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Abstract

We investigate the problem of estimating the
average reward of given decision policies in
discrete-time controllable dynamical systems
with finite action and observation sets, but possi-
bly infinite state space. Unlike in systems with fi-
nite state spaces, in infinite–state systems the ex-
pected reward for some policies might not exist,
so policy evaluation, which is a key step in opti-
mal control methods, might fail. Our main anal-
ysis tool is Ergodic theory, which allows learn-
ing potentially useful quantities from the system
without building a model. Our main contribution
is three-fold. First, we present several dynamical
systems that demonstrate the difficulty of learn-
ing in the general case, without making addi-
tional assumptions. We state the necessary con-
dition that the underlying system must satisfy to
be amenable for learning. Second, we discuss the
relationship between this condition and state-of-
the-art predictive representations, and we show
that there are systems that satisfy the above con-
dition but cannot be modeled by such represen-
tations. Third, we establish sufficient conditions
for average-reward policy evaluation in this set-
ting.

1 Introduction
The problem of learning from interaction with an unknown
system (i.e., environment) is central both to artificial intel-
ligence and to control theory. In this paper, we focus on
a well-studied setting, in which the interaction happens in
discrete time, assuming that actions can be chosen from a
finite set and discrete observations from a finite set are re-
ceived from the system. This setting is common, for exam-
ple, in reinforcement learning (RL) problems, where many
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algorithms rely on estimating a quantity of interest (e.g.,
value function [16, 15, 8]) conditioned on a particular way
of choosing actions (i.e., policy). Under certain assump-
tions on the underlying system (e.g., the system is a Fully or
Partially Observable Markov Decision Process, often with
a finite state space), the quantities of interest can be esti-
mated in various ways and used to compare policies, with
the goal of improving the behavior. In this paper, we are in-
terested in this scenario, but without making traditional as-
sumptions about the system; in particular, the system may
have infinite state space, even though the set of actions
and observations is finite. This setting brings difficulties
to the estimation procedure; specifically the expectation of
returns (which represents the value function) might not ex-
ist. This obstacle does not exist in systems with finite state
spaces [7].

We focus on the problem of estimating the average reward
for policies in partially observable environments, which is
a key ingredient in solving an average reward RL problem
([6]). For the analysis, we draw on the well established Er-
godic theory [3], which focuses on systems without control.
Suppose that we observe an unknown process. The conven-
tional way to estimate the probability of a particular event
is to find the empirical estimate through a long running av-
erage. Ergodic theory provides the necessary and sufficient
condition for this procedure to be sound: the system has to
be Asymptotically Mean Stationary (AMS, [2]). Our strat-
egy will be to examine what types of controllable systems,
together with a fixed policy, satisfy the AMS property. This
property, in particular, guarantees the convergence of the
running average of collected rewards.

After some preliminaries, we present three examples of
systems that highlight the difficulty of obtaining such a
characterization in a general case. Then, we state a nec-
essary condition for the controllable system to be learnable
in this setting, and discuss its relationship to current pre-
dictive state representation models. In particular, we give
an example of an AMS system that cannot be modelled by
current state-of-the-art representations. Finally, we show
that this condition together with a couple of other auxil-
iary assumptions allows for policy evaluation by averaging
collected rewards.
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2 Background
For the rest of the paper we assume a finite action set
A (from which an agent interacting with the system can
choose) and a finite observation setO, with the correspond-
ing random variables A and O that take values from these
sets. We define a controllable dynamical system as a tuple
(Ω,F , T, µ0), where (Ω,F) is a measurable space, µ0 is a
probability kernel representing the effect of actions, and T
is a shift operator. For example, the elements of Ω can be
infinite sequences of action–observation pairs and F the σ-
algebra generated by all finite–dimensional cylinder sets.
In this case, µ0 will represent the initial distribution over
observations given actions, and the operator T shifts pairs
of actions and observations, meaning that for ai ∈ A and
oi ∈ O:

T (〈a1, o1, a2, o2, ...〉) = 〈a2, o2, a3, o3...〉, and

T−1(〈a1, o1, ...〉) = {〈a, o, a1, o1, ...〉|a ∈ A; o ∈ O}.

