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Abstract

Bayesian model comparison involves the eval-
uation of the marginal likelihood, the expec-
tation of the likelihood under the prior dis-
tribution. Typically, this high-dimensional
integral over all model parameters is ap-
proximated using Markov chain Monte Carlo
methods. Thermodynamic integration is a
popular method to estimate the marginal
likelihood by using samples from annealed
posteriors. Here we show that there ex-
ists a robust and flexible alternative. The
new method estimates the density of states,
which counts the number of states associated
with a particular value of the likelihood. If
the density of states is known, computation
of the marginal likelihood reduces to a one-
dimensional integral. We outline a maximum
likelihood procedure to estimate the density
of states from annealed posterior samples.
We apply our method to various likelihoods
and show that it is superior to thermody-
namic integration in that it is more flexible
with regard to the annealing schedule and
the family of bridging distributions. Finally,
we discuss the relation of our method with
Skilling’s nested sampling.

1 Introduction

Computation of the marginal likelihood — also called
the evidence (MacKay, 2003) — is a crucial step in
Bayesian model comparison. If our model M is based
on the prior m(#) = Pr(0|M) and the likelihood L(0) =
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Pr(D|0, M) where 6 are the parameters of the model
and D are the data, the marginal likelihood is given
by the integral

7= /L(@) (6) 0. (1)

Bayes factors, that is ratios of marginal likelihoods or
rather the difference of their logarithms, allow us to
rank two competing models relative to each other and
to evaluate how much each of them is supported by
the data (Jeffreys, 1939; Kass and Raftery, 1995).

Calculation of the marginal likelihood is very challeng-
ing and is analytically intractable for most models of
interest (Gelman and Meng, 1998). Standard numeri-
cal quadrature schemes fail to work due to the curse of
dimensionality. A remedy is offered by Markov chain
Monte Carlo (MCMC) methods. But if the posterior
probability, p(8) = L(6)w(0)/Z, is multimodal and
the parameters are highly correlated, sampling from
the posterior itself is a nontrivial task. For complex
posterior distributions, MCMC methods based on a
family of distributions that interpolate between the
prior and the posterior have proven to be successful
(Gelman and Meng, 1998). Often the family of dis-
tributions is constructed by introducing a fictitious
temperature and samples are drawn from annealed or
power posteriors (Friel and Pettitt, 2008). An instance
of thermal sampling is annealed importance sampling
(AIS) (Neal, 2001), which can be viewed as an MCMC
version of simulated annealing. Parallel tempering or
replica exchange Monte Carlo (Swendsen and Wang,
1986; Geyer, 1991) is a population version of AIS, in
which samples at all temperatures are generated in
parallel and exchanged.

The annealed posterior is defined as
p(0]8) = L(0)" m(6)/c(8) (2)

where f is the inverse temperature and the normaliza-
tion constant is

(9) = [ L0 x(6) ds. 3)
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The marginal likelihood is only well-defined if the
prior is normalizable (¢(0) < oo) and amounts to
Z = ¢(1)/c(0). The standard approach to calculate
the evidence from annealed posterior samples is to
use thermodynamic integration (TT) (Kirkwood, 1935;
Gelman and Meng, 1998). TI is based on the observa-
tion that

[ dloge(s)
logfe(/c)} = [ <AL a
_ L(0)7(0)
= /0 [/ log L(9) ) dé| dg

/0 (log L)5 B (4)

where (-)g indicates the expectation with respect to
the annealed posterior at inverse temperature 5. If
we replace the B-integral with a sum over average
log-likelihood values at discrete inverse temperatures
B1,- .-, Bm, we obtain an approximate value of the log-
evidence:

1 m—
log Z 5 Z Biv1 — Bi)(log L L+ log L) (5)

where log L, is the arithmetic average of log-likelihood
values calculated over all samples drawn from the ith
bridging distribution.

