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This paper is a supplement to the main paper ’Bayesian regularization of non-
homogeneous dynamic Bayesian networks by globally coupling interaction parame-
ters’, which appears in Proceedings of the 15th International Conference on Artificial
Intelligence and Statistics (AISTATS 2012). Volume 22 of JMLR: W&CP 22.
Table 1 summarizes the details of the four A. thaliana gene expression time series
from Subsection 4.2. In Appendix I we derive equations (17-18) from Subsection 3.1
of the main paper. In Appendix II we provide the mathematical details of the point
process prior and more detailed information on our convergence diagnostics and the
employed network reconstruction criterions. Finally, in Appendix III we demonstrate
that our findings on the network reconstruction accuracies can also be produced when
the are under the precision recall curve rather than the area under the ROC curve is
employed for evaluation.

Segment 1 Segment 2 Segment 3 Segment 4

Source Mockler Edwards Grzegorcyk Grzegorcyk
et al.(2007) et al. (2006) et al. (2008) et al. (2008)

Time points 12 13 13 13
Time interval 4h 4h 2h 2h
Pretreatment 12h:12h 12h:12h 10h:10h 14h:14h
entrainment light:dark cycle light:dark cycle light:dark cycle light:dark cycle
Measurements Constant Constant Constant Constant

light light light light
Laboratory Kay Lab Millar Lab Millar Lab Millar Lab

Table 1: Gene expression time series segments for Arabidopsis. The table contains an
overview of the experimental conditions under which each of the gene expression experiments was
carried out. See Subsection 4.2 of the main paper for further details.

1



Appendix I - Derivations of equations

Equation (17) in Subsection 3.1 of the main paper can be derived as follows:
For updating the signal-to-noise ratio hyperparameters {δg}, 1 ≤ g ≤ N , with a Gibbs sampling
scheme note that
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On collecting all the terms that depend on δ−1
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where Kg is the number of segments for node g.

Equation (18) in Subsection 3.1 of the main paper can be derived as follows:
For the inverse variances σ−2

g,h we use a collapsed Gibbs sampler in which the interaction parameters
wg,h have been integrated out. From equations (12-13) of the main paper we obtain:
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g,h was defined in equation (16) of the main paper. By normalization we get:
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Appendix II - Mathematical details

The point process prior for the changepoint sets τ g

In Section 3.2 of the main paper we did not specify the prior P ({τ g}) on the gene-specific
changepoint sets τ g = {τg,1, . . . , τg,Kg−1} (g = 1, . . . , N) explicitly. Here, we provide the
details: We assume that the gene-specific changepoint sets τ g are independently distributed

P ({τ g}) =
∏N

g=1 P (τ g), and we follow Fearnhead (2006) and employ a point process prior to

model the distances between successive changepoints for each gene g (g = 1, . . . , N). In the point
process model s(t) (t = 1, 2, 3, . . .) denotes the prior probability that there are t time points be-
tween two successive changepoints τg,j−1 and τg,j on the discrete interval {2, . . . , T −1}. The prior
probability P (τ g) of the changepoint set of gene g, τ g = {τg,1, . . . , τg,Kg−1}, containing Kg − 1
changepoints τg,j (j = 1, . . . ,Kg − 1) with 1 < τg,j−1 < τg,j < T (j = 2, . . . ,Kg − 1), is:
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are the cumulative distribution functions corresponding to s(.) and s0(.). For s(.) we follow Fearn-
head (2006) and use the probability mass function of the negative binomial distribution1 NBIN(p,k)
with hyperparameters p and k:
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In a point process model on the positive and negative integers the probability mass function of the
first changepoint τg,1 ∈ {2, . . . , T − 1} is a mixture of k negative binomial distributions:

s0(τg,1) =
1

k

k
∑

i=1

(

(τg,1 − 1)− 1
i− 1

)

pi(1− p)(τg,1−1)−i (4)

For our analysis of the in vivo data from S. cerevisiae in Section 6 of the main paper we used
a fixed value for k (k = 1) and we varied the hyperparameter p. In the first instance, we
started with six different values: p ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5} that cover the whole area from
zero changepoints (per gene) to about 8 changepoints per gene. Then, to shed more light
onto the more interesting area with fewer changepoints per gene, we additionally employed:
p ∈ {0.001, 0.01, 0.02, 0.025, 0.03, 0.04, 0.05, 0.075, 0.15}.