Given a policy π, the distribution of trajectories is fully
characterized by:

P{A1, O1,A2, O2, ..., An, On} =
n∏

i=1

µ0(Oi|A1, ...Ai, O1, ..., Oi−1)×

n∏

i=1

π(Ai|A1, ...Ai−1, O1, ..., Oi−1).

Thus, once the policy is fixed, a traditional dynamical sys-
tem (Ω,F , T, P ) is induced, which has no actions, and
whose observations are action–observation pairs of the
original system.
Recall that a dynamical system is asymptotically mean sta-
tionary (AMS) if and only if

∀F ∈ F : P̄ (F ) = lim
n→∞

1

n

n−1∑

i=0

P{T−iF} exists;

and P̄ is called stationary mean. If the dynamical system
is AMS, then for any bounded function f :

lim
n→∞

1

n

n−1∑

i=0

f(T ix) = E(f |G) a.s.,

where G is the σ-field of invariant sets [3]. This is a very
useful property in the context of learning from data, be-
cause it guarantees the convergence of any empirical esti-
mate to the expected value conditioned on the component
from which the system started. From a reinforcement learn-
ing perspective, if a policy gives rise to an AMS system,
averaging collected rewards converges to a conditional ex-
pected reward1. If all policies of interest (when enacted

1Throughout the paper we assume that the reward function is
measurable.

in the same environment) give rise to AMS systems, then
the averages of collected rewards converge for any of these
policies. Clearly, this is a necessary requirement for aver-
age reward reinforcement learning.

Policies with infinite memory can easily violate the AMS
assumption. For example, imagine a two-room environ-
ment and a policy that stays in one room for some time,
then changes the room and stays exponentially longer, then
goes back to the first room and stays there exponentially
longer than in the previous room, etc. As a result, the em-
pirical estimate of the probability of staying in room one
will always oscillate; therefore the process is not AMS.
Since we have control over the policy class, we will rule
out such examples, by considering only policies with fi-
nite memory. The other compelling reason is that we have,
simply, no means to implement an infinite memory pol-
icy. Hence, from now on we will be interested only in
the behavior of dynamical systems induced by finite mem-
ory policies. A major question of interest is whether one
can characterize easily the class of controllable systems
in which all finite memory policies induce AMS systems.
Moreover, can one characterize a class of policies that in-
duce AMS systems for any controllable process? As we
will see in the next section, the answers are non-trivial.

3 Finite memory policies inducing non-AMS
systems

From the theory of Markov chains, any chain with a finite
number of states creates an AMS process (for more details
see Section 4). Hence, we will focus on the case of control-
lable systems with a (countable) infinite state space, and we
analyze several examples in which finite-memory policies
lead to non-AMS dynamical systems. In order to facilitate
the proofs for the following examples we will show that
any transient Markov chain induces a non-AMS process.

Proposition 1. Let (Ω,F , P ) be a stochastic process in-
duced by a Markov chain with a countable state space S .
Then, for any F ∈ F and any k ∈ N there exists an in-
creasing sequence of finite sets of states {Ci ⊂ S}i∈N such
that

P
{
F ∩ {∀1≤j≤k : Xj ∈ Ci}

}
→ P{F} as i→∞, (1)

where Xj ∈ S represents a state visited at time j.

Proof. For convenience, we identify the state space S with
a set of elements from N. Define ∀i ∈ N : Ci = {1, ..., i},
so that {Ci}i∈N is an increasing sequence of finite sets, and
∪∞i=1Ci = S.
Therefore, for any fixed k ∈ N,

{
P
(
F ∩ {∀1≤j≤k : Xj ∈ ∪ni=1Ci}

)}
n∈N
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is an increasing sequence with the limit

P
(
F ∩ {∀1≤j≤k : Xj ∈ ∪∞i=1Ci}

)

= P
(
F ∩ {∀1≤j≤k : Xj ∈ S}

)
= P (F ). �

Proposition 2. A stochastic process induced by a transient
Markov chain with a countably infinite state space is not
asymptotically mean stationary.