An alternative to thermodynamic integration is to fo-
cus on the density of states and to consider it the pri-
mary object of interest from which the evidence follows
as a secondary quantity. The density of states (DOS)
is defined as

:/5(E+10gL(9))7r(9)d9 (6)

and measures the prior mass associated with a par-
ticular value of the energy E(6) = —log L(6). If the
density of states is known, evaluation of the marginal
likelihood reduces to the one-dimensional integral

/ L(6) (0) 6
_ /Ua(EHogL(e))ﬂ(e)de P dE

7 =

= / g(E)e P dE. (7)

In the next section, we outline how to estimate g(E)
from MCMC samples and how to compute the evi-
dence using our estimate of the DOS. We then show
for various examples that DOS based evidence esti-
mation has advantages over thermodynamic integra-
tion. Finally, we discuss the relation of the DOS
method with nested sampling (Skilling, 2004; Sivia and
Skilling, 2006).
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2 Non-parametric estimation of the
density of states

We assume that samples were generated from a series
of distributions

0; ~ qi(E(0)) 7(0)/ci,

where ¢; = [ ¢;(F 0)d0 = [g(E)q;(E)dE and
¢; is a family of non- negatlve functlons or ensembles.
For ¢;(FE) = e #¥ we obtain the annealed posterior
(2) at inverse temperatures ;. In bridge sampling,
the initial and final ensemble satisfy ¢;(E) = 1 and
¢m(E) = e~ F such that family (8) morphs the prior
into the posterior. However, we are free to choose any
other family of distributions that allows us to focus
on the high posterior probability regions. In case of
qi(F) = O(F; — E) where O(-) is the Heaviside step
function and E;; < E;, we sample from the prior un-
der the likelihood constraints L(#) > e~F#; this choice
is relevant to nested sampling.

i=1,...,m (8)

2.1 Maximum likelihood estimation of the
density of states

We use a maximum likelihood approach to estimate
the density of states g(E). Let E; = —log L(0;) be the
negative log-likelihoods of our samples. The likelihood
of generating F; from the ith ensemble is

i(B)/ci.

It is more convenient to estimate the logarithm of the
DOS u(F) = logg(E) rather than the DOS itself.
Maximum likelihood then optimizes over the space of
all square-integrable functions, which is equipped with
the inner product (u,v) = [u(E)v(E)dE.

Because ¢; depends on u but g¢; doesn’t, we need to
minimize the functional

L = - ;u(Ei) + glog {/qi(E

= —(hu)+ Z log ¢;[u] (9)

i

E; ~g(E)q

) e(E) dE}

where we introduced the empirical energy histogram
hME) = >,0(FE — E;) with an infinitely fine bin-
ning. L[u] is convex in u, which follows from the
log-convexity of the normalization constants. For two
functions u, v and scalar « € [0, 1], we have

log c;lau+ (1 — a)v)

= log{/[qz‘ 1" gi 6”](1_a)}

< alogeu] + (1 — ) log¢;[v]
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by application of Holder’s inequality. Because L[u] is
convex, we can determine u uniquely up to translation
(addition of a constant to u does not change L[u]) by
solving

0Lu] 1 w
e —h—&-zi:—%[u] g e’ =0.

This non-linear functional equation cannot be solved
explicitly for u. We use a majorization-minimization
strategy to optimize L]u]. Instead of minimizing £[u]
directly, we minimize an adaptive upper bounding
functional L[u, @] that is derived at the current esti-
mate u. We obtain the iteration:

u* = argmin L[u, u®)]. (10)

u

If we choose L[u,)] tangent to L[u] at @, i.e. L[d] =
L], @), iteration (10) converges to the global minimum
of L[u]. To derive an upper bounding functional with
the desired properties, we use log x < x—1 with equal-

ity at z = 1 to obtain:
—(h,u) + Zlogci[ﬂ] + Z (im - 1) :
K3 K3 (11)

From 6L[u, @] /0u = 0, we have:
—h+ Z 1. e"=0
- Cl' [ﬁ] Q’L -

and obtain an explicit representation of the optimal «
at each iteration:

Llu, @) =

h
(t+1) 12
exXpu Z qz/cz[u( )] ( )

Update (12) implies a recursive relation for the nor-

malization constants cg.t) =c¢j [u®]:

(t+1) %
c; = (13)
J Z Zk QkZ/C(t)

where ¢;; = ¢;(E;). Using (13) it is straightforward
to verify that indeed L[u(**1] < L[u®]. Therefore
iteration (12) will lead us to the global minimum of
the negative log-likelihood functional L[u].