MCMC sampling and convergence diagnostics

For all MCMC simulations we set the lengths of the burn-in and the sampling phase to 50,000
MCMC iterations each. For the simulated network data, described in Subsection 4.1 of the main
paper, and the expression data from Arabidopsis thaliana, described in Subsection 4.2 of the main
paper, we assumed that the true segmentations (i.e. the true changepoints) are known (”super-
vised approach”). In each single MCMC iteration for all genes g (g = 1, . . . , N) the gene-specific
variance σ2

g and the signal-to-noise hyperparameter δg are re-sampled, and the performance of
one basic operation on the parent node set πg is proposed. The move type is randomly chosen

1Note that the negative binomial distribution can be seen as a discrete version of the Gamma distribution.
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from three basic operations on πg: (i) adding a new parent node to πg, (ii) deleting one of the
parent nodes from πg, and (iii) substituting a parent node from πg for another one, as proposed in
Grzegorczyk and Husmeier (2011). During the sampling phase of length 50,000 we sampled every
500 iterations to obtain a network sample of size 100. From this sample of networks the marginal
edge posterior probabilities of the individual edges can be computed.
For the gene expression time series in S. cerevisiae, described in Subsection 4.3 of the main paper,
we assumed that the gene-specific changepoint sets τ g are unknown. Therefore, in each single
MCMC step, for all genes g we also performed one move on the changepoint set τ g. The move
type is randomly chosen from three basic operations: (i) a changepoint birth adds a new change-
point to τ g, (ii) a changepoint death move removes a changepoint from τ g, and (iii) a changepoint
re-allocation move substitutes a changepoint from τ g for another one.
We applied the standard diagnostic based on trace plots (Giudici and Castelo (2003))and potential
scale reduction factors (Gelman and Rubin (1992)) to determine appropriate MCMC simulation
lengths. In particular for the real data from S. cerevisiae we started five MCMC simulations from
different network M and changepoint set τ g (g = 1, . . . , N) initializations for half a dozen point
process hyperparameters p = 0, 0.1, 0.2 . . . , 0.5 in equation (3) to assess convergence. MCMC
convergence was monitored in terms of the potential scale reduction factors (PSRFs) based on
the marginal edge posterior probabilities. For the above mentioned MCMC run lengths we ob-
served a sufficient degree of convergence (PSFR < 1.1 for all individual edges). Because of the
computational costs this convergence diagnostic could not be determined for every MCMC sim-
ulation that was employed in our study. However, we assume that the MCMC simulations with
p = 0, 0.1, 0.2 . . . , 0.5 are representative, and since we consistently observed a sufficient degree of
convergence, according to the above mentioned criterion, we concluded that the run lengths also
ensure convergence for other hyperparameters p. In Section 6 of the main paper we consistently
report results of MCMC simulations that were seeded with empty parent sets (πg = ∅ for all g),
empty changepoint sets (τ g = ∅ for all g) and the following hyperparameters: σ2

g = 1 and δg = 1
for all g. Details on further hyperparameter settings can be found in Section 5 of the main paper.

Network reconstruction accuracy

The network reconstruction accuracy can be evaluated as follows: Let M⋄(n, j) = 1 indicate
that the true graph possesses the edge Xn → Xj , while M⋄(n, j) = 0 indicates that there is
no edge from Xn to Xj . For both Bayesian network models inference via RJMCMC sampling
yields a marginal edge posterior probability en,j for every edge M⋄(n, j). For ζ ∈ [0, 1] we
define E(ζ) := {M(n, j)|en,j ≥ ζ} as the set of all edges M(n, j) whose posterior probabilities
exceed the threshold ζ. Since the true edges are known, for each E(ζ) the number of true
positive TP [ζ], false positive FP [ζ], true negative TN [ζ], and false negative FN [ζ] edges can be
counted. From this we can compute the true positive rate TPR[ζ] = TP [ζ]/(TP [ζ] + FN [ζ])
(also called recall or sensitivity), the false positive rate FPR[ζ] = FP [ζ]/(TN [ζ] + FP [ζ]), and
the precision PRE[ζ] = TP [ζ]/(TP [ζ] + FP [ζ]). Plotting the TPR[ζ] values (vertical axis)
against the corresponding FPR[ζ] values (horizontal axis) and connecting neighboring points by
linear interpolation gives the receiver operator characteristic (ROC) curve. The area under the
ROC curve (AUC or AUC-ROC) is a quantitative measure that can be obtained by numerically
integrating the ROC curve on the interval [0, 1]; larger AUC values indicate a better network
reconstruction accuracy, whereby 1 indicates perfect prediction, whereas 0.5 corresponds to
a random expectation. An alternative score of the network reconstruction accuracy can be
obtained by numerically integrating the Precision-Recall (PR) curve, so as to obtain the area
under the PR curve (AUC or AUC-PR). PR curves can be obtained as follows: (i) The PRE[ζ]
values (vertical axis) are plotted against the corresponding TPR[ζ] values (horizontal axis).
(ii) Different from ROC curves, neighboring points cannot be connected by straight lines and
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a nonlinear interpolation is required2. In our implementation we use the interpolation scheme
described in Davis and Goadrich (2006). (iii) As the precision is not defined for TP=0 and FP=0
(PRE=0/0), we integrate the PR curve on the interval [(1/E), 1] where E is the number of edges of
the true graphM⋄; i.e. we restrict on the area where at least one of the true edges has been learned.