Proof. For a finite set of states S ⊂ S we define an event
S̄(n) = ∪∞i=n{Xi ∈ S} which represents visiting states in
S at least once after n transitions. The transient chain is the
one satisfying

∀s ∈ S : P{Xi = s infinitely often |X0 = s} = 0.

Therefore we get

P{(Xk ∈ S) ∩ S̄(n+k)} → 0 as n→∞ (2)

for any k ∈ N.
Pick finite S0 ∈ S such that P{X1 ∈ S0} = p0 > 0.
Waiting step: Due to (2), for any ε0 > 0 there exists N0

such that P{(X1 ∈ S0) ∩ S̄(N0)
0 } < ε0, implying that

P{F0} > p0 − ε0,
where F0 , (X1 ∈ S0) ∩

[
S̄

(N0)
0

]c
.

Approximation step: Due to (1), for any β0 > 0 we can
find a finite set S1 ∈ S such that S0 ⊂ S1 and

P{G0} > P{F0} − β0,

where G0 , F0 ∩ {X1, ..., X3N0
∈ S1}.

We construct the entities Si+1, Fi, Gi in the following in-
ductive fashion. (Waiting step): Due to (2), for any εi > 0
there exists Ni such that

P{Fi} > P{Gi−1} − εi,
where Fi , Gi−1 ∩

[
S̄

(Ni)
i

]c
. (Approximation step): Due

to (1), for any βi > 0 we can find a finite set Si+1 ∈ S
such that Si ⊂ Si+1 and

P{Gi} > P{Fi} − βi,
where Gi , Fi ∩ {X1, ..., X3Ni

∈ Si+1}.
Now, denote G = ∩∞i=0Gi. Since we have P{G} > p0 −∑∞
i=0(εi+βi), we can choose {εi}i∈N and {βi}i∈N so that

P{G} > 0.
To complete the proof, we set

f = 1
[
∪∞i=1 (S2i \ S2i−1)

]

and observe that ∀x = 〈x1, x2, ...〉 ∈ G:

1

t

t−1∑

n=0

f(xn) ≤ 1

3
∀t ∈ {3N2j |j ∈ N}

1

t

t−1∑

n=0

f(xn) ≥ 2

3
∀t ∈ {3N2j+1|j ∈ N}

So the function f does not satisfy the ergodic property,
hence the process is not asymptotically mean station-
ary.

3.1 Infinite queue
Consider the countably infinite Markov chain depicted in
the Fig. 1, and suppose each state leads to an observation
from a finite set. The long term behavior of this chain dif-
fers drastically for different values of p > 0. If p < 1

2
then the chain is ergodic with unique limiting stationary
distribution [2], so the system is AMS. If p > 1

2 then each
state in this chain is transient (intuitively, the chain drifts
right; see e.g. [1] for an analysis). Hence Proposition 2 is
applicable and the system is not AMS. To change the ex-

Figure 1: The infinite queue (the initial state is 0), also
called the random walk on non-negative integers.

ample above into a controllable system, suppose there are
two actions, a-arrive and d-depart, each succeeding with
probability 1. If a is chosen, the size of the queue increases
by one; if d is chosen the size of the queue decreases by
one. Then, a policy that chooses a with probability 0.4 in-
duces an AMS system, while a policy that chooses d with
probability 0.4 induces a non-AMS system.

3.2 Infinite binary graph
The previous example considered two memoryless stochas-
tic policies that yield different types of dynamical systems.
However, that example has a continuous range of policies
that induce AMS processes: all policies that choose action
a with some probability in the range [0, 1

2 ). This leads to
the following question: if two policies lead to AMS sys-
tems, does their convex combination also lead to an AMS
system? This property holds in the previous example, but
we will now see that it is not always true.