Iteration (12) has been derived first by Ferrenberg
and Swendsen (1989) for discrete thermodynamic sys-
tems such as Ising models. The energy histogram
h is a sufficient statistic, which is why (12) is also
called histogram reweighting. Histogram reweighting
has been generalized to continuous systems resulting
in the weighted histogram analysis method (WHAM)
often used to analyze biomolecular simulations (Ku-
mar et al., 1992). One disadvantage of WHAM is that
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energies are discretized in order to work with an ex-
plicit energy histogram. This introduces some arbi-
trariness because the optimal binning has to be de-
termined somehow. However, because we never need
to work with an explicit representation of w but can
rather update the normalization constants according
o (13), there is no need to bin the energies and we
achieve a truly non-parametric estimate of the density
of states.

2.2 Estimation of the marginal likelihood

In iteration (12), we never really need to work with the
explicit representation of u because of the recursive
definition of the normalization constants. Therefore
our algorithm to estimate DOS or its logarithm only
involves iterating over (13). It is more convenient to
work in log-space and update the free energies f; =
—log c¢; rather than the normalization constants:

—log Z

7 k ki

! (t+1) _ fjgo) —0.  (14)

. f(t> ’
This iteration is identical to the multistate Bennett
acceptance ratio (Shirts and Chodera, 2008). The con-
vergence of (14) is monitored by expressing L[u(*)] as
a function of the current estimate of the free energies:

L(f®) = _Zf](t) + Zlogzqﬁ@f;t) (15)

where terms independent of f®) are omitted. £(f) has
the same functional form as L[u] (9), the only differ-
ence being that £(f) is defined on a finite dimensional
vector space whereas L[u] operates on function space.

After convergence of iteration (14), our non-
parametric estimate of the density of states is given

by g=h/>, efig; where f is the final result of (14).
Finally, the DOS based evidence estimate is given by

Z:

et > Ui el _ Zg e~
>el/ Zj qjk €9 i

where we introduced the estimated density of states at
the sampled energies E;

(X aiefi)
§; = J _ 17
NS, el i)

Ei (16)

for convenience.

3 Applications and comparison to
thermodynamic integration

3.1 Gaussian likelihood

As a first test, we consider the unnormalized Gaussian
in d dimensions as likelihood. We use a flat prior and
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Figure 1: Marginal likelihood estimation for the Gaussian likelihood over the 10-dimensional unit ball. (a):
Estimated DOS (white line) and true DOS (black band). The inset shows the discrepancy of the estimated and
true DOS. (b): Evolution of the loss (15) during DOS estimation. (c¢): Histograms of estimated evidences over
1000 repetitions (m = 10,n = 10) using TI (grey filled histogram) and DOS (black curve); the true evidence
is marked with a dashed red line. The inset displays a scatter plot of TT based against DOS based evidence
estimates and shows that both are highly correlated. (d): Effect of the number of temperatures on the accuracy
of the evidence estimates. Orange diamonds and error bars indicate the average and standard deviation of TT
based evidence estimates for different numbers of temperatures (100 repetitions). Black circles and error bars
indicate the results for DOS based evidence estimation. The true evidence is shown as dashed red line. (e):
Effect of the minimum inverse temperature Sn,i, on the accuracy of the evidence estimates. Same symbols and

coloring as in Fig. 1(d).

restrict the parameter space to the d-dimensional unit
ball ([|6]] < 1):

dO(1 — [16])

L(0) = exp{—X670/2}, =(0) = 5@

(18)
where S(d) = 27%2/T'(d/2); A determines how
densely 6 is distributed about the origin. The evidence
and the density of states are given by:

Z = (d/2)(2/N"*1(d/2,7/2) (19)
g(E) = (d/N)2E/N*T'e(\/2-E) (20)
where y(s,z) = [jt*"'e tdt is the incomplete

gamma function. We generate n samples at m eq-
uispaced inverse temperatures starting at Spmi, > 0.
Annealed posterior samples are generated in spherical
coordinates § = rx where x is a d-dimensional nor-
malized direction (||| = 1) and r the scalar radius
(r <1). zis drawn from a d-dimensional Gaussian
and normalized to length 1. Samples of the radius
are obtained by letting r = v/2s where s is generated
from a Gamma distribution with shape d/2 and scale
(BA) 7L, restricted to the interval [0,1/2].

