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1 Proof of Theorem 1

Theorem 1. Let Y € R™ ™ be a matriz where each
column is an eigenvector of eigen-problem Ly = ADy.
If there exists a matriz A € R¥™™ and p where p €
{0,1}4, pT1 = m such that XT diag(p)A = Y, then
each column of A is an eigenvector of eigen-problem
diag(p)XLX" diag(p)a = Mdiag(p)XDX" diag(p)a
with the same eigenvalue .

Proof. Since XTdiag(p)a =y we have
diag(p)XLy = diag(p)XLXT diag(p)a
and

Mdiag(p)XDy = Adiag(p)XDX diag(p)a

Since Ly = ADy, by left multiplying diag(p)X on
both sides, we get

diag(p)XLy = Adiag(p)XDy
That is
diag(p)XLX” diag(p)a = Adiag(p)XDX diag(p)a

O

2 Proof of Theorem 2

Theorem 2. The global optimal solution of Eq. (20)

is
(i) cr® i<m 1
a — b —
{ 0, otherwise. (1)
where w(i) is a sorting function such that ||c?(1)|\ >
1PN = > fleT .

Proof. Eq. (20) can be rewritten as

d
A1 = argmjinﬁ Z la” — cil[3,
T
||a;|\2
|la%[|2
s.t.]| : llo < m. (2)
ol

For any a’ # 0, we have ||a’ — ci||[op = 1. In such case,
the optimal a’ which gives the smallest objective value
isa’ = ci. And for a’ = 0, we have ||a’—c!||2 = ||ci||2.
Thus, in order to give the smallest objective value, we
have to select the first m largest ||ci||s and set the
corresponding a’ = ¢!, which gives the solution of Eq.

(1). O

3 Proof of Theorem 3

Theorem 3. Let L' = XLX”, D’ = XDX”, and
AL, D), i = 1,...,d be the generalized value of L'
and D’ sorted in ascending order. The optimal objec-
tive function value J of LPFL in Eq. (8) is bounded

by

l l
AL, D)< T <Y Nijam(L, D).
=1

i=1

where | is the dimension of the subspace learned by A,
m is the number of selected features.

Proof. Let the pair (P, Q) be dx d symmetric matrices
with generalized spectrum A; (P, Q), with Q a positive
definite matrix. Let (P,,; Q,,) be a corresponding pair
of m x m principal submatrices where 1 < m < d, with
generalized eigenvalues A;(P,,; Q). Then, accord-
ing to generalized Courant-Fischer “Min-Max” theo-
rem [1] in matrix computation, Vi, 1 < i < m, we have
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Applying the above result to (L', D’), we have
Ai(L, D) < Ni(L,, Lyy) < Aiva—m (L, DY) (3)

where L/, and D/, are the m x m principle sub-
matrices of L’ and D’, which are extracted from
diag(p)L'diag(p) and diag(p)D’diag(p). Since we
choose the [ eigenvectors corresponding to the [ small-
est eigenvalues of (L/,, D! Jto form the linear trans-
formation A, we have

l

T =Y NI, L) (4)

i=1
Combining Eq. (3) and Eq. (4), we obtain

l l
S NID) ST <Y Nijam(L, D).
i=1

i=1
This completes the proof. O
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