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1 Proof of Theorem 1

Theorem 1. Let Y ∈ Rn×m be a matrix where each
column is an eigenvector of eigen-problem Ly = λDy.
If there exists a matrix A ∈ Rd×m and p where p ∈
{0, 1}d,pT1 = m such that XT diag(p)A = Y, then
each column of A is an eigenvector of eigen-problem
diag(p)XLXT diag(p)a = λdiag(p)XDXT diag(p)a
with the same eigenvalue λ.

Proof. Since XTdiag(p)a = y we have

diag(p)XLy = diag(p)XLXTdiag(p)a

and

λdiag(p)XDy = λdiag(p)XDXTdiag(p)a

Since Ly = λDy, by left multiplying diag(p)X on
both sides, we get

diag(p)XLy = λdiag(p)XDy

That is

diag(p)XLXTdiag(p)a = λdiag(p)XDXTdiag(p)a

2 Proof of Theorem 2

Theorem 2. The global optimal solution of Eq. (20)
is

aπ(i)∗ =

{
c
π(i)
t , i ≤ m
0, otherwise.

(1)

where π(i) is a sorting function such that ||cπ(1)t || ≥
||cπ(2)t || ≥ . . . ,≥ ||cπ(d)t ||.

Proof. Eq. (20) can be rewritten as

At+1 = argmin
A

µ

τ

d∑
i=1

||ai − cit||22,

s.t.||


||a1||2
||a2||2

...
||ad||2

 ||0 ≤ m. (2)

For any ai ̸= 0, we have ||ai − cit||0 = 1. In such case,
the optimal ai which gives the smallest objective value
is ai = cit. And for ai = 0, we have ||ai−cit||22 = ||cit||22.
Thus, in order to give the smallest objective value, we
have to select the first m largest ||cit||2 and set the
corresponding ai = cit, which gives the solution of Eq.
(1).

3 Proof of Theorem 3

Theorem 3. Let L′ = XLXT , D′ = XDXT , and
λi(L

′,D′), i = 1, . . . , d be the generalized value of L′

and D′ sorted in ascending order. The optimal objec-
tive function value J of LPFL in Eq. (8) is bounded
by

l∑
i=1

λi(L
′,D′) ≤ J ≤

l∑
i=1

λi+d−m(L′,D′).

where l is the dimension of the subspace learned by A,
m is the number of selected features.

Proof. Let the pair (P,Q) be d×d symmetric matrices
with generalized spectrum λi(P,Q), with Q a positive
definite matrix. Let (Pm;Qm) be a corresponding pair
of m×m principal submatrices where 1 ≤ m ≤ d, with
generalized eigenvalues λi(Pm;Qm). Then, accord-
ing to generalized Courant-Fischer “Min-Max” theo-
rem [1] in matrix computation, ∀i, 1 ≤ i ≤ m, we have

λi(P,Q) ≤ λi(Pm,Qm) ≤ λi+d−m(P,Q)
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Applying the above result to (L′,D′), we have

λi(L
′,D′) ≤ λi(L

′
m,L′

m) ≤ λi+d−m(L′,D′) (3)

where L′
m and D′

m are the m × m principle sub-
matrices of L′ and D′, which are extracted from
diag(p)L′diag(p) and diag(p)D′diag(p). Since we
choose the l eigenvectors corresponding to the l small-
est eigenvalues of (L′

m,D′
m)to form the linear trans-

formation A, we have

J =
l∑

i=1

λi(L
′
m,L′

m) (4)

Combining Eq. (3) and Eq. (4), we obtain

l∑
i=1

λi(L
′,D′) ≤ J ≤

l∑
i=1

λi+d−m(L′,D′).

This completes the proof.
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