Figure 1 shows a comparison of estimated marginal
likelihoods using thermodynamic integration (5) and
the density of states (16). We choose A = 100 and
d = 10 and study the effect of varying the number of
temperatures m as well as the choice of the minimum
temperature SBpyin. Figures 1(a) and 1(b) show that
the estimated DOS is very close to the true DOS (19)
and that the estimation quickly converges in a mono-
tonic fashion. For sufficiently many temperatures and
small Buin = 1075, TI and DOS basically give the
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same result (see Figure 1(c)). However as we decrease
the number of temperatures, the TI estimate drifts
systematically away from the true value because the
evidence integral (4) is no longer approximated ac-
curately. The DOS based evidence estimate, on the
other hand, is stable against decreasing the number
of temperatures and even works for the extreme case
m = 2. A similar effect is observed when increasing
Bmin, which is relevant to parallel tempering where one
aims to choose By, > 0 in order to reduce the num-
ber of replicas, as long as p(0|Bmin) can be sampled
ergodically. Figure 1(e) shows that TI systematically
over-estimates evidences because for too large Sy, a
significant contribution to the TT integral (5) is miss-
ing. Again, DOS based evidence estimation is robust
against increasing SBmin.

3.2 Linear regression

Next, we fit a straight line to pairs of observations.
In the radiata pine data analyzed by Friel and Pettitt
(2008), two inputs x; and z; are tested in terms of their
ability to explain output y;. The priors of the slope,
the intercept and the variance are conjugate such that
we can straightforwardly apply Gibbs sampling to gen-
erate samples from the annealed posterior. At each
temperature, 10 samples are stored after a burnin
phase of 100 iterations. Friel and Pettitt test different
annealing schedules of the form 3; = [(i —1)/(m —1)]¢
to calculate the Bayes factor Bo; in favor of regression
on z; over regression on x;. The evidences of both
models can be calculated numerically after analytical
marginalization over the slope and the intercept. Com-
parison of evidences and Bayes factors shows that the
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Energy true log-evidence  TI estimate DOS estimate
Griewank —3.13 —3.20+0.05 —3.09+0.06
Ackley —5.53 —5.58+0.06 —5.49+0.05

Schwefel —5.30 —6.714+0.17 —5.24+0.16
Rastrigin 94.45 93.41 +£0.13  94.03+0.13

()

Figure 2: (a): Comparison of two regression models for the radiata pine data. Orange diamonds and error bars
indicate the average and standard deviation of TI based Bayes factor estimates for different exponents ¢ of the
annealing schedule (100 repetitions). Black circles and error bars indicate the results for DOS based evidence
estimation. The correct Bayes factor is shown as dashed red line. (b-e): Rugged energy functions analyzed with
thermodynamic integration and with the density of states (Griewank (b), Ackley (¢), Schwefel (d) and Rastrigin
(e) function). For the Griewank and Ackley function, a magnified region of the energy function is shown as
inset. (f): Table summarizing the results of TI based and DOS based evidence estimation. True log-evidences

are calculated using numerical integration.

DOS based evidence estimate is more accurate then
TT especially if the annealing schedule is not optimal
(see Figure 2(a)). Moreover, the DOS analysis shows
smaller variances over 100 repetitions indicating that
the Bayes factor estimate is systematically more accu-
rate.

