣∣∣∣∣x
m−1

)

=

∫ ∏n
i=1 h(x̄i)e

(s+t)ᵀθ̂-nA(θ̂)dx̄m · · · dx̄n−1

p
(n)
nml(x

m−1)

=

(∏m−1
i=1 h(xi)× e(s+t)ᵀθ̂-nA(θ̂)

)
× h(n−m+1)(s)

p
(n)
nml(x

m−1)
.

This is exactly the density of Yn ≡ Xm + . . . +
Xn|Xm−1 = xm−1 whereXi are random variables gen-
erated by NML of horizon n. By Lemma 3.1a in [Dia-
conis and Freedman, 1990] this density function should

be finite and positive with probability one under p
(n)
nml.

Since e(s+t)ᵀθ̂-nA(θ̂) and p
(n)
nml(x

m−1) and
∏m−1

i=1 h(xi)
are finite, so is h(n−m+1)(s). Clearly h(n−m+1)(s) > 0

almost surely under p
(n)
nml. Hence the conditional NML

which is equivalent to the conditional SNML is sum-
compatible with respect to h. Furthermore, with the
same notation, we have

q

(
xn
m

∣∣∣∣∣
n∑

i=m

xi = s

)

=
q(xn

m)∫
q(x̄n

m) dx̄m · · · dx̄n−1

=
p
(n)
nml(x

n
m | xm−1)

∫
p
(n)
nml(x̄

n
m | xm−1)d x̄m · · · d x̄n−1

=
p
(n)
nml(x

n)/p
(n)
nml(x

m−1)
∫
p
(n)
nml(x

m−1, x̄n
m)d x̄m · · · d x̄n−1/p

(n)
nml(x

m−1)

=

∏n
i=m h(xi)e

(s+t)ᵀθ̂-nA(θ̂)

∫ ∏n
i=m h(x̄i)e(s+t)ᵀθ̂-nA(θ̂)dx̄m · · · dx̄n−1

=

∏n
i=m h(xi)

h(n−m+1)(s)
.

Therefore psnml( . | xm−1) is sum-exchangeable with
respect to h as well.

(c) ⇒ (d) : When psnml is sum-compatible and
sum-exchangeable with respect to h, by Lemma 3.2,
psnml( . |xm−1) is a mixture of h(x)ex

ᵀθ−A(θ):

psnml(x
n
m | xm−1) =

∫
pθ(x

n
m)π(θ) dθ. (5)
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Now we let

π1(θ) = K × π(θ)

pθ(xm−1)
(6)

for aK > 0 chosen so that π1 is a density. Substituting
this into Equation (5) we get:

psnml(x
n
m | xm−1) =

∫
Θ
pθ(x

n)π1(θ) dθ∫
Θ
pθ(xm−1)π1(θ) dθ

.

Now, we consider the regret of psnml(x
n−1
m | xm−1).

If the maximum likelihood estimate θ̂ lies in a fixed,
bounded, closed subset of Θ which is bounded away
from the boundary of Θ, then the regret of a Bayesian
strategy with prior w is [see Grunwald, 2007, chap. 8]:

d

2
log

n

2π
− logw(θ̂) + log

√
detI(θ̂) + o(1).

We apply this theorem to zn−m+1 ≡ xn
m and π. Note

that θ̂xn
m

is the maximum likelihood estimate of xn
m.

The reason we can apply Grunwald’s theorem here is
twofold. First, the maximum likelihood estimate al-
ways exists because the family is full rank and A in-
vertible. Second, the parameter space Θ is open and
for any maximum likelihood estimate there should ex-
ist a bounded subset that contains the maximum like-
lihood estimate and is bounded away from the bound-
ary of the parameter space. Let’s denote the regret of
a Bayesian strategy with prior π on a sequence zp by
RΘ

π (z
p) and the regret of SNML on zp by RΘ

snml(z
p).

Then

RΘ
π (z

n−m+1)

= RΘ
snml(x

n
m)

=
d

2
log

n−m+ 1

2π
− log π(θ̂xn

m
)

+ log

√
detI(θ̂xn

m
) + o(1).

However, here we are calculating the conditional re-
gret. It is easy to verify the following relationship:

RΘ(xn
m) = RΘ(xn

m | xm−1)− log sup
θ

pθ(x
n)

+ log sup
θ

pθ(x
n
m).

