Supplemental Material for "Locality Preserving Feature Learning"

Quanquan Gu

Marina Danilevsky

Zhenhui Li

Jiawei Han

Department of Computer Science University of Illinois at Urbana-Champaign, IL 61801, USA {qgu3,danilev1,zli28,hanj}@illinois.edu

1 Proof of Theorem 1

Theorem 1. Let $\mathbf{Y} \in \mathbb{R}^{n \times m}$ be a matrix where each column is an eigenvector of eigen-problem $\mathbf{L}\mathbf{y} = \lambda \mathbf{D}\mathbf{y}$. If there exists a matrix $\mathbf{A} \in \mathbb{R}^{d \times m}$ and \mathbf{p} where $\mathbf{p} \in \{0,1\}^d, \mathbf{p}^T \mathbf{1} = m$ such that $\mathbf{X}^T \operatorname{diag}(\mathbf{p}) \mathbf{A} = \mathbf{Y}$, then each column of \mathbf{A} is an eigenvector of eigen-problem $\operatorname{diag}(\mathbf{p}) \mathbf{X} \mathbf{L} \mathbf{X}^T \operatorname{diag}(\mathbf{p}) \mathbf{a} = \lambda \operatorname{diag}(\mathbf{p}) \mathbf{X} \mathbf{D} \mathbf{X}^T \operatorname{diag}(\mathbf{p}) \mathbf{a}$ with the same eigenvalue λ .

Proof. Since $\mathbf{X}^T \operatorname{diag}(\mathbf{p})\mathbf{a} = \mathbf{y}$ we have

$$\operatorname{diag}(\mathbf{p})\mathbf{X}\mathbf{L}\mathbf{y} = \operatorname{diag}(\mathbf{p})\mathbf{X}\mathbf{L}\mathbf{X}^T\operatorname{diag}(\mathbf{p})\mathbf{a}$$

and

$$\lambda \mathrm{diag}(\mathbf{p})\mathbf{X}\mathbf{D}\mathbf{y} = \lambda \mathrm{diag}(\mathbf{p})\mathbf{X}\mathbf{D}\mathbf{X}^T\mathrm{diag}(\mathbf{p})\mathbf{a}$$

Since $\mathbf{L}\mathbf{y} = \lambda \mathbf{D}\mathbf{y}$, by left multiplying $\operatorname{diag}(\mathbf{p})\mathbf{X}$ on both sides, we get

$$\operatorname{diag}(\mathbf{p})\mathbf{X}\mathbf{L}\mathbf{y} = \lambda \operatorname{diag}(\mathbf{p})\mathbf{X}\mathbf{D}\mathbf{y}$$

That is

$$\operatorname{diag}(\mathbf{p})\mathbf{X}\mathbf{L}\mathbf{X}^T\operatorname{diag}(\mathbf{p})\mathbf{a} = \lambda \operatorname{diag}(\mathbf{p})\mathbf{X}\mathbf{D}\mathbf{X}^T\operatorname{diag}(\mathbf{p})\mathbf{a}$$

2 Proof of Theorem 2

Theorem 2. The global optimal solution of Eq. (20) is

$$\mathbf{a}^{\pi(i)*} = \begin{cases} \mathbf{c}_t^{\pi(i)}, & i \le m \\ \mathbf{0}, & otherwise. \end{cases}$$
 (1)

where $\pi(i)$ is a sorting function such that $||\mathbf{c}_t^{\pi(1)}|| \ge ||\mathbf{c}_t^{\pi(2)}|| \ge \ldots, \ge ||\mathbf{c}_t^{\pi(d)}||$.