3.3 Evidence estimation for multimodal
likelihoods using parallel tempering

The previous examples involved unimodal posteriors.
Let us now look at more challenging examples and
calculate the evidence for some of the rugged like-
lihoods listed by Li et al. (2009) (shown in Figures
2(b)-2(e)). In all examples, the prior distribution is
flat and bounded to a finite one-dimensional domain.
Samples are generated using parallel tempering with
10 inverse temperatures between 0 and 1 following the
same schedule as in the regression example (section
3.2) with exponent ¢ = 2. 5000 exchange transitions
are simulated, of which the first 2500 are considered
as burnin. Samples from the annealed posteriors are
generated with random walk Metropolis Monte Carlo.
Only every 10th of the final 2500 samples is pooled into
a single data set. This results in 10 different energy
sets over which we calculate the mean and variance of
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the evidence estimates reported in Table 2(f). The re-
sults show that DOS based evidence estimation tends
to be more accurate than thermodynamic integration.
This is especially true for energy functions with deep
minima such as the Schwefel function shown in Figure
2(d). For very rugged energy functions, the annealing
schedule would require more tuning in order to achieve
as accurate evidence estimates with thermodynamic
integration as by using the density of states.

3.4 Two-dimensional Ising model

We also analyzed high-dimensional likelihoods to ver-
ify that the above findings also hold for more complex
systems. The L x L Ising model is a discrete system
with L? spins 6; € {—1,+1} that are either “up” or
“down”. The prior is flat and the likelihood function
is given by:

L(0) = exp{J > _0,0;} (21)

in~j

where 7 ~ j indicates that spins ¢ and j are nearest
neighbors on a square lattice; J is the energy scale.
In our tests, we set J = 1 and L = 8, the critical in-
verse temperature is 5. & 0.4066. The log-evidence
(or free-energy), log Z = log{c(1)/c(0)}, of the system



Evaluation of marginal likelihoods via the density of states

true DOS Bmin=0.00
95 1 -10 ~10
90 ] + :30 :30
N h + -40 -40
g 85 -(.)- 1)_ ¢_b _¢- -¢_ é ______ -100 -50 0 50 100 -100 -50 0 50 100
Re: Brr=0.18 Brin=0.41
80 - 0 0
751 g, B
8 30 -30
704, . . . . )
0 0.1 02 03 04 - -
Bmin -100 -50 0 50 100 -100 -50 0 50 100
(a) (b)
Energy function TT estimate  DOS estimate
Purely repulsive energy —-963.1+1.2 —960.7+1.2
Repulsive/attractive energy —846.9 +£1.0 —845.84+0.9

Figure 3: Comparison of evidence estimates for high-dimensional likelihoods. (a): 8 x 8 Ising model on a 2D
square lattice. Log-evidences are calculated over 100 repetitions of thermal sampling at 11 temperatures. At each
temperature, 100 samples were generated. Orange diamonds and error bars indicate the average and standard
deviation of TT based evidence estimates for different [.;,. Black circles and error bars indicate the results
for DOS based evidence estimation. The true evidence is shown as dashed red line. (b): Exact and estimated
density of states for the 8 x 8 Ising model. (c¢): Model comparison for protein simulations. Two different physical
energy functions are compared. TI and DOS based evidence estimation both agree within the precision and give
strong preference to the energy function that accounts for repulsive and attractive van der Waals contributions.

is log Z = 84.354. Samples are generated at 11 eq-
uispaced inverse temperatures ranging from S, to 1
where B, is varied between 0 and the critical value
Be. For a given (3, exact energy samples are drawn
by using the analytical density of states calculated
by Beale (1996). Figure 3(a) compares TT with DOS
based evidence estimation for (,,;, approaching the
critical value. As for the Gaussian likelihood (section
3.1), the DOS procedure is more stable if 8, deviates
significantly from 0. For [, approaching the criti-
cal value, of course, both methods become more and
more inaccurate. TI tends to underestimate the log-
evidence because positive contributions to the integral
(5) are missing. The DOS method tends to overes-
timate the log-evidence because the density of states
with low likelihood is underestimated. This is evident
from Figure 3(b) showing the true DOS and the esti-
mated DOS obtained with increasingly large Spin-