Hence for conditional SNML we get the following,
where n1 = n−m+ 1:

RΘ
snml(x

n
m | xm−1)

= RΘ
snml(x

n
m)

+ log sup
θ

pθ(x
n)− log sup

θ
pθ(x

n
m)

=
d

2
log

n1

2π
− log π(θ̂xn

m
) + log

√
detI(θ̂xn

m
)

+ o(1) + log
pθ̂xn

(xn)

pθ̂xn
m

(xn
m)

. (7)

If conditional SNML is Bayesian then it is exchange-
able, and hence because (a) ⇒ (b) , conditional SNML
is also equivalent to conditional NML and hence has
equal regret for all xn

m. Hence the conditional regret
in (7) should not vary for fixed n and different xn

m. We
denote the value of this regret as cn1(x

m−1), empha-
sizing the fact that it depends on n1 and xm−1 only.
Simplifying (7) we get

π(θ̂xn
m
) =

(n1

2π

)d/2
×
√

detI(θ̂xn
m
)

× eo(1)

cn1(x
m−1)

×
pθ̂xn

(xn)

pθ̂xn
m

(xn
m)

. (8)

Fix θ0 = θ̂xn
m
. We let N = kn1 (k is a positive integer).

There exists a sequence yN whose maximum likelihood
estimate is θ0. This sequence is nothing but k copies of
xn
m, concatenated. The family is of full rank, therefore

A is strictly convex and its gradient invertible. This
means θ̂Y N , the maximum likelihood of Y N , is

θ̂Y N = (OA)
−1

(∑N
i=1 yi
N

)

= (OA)
−1

(
k ×∑n−1

i=m xi

n1k

)

= (OA)
−1

(∑n
i=m xi

n1

)
= θ̂xn

m
= θ0.

As N grows to infinity then θ̂(xmY N ) → θ̂Y N = θ0.

This means that
pθ̂xn

(xn)

pθ̂xn
m

(xn
m) in Equation (8) converges

to pθ0(x
m−1) as N → ∞. Using this and Equation (8)

limN→∞ π(θ̂Y N ) converges to:

π(θ0)
√

detI(θ0)pθ0(x
m−1)

(
lim

N→∞

(
N

2π

)d/2
1

cN (xm−1)

)
.

Since cN (xm−1) does not depend on θ0, π(θ0) =
c(xm−1)pθ0(x

m−1)
√

detI(θ0), for some function c.

Hence π(θ) ∝ pθ(x
m−1)

√
detI(θ), which in turn by

Equation (6) means π1(θ) ∝
√

detI(θ).

(d) ⇒ (e) : This is because, SNML being Bayesian
implies exchangeability of SNML and hence SNML
is equal to NML (by (a) ⇒ (b) ) which makes NML
Bayesian too.

(e) ⇒ (b) : NML being Bayesian means that there
exists a prior π, such that for any n > m and xn

m we
have

p
(n)
nml(x

n
m | xm−1) =

∫
pθ(x

n)π(θ)dθ∫
pθ(xm−1)π(θ)dθ

.

For n ≥ m, let A(n) be:

A(n) =

∫
sup
θ

pθ(x
m−1, zn−m+1) dzn−m+1.
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With this new definition we get :

p
(n−1)
nml (xn−1

m | xm−1) =
supθ pθ(x

n−1)

A(n− 1)
.

We can also get p
(n−1)
nml by marginalizing p

(n)
nml (re-

member NML is horizon independent because it is
Bayesian). Then for n > m:

p
(n−1)
nml (xn−1

m | xm−1)

=

∫

x

p
(n)
nml(x

n−1
m , x | xm−1)dx

=

∫

x

sup
θ

pθ(x
n−1, x)

A(n)
dx.

Therefore for n > m,

supθ pθ(x
n−1)

A(n− 1)
=

∫

x

sup
θ

pθ(x
n−1, x)

A(n)
dx.

Hence
∫

x

sup
θ

pθ(x
n−1, x) dx =

A(n)

A(n− 1)
sup
θ

pθ(x
n−1). (9)

This is also true for n = m if we define

A(m− 1) = sup
θ

pθ(x
m−1).

We know from Equation (1) that the conditional regret
of xn under SNML is

RΘ
snml(x

n | xm−1) = log

( ∫
supθ pθ(x

n−1, x) dx

psnml(x
n−1
m | xm−1)

)
.

Using Equation (9) we get

RΘ
snml(x

n | xm−1)

= log

[
A(n)

A(n− 1)
× supθ pθ(x

n−1)

psnml(x
n−1
m |xm−1)

]

= RΘ
snml(x

n−1|xm−1) + log
A(n)

A(n− 1)
.

Continuing this we get

RΘ
snml(x

n|xm−1)

= RΘ
snml(x

m−1|xm−1) +

n∑

i=m

log
A(i)

A(i− 1)

= log sup
θ

pθ(x
m−1) + log

A(n)

A(m− 1)

= logA(n).

This shows that the conditional regret is fixed for a
fixed xm−1 and hence the conditional SNML is an
equalizer and equivalent to conditional NML.

(e) ⇒ (f) : If NML is Bayesian then it is equal to
SNML and therefore SNML is Bayesian with Jeffreys

prior and hence so is NML. This is by (e) ⇒ (b) ⇒
(c) ⇒ (d).

(f) ⇒ (e) : This is trivial because Bayesian with
Jeffreys prior is a special case of being Bayesian.

Note that (d) ⇒ (f) was proved in Theorem 5 in
[Kotlowski and Grünwald, 2011].
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