Appendix III - An alternative evaluation criterion: The area
under the precision recall curve

In this third appendix, we show that all our findings on the network reconstruction accuracies
can be reproduced with an alternative network reconstruction accuracy criterion. Two scores have
been established for evaluating the network reconstruction accuracy in systems biology research.
The area under the receiver operator characteristic curve (AUC-ROC) and the area under the
precision recall curve (AUC-PR). A comparison of these two criteria can be found in Davis and
Goadrich (2006). These two criteria have been used for evaluating the results of the regularly held
DREAM network reconstruction challenge (e.g. see Prill et al. (2010)). Therefore, we evaluated our
network inference results with both criteria independently, and we found that both criteria yield
very similar results. Figures 1 and 2 of this supplementary paper show the network reconstruction
accuracy in terms of areas under the precision recall curves (AUC-PR); Figure 1 corresponds to
Figure 1b) of the main paper, and Figure 2 corresponds to Figure 3b) of the main paper.

2The linear interpolation has to be done in terms of the true positives (TPs) and false positives (FPs) which
corresponds to a nonlinear interpolation in the precision recall representation.
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Figure 1: Network reconstruction accuracy in terms of areas under the precision recall
curve for the RAF pathway. This figure corresponds to Figure 1b) of the main paper. The
RAF pathway topology, as reported in Sachs et al. (2005), can be found in Figure 1a) of the main
paper. Different from Figure 1b) of the main paper, the graphs monitor the network reconstruction
accuracy in terms of areas under the precison recall curve (AUC-PR scores) for the conventional
uncoupled (dotted gray lines) and the proposed coupled (solid black lines) non-homogeneous dy-
namic Bayesian network (NH-DBN) model. The graphs demonstrate how the proposed Bayesian
regularization scheme is affected by increasing violations of the prior assumption inherent in equa-
tion (10) of the main paper. Simulated data were generated as described in Subsection 4.1 of the
main paper. The abscissa represents the amplitude ε by which the global parameter vector is per-
turbed. The columns represent three different signal-to-noise (SNR) levels 10, 3, and 1. The top
row shows the absolute values of the AUC-PR scores, while the bottom row shows the differences
between the proposed regularization scheme (coupled NH-DBN) and the conventional unregular-
ized method (uncoupled NH-DBN). All MCMC simulations were repeated on 25 independent data
instantiations, with error bars indicating two-sided 95% confidence intervals .
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Figure 2: Network reconstruction accuracy in terms of areas under the precision recall
curve for the S. cerevisiae network. This figure corresponds to Figure 3b) of the main paper.
Cantone et al. (2009) designed the network shown in panel Figure 3a) of the main paper and
measured in vivo expression levels for the five genes; see Subsection 4.3 of the main paper for
details. The graph shows the network reconstruction accuracy (ordinate) plotted against the mean
number of changepoints per gene (abscissa) for the conventional uncoupled method (dashed line)
and the proposed Bayesian coupling scheme (solid line). Different from Figure 3b) in the main
paper, the network reconstruction accuracy (ordinate) is quantified in terms of mean areas under

the precison recall curves (AUC-PR scores), averaged over 5 MCMC simulations, with the vertical
bars indicating standard errors.
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