3.5 Model comparison in protein structure
calculation

Proteins are complex systems that are challenging to
simulate (Hansmann and Okamoto, 1999). We com-
pared TT against DOS based evidence estimation for
the small protein ubiquitin (for details see Habeck
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(2011)). The parameters 6 are the 370 torsion an-
gles that parametrize rotations about chemical bonds.
The likelihood involves distances measured with nu-
clear magnetic resonance spectroscopy (Rieping et al.,
2005; Habeck et al., 2005a). The prior distribution is
the Boltzmann ensemble based on a physical energy
function. Two different potential energy functions are
compared. The first model involves an energy func-
tion that is purely repulsive and penalizes atom clashes
(Linge and Nilges, 1999). The second model involves
an energy function that has both repulsive and attrac-
tive non-bonded contributions (Kuhlman et al., 2003).

We use a two-parameter parallel tempering scheme to
sample from the posterior distribution defined over
protein conformational space (Habeck et al., 2005b).
In addition to the annealed likelihood, the prior dis-
tribution is modified by using the Tsallis ensemble
parametrized with parameter ¢ > 1. The “inverse
temperature” of the likelihood, (3, is varied from 1 to
10~° in the first 70 replicas at constant ¢ = 1. In the
last 30 replicas, ¢ is increased from 1.0 to 1.06 at con-
stant A = 107°. Using this scheme the likelihood is
gradually switched off in the first 70 replicas, in the
remaining 30 replicas also the prior is switched off. To
compare both energy functions, we calculate the log-
evidence for both simulations using TI and the DOS
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procedure. Table 3(c) lists the log-evidences obtained
with TI and DOS estimation for both physical energy
functions. The log-evidence estimates agree within
the precision and give strong preference to the energy
function that accounts for repulsive and attractive van
der Waals contributions. This is physically reasonable
and also consistent with the finding that the preferred
energy function also results in more accurate protein
structure (Habeck, 2011).

4 Connection to nested sampling

Nested sampling (NS) (Skilling, 2004) is a recent
MCMC method that primarily aims to calculate the
evidence and considers posterior samples as a by-
product. The evidence is written as

Z = /0 L(X)dX ~ Z Li (Xio1 — X;) (22)

where X (L) is the prior mass of states with likelihood
above the contour L and directly related to the density
of states:

X(eF) = /@(L(e) — e~E)n(0) do

= / O(E — E')g(E')dE'.  (23)

That is, X is the cumulative distribution function of
the DOS and representations (7) and (22) are identi-
cal. Nested sampling constructs a series of likelihood
contours L; = e~ by sampling n independent parti-
cles from the ensemble ©(E; — E(6)) w(0). The particle
in the highest energy state is stored as a sample and
its energy is used to define the likelihood contour of
the next iteration. The prior mass under each contour
is estimated statistically to amount to X; = e~ /.
According to (22), each NS iteration contributes L;w;
with w; = X,;_1 — X; to the evidence.

4.1 Deceptive Gaussian mixture model

We now look at Neal’s “deceptive” mixture model
(Neal, 1996), a challenging sampling and evidence esti-
mation task. This 2D mixture of Gaussians has a total
of 4292 equally weighted components. Each compo-
nent has variance ¢ = 0.001 in both directions which
are uncorrelated. The mixture components are located
at four centers (£15,+15): 121 finely spaced com-
ponents are located in the upper-right quadrant, 121
widely spaced components are in the upper-left quad-
rant, 2025 finely spaced components are in the lower-
left quadrant, 2025 widely spaced components are in
the lower-right quadrant. The likelihood function is
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given by

+5  +5

L) = Y 3 emlmalty
i=—5 j=—5
+5 45
Z Z e*ﬁ\|9fu2,ij||2+
i=—5 j=—5
422 422

1 12
§ § efmﬂefl‘&l]” +

i=—22j=—22
422 422

Z Z o 5iz 10— pa |2 (24)

i=—22 j=—22

where i = (i6 + 15,50 + 15)T, poyj = (A —
15, jA +15)7, pg 5 = (i6 — 15,56 — 15)T and pg; =
(iA+15,5A —15)T with a fine spacing § = 2.5 x 1073
and a wide spacing A = 1.5 x 10! between the com-
ponents. The prior domain is bounded to [—30, +30] in
both dimensions. The evidence can be calculated an-
alytically: log Z = log(8584 7o?) — 21og(60) = —11.8.