Proof. Eq. (20) can be rewritten as

$$\mathbf{A}_{t+1} = \arg\min_{\mathbf{A}} \frac{\mu}{\tau} \sum_{i=1}^{d} ||\mathbf{a}^{i} - \mathbf{c}_{t}^{i}||_{2}^{2},$$

$$\text{s.t.}|| \begin{bmatrix} ||\mathbf{a}^{1}||_{2} \\ ||\mathbf{a}^{2}||_{2} \\ \vdots \\ ||\mathbf{a}^{d}||_{2} \end{bmatrix} ||_{0} \leq m. \tag{2}$$

For any $\mathbf{a}^i \neq \mathbf{0}$, we have $||\mathbf{a}^i - \mathbf{c}_t^i||_0 = 1$. In such case, the optimal \mathbf{a}^i which gives the smallest objective value is $\mathbf{a}^i = \mathbf{c}_t^i$. And for $\mathbf{a}^i = \mathbf{0}$, we have $||\mathbf{a}^i - \mathbf{c}_t^i||_2^2 = ||\mathbf{c}_t^i||_2^2$. Thus, in order to give the smallest objective value, we have to select the first m largest $||\mathbf{c}_t^i||_2$ and set the corresponding $\mathbf{a}^i = \mathbf{c}_t^i$, which gives the solution of Eq. (1).

3 Proof of Theorem 3

Theorem 3. Let $\mathbf{L}' = \mathbf{X}\mathbf{L}\mathbf{X}^T$, $\mathbf{D}' = \mathbf{X}\mathbf{D}\mathbf{X}^T$, and $\lambda_i(\mathbf{L}', \mathbf{D}')$, i = 1, ..., d be the generalized value of \mathbf{L}' and \mathbf{D}' sorted in ascending order. The optimal objective function value J of LPFL in Eq. (8) is bounded by

$$\sum_{i=1}^{l} \lambda_i(\mathbf{L}', \mathbf{D}') \le J \le \sum_{i=1}^{l} \lambda_{i+d-m}(\mathbf{L}', \mathbf{D}').$$

where l is the dimension of the subspace learned by A, m is the number of selected features.

Proof. Let the pair (\mathbf{P}, \mathbf{Q}) be $d \times d$ symmetric matrices with generalized spectrum $\lambda_i(\mathbf{P}, \mathbf{Q})$, with \mathbf{Q} a positive definite matrix. Let $(\mathbf{P}_m; \mathbf{Q}_m)$ be a corresponding pair of $m \times m$ principal submatrices where $1 \leq m \leq d$, with generalized eigenvalues $\lambda_i(\mathbf{P}_m; \mathbf{Q}_m)$. Then, according to generalized Courant-Fischer "Min-Max" theorem [1] in matrix computation, $\forall i, 1 \leq i \leq m$, we have

$$\lambda_i(\mathbf{P}, \mathbf{Q}) < \lambda_i(\mathbf{P}_m, \mathbf{Q}_m) < \lambda_{i+d-m}(\mathbf{P}, \mathbf{Q})$$

Applying the above result to $(\mathbf{L}', \mathbf{D}')$, we have

$$\lambda_i(\mathbf{L}', \mathbf{D}') \le \lambda_i(\mathbf{L}'_m, \mathbf{L}'_m) \le \lambda_{i+d-m}(\mathbf{L}', \mathbf{D}')$$
 (3)

where \mathbf{L}'_m and \mathbf{D}'_m are the $m \times m$ principle submatrices of \mathbf{L}' and \mathbf{D}' , which are extracted from $\operatorname{diag}(\mathbf{p})\mathbf{L}'\operatorname{diag}(\mathbf{p})$ and $\operatorname{diag}(\mathbf{p})\mathbf{D}'\operatorname{diag}(\mathbf{p})$. Since we choose the l eigenvectors corresponding to the l smallest eigenvalues of $(\mathbf{L}'_m, \mathbf{D}'_m)$ to form the linear transformation \mathbf{A} , we have

$$J = \sum_{i=1}^{l} \lambda_i(\mathbf{L}'_m, \mathbf{L}'_m) \tag{4}$$

Combining Eq. (3) and Eq. (4), we obtain

$$\sum_{i=1}^{l} \lambda_i(\mathbf{L}', \mathbf{D}') \le J \le \sum_{i=1}^{l} \lambda_{i+d-m}(\mathbf{L}', \mathbf{D}').$$

This completes the proof.

References

[1] B. Moghaddam, Y. Weiss, and S. Avidan. Generalized spectral bounds for sparse lda. In *ICML*, pages 641–648, 2006.