First, we run nested sampling with n = 100 particles
and stop at the iteration whose relative contribution to
the evidence (Lyw;/ ) ;~; Ljw;) is less than 1075 (the
resulting average number of iterations is ~ 2000). We
sample states under a likelihood constraint by using
a random walk in 2D confined to the support of the
prior. States with likelihood below the current contour
are rejected. An adaptive stepsize controls the range
of the random walk. The state with highest energy is
stored as posterior sample and replaced with a parti-
cle that is selected randomly from the remaining n —1
particles. The selected particle is then perturbed using
10 random walk steps. We can also analyze the sam-
ples obtained during nested sampling with our DOS
estimation method. To this end, we store, in addition
to the highest energy sample, the new state obtained
after local perturbation.

Figure 4(a) shows a histogram of evidence estimates
obtained with nested sampling and by analyzing the
NS samples using our DOS procedure. Nested sam-
pling’s evidence estimate is biased toward values that
are smaller than the true evidence, which may be the
result of stopping the NS iterations too early. The
DOS analysis, on the other hand, is systematically
closer to the true evidence at the expense of producing
more outliers (i.e. bins which are very distant from the
bulk of the distribution).

For comparison, we also run a parallel tempering
simulation with 10 temperatures using the annealing
scheme of section 3.2 with exponent ¢ = 8. Figure
4(b) shows the evidence estimates obtained by par-
allel tempering using thermodynamic integration and
the density of states. Although the annealing sched-
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Figure 4: Comparison of evidence estimates for the deceptive Gaussian mixture model. (a): Nested sampling
results. Histograms are calculated over 1000 repetitions of nested sampling with 100 particles. The log-evidence
obtained with nested sampling is shown as grey filled histogram, the estimate obtained with our DOS procedure
is shown as black curve; the true evidence is marked with a dashed red line. (b): Parallel tempering results.
20000 parallel tempering exchanges were simulated, after a burnin of 100 exchanges the simulation has converged.
At each temperature, every 100th sample after burnin is pooled into a single data set, resulting in 100 different
data sets, whose evidence estimates are shown as histograms. The evidence estimate obtained with our DOS
procedure is shown as black curve; the true evidence is marked with a dashed red line. The inset displays
the evidence estimates obtained with thermodynamic integration. (c): Posterior samples obtained with parallel

nested sampling.

ule was not optimized and produced very inhomoge-
neous exchange rates ranging from 5% to 68%, the
DOS based evidence estimate achieves a better accu-
racy than nested sampling. For this simulation, ther-
modynamic integration fails spectacularly (see inset of
Fig. 4(b)) mainly because contributions at small in-
verse temperatures dominate the evidence integral (5).
As we increase the number of temperatures, thermo-
dynamic integration eventually becomes as accurate as
nested sampling or DOS based evidence estimation.

5 Conclusions

Marginal likelihood estimation via the density of states
is an efficient and versatile alternative to thermody-
namic integration, over which it has several advan-
tages. When working with annealed posteriors, DOS
based evidence estimation is more robust and flexible
in the choice of the annealing schedule than thermody-
namic integration. Moreover, we are not restricted to
use samples from the actual posterior only, knowledge
of the density of states allows us to combine samples
from posteriors at all temperatures. It is straightfor-
ward to show that to calculate other marginal distribu-
tions, we simply need to expand the energy histogram
with samples of the quantity of interest. DOS based
evidence estimation also works with ensembles that
do not bridge between the prior and the posterior, in
which case thermodynamic integration cannot be ap-
plied at all. An example of such a family of distri-
butions are the likelihood-bounded priors constructed
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during nested sampling. Similar to the method pro-
posed here, nested sampling estimates the evidence
via the density of states. To combine nested sampling
with the proposed DOS estimation algorithm will be
the subject of future research.
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