Consider a controllable dynamical system induced by an
infinite binary graph depicted in Fig. 2. The actions are
l - descend left and r - descend right. Suppose that these
actions always succeed. Following arguments similar to the
previous example, it is possible to show that the policies π1

- choose l w.p. 0.8, and π2 - choose r w.p. 0.8, create two
AMS systems. However, the policy π3 - choose l w.p. 0.5,
will result in a non-AMS dynamical system.

To see this, first observe that the probability of crossing the
left 1

4 border under policy π1 decreases as we descend, re-
sulting in P{X = 1 i.o.} = 0 (this can be shown using
any concentration bound, like Chebyshev or Hoeffding).
Therefore, the distribution P̂ defined by

∀i : P̂{Xi} =

{
1 for Xi = 0
0 for Xi = 1

is stationary and asymptotically dominates P , implying
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Figure 2: The infinite binary graph (top). The initial state
is the root. Each node has two children, but most of the
children are shared (the bottom image shows the first few
layers). The nodes that fall in the green region are labeled
0 and those in the blue region are labeled 1. Note that the
X axis (the depth of the tree) is displayed on a log-scale,
meaning that the green/blue regions in the middle grow ex-
ponentially as we go deeper.

that the resulting process is AMS (For details on asymp-
totic dominance and its link to the AMS property, see [2]).
Similarly, while following the policy π2, the probability of
crossing the right 1

4 border decreases, resulting in an AMS
process. Thus both π1 and π2 lead to an AMS system.
However, by following policy π3 the process will eventu-
ally stay in the middle between two borders. Hence, the
running average of the sequence of observations will not
converge, and we conclude that the process is not AMS.

3.3 Fully connected infinite queue

Both previous examples suggest that a weak connectivity of
the underlying Markov chain is a possible cause for such a
phenomenon: in both cases, the number of edges is of the
order of the number of nodes, so the system can always
reach a state that is “arbitrarily far away“ from any fixed
state. In this section we present a fully connected system
in which finite policies still may not induce AMS systems.
It is an extension of the queue example, in which all the
states are connected and there is a positive probability of
going from any state to any other state (see Fig. 3).

The probability that the queue grows is always p since∑∞
i=0 ap

i = a 1
1−p = p where a , p(1 − p). For p < 1

2 it

is easy to show that this Markov chain is positive recurrent2

and therefore AMS [3]. For p > 1
2 , using similar tools one

can show that the chain is transient, therefore Proposition 2
is again applicable.

4 The AMS property and predictive
representations

The previous section suggests that it is difficult to establish
a priori what policies induce AMS processes, without intro-
ducing some other restrictions on the original controllable
system. Therefore, we proceed by considering only con-
trollable systems that induce AMS processes for any finite
memory policy.

Definition 1. A controllable dynamical system is called
absolutely asymptotically mean stationary if the (uncon-
trolled) dynamical system induced by any finite memory
policy is AMS.

Thus, a controllable system that is absolutely AMS can be
used to evaluate any quantity of interest induced by any fi-
nite memory policy. In particular, if the quantity of interest
is the reward, then according to Section 2, the time aver-
ages of the reward function R induced by a policy π will
converge to Eπ(R|G). To obtain Eπ(R) instead, which is
required for comparison of policies in the average reward
RL case, additional conditions should be enforced. Those
are discussed in the next section.

In this section, we examine the question of how restrictive
the absolute AMS assumption is, specifically by looking
at existing models of dynamical systems (especially pre-
dictive state representations). We find that many existing
models are absolutely AMS, but there are absolutely AMS
systems that cannot be modeled by any such representa-
tions.

4.1 Existing absolutely AMS models

Finite Markov chains and finite Hidden Markov Mod-
els were shown to be AMS by Kieffer and Rahe [7].
At the same time, every finite Markov decision process
(MDP) and partially observable Markov decision process
(POMDP) [8] induce a finite Markov chain and a finite
HMM respectively, once the policy is fixed. Therefore,
finite-state MDP and POMDP are absolutely AMS accord-
ing to Definition 1. More recently, a new modeling frame-
work, called predictive state representations (PSR) was
proposed by Littman et. al. [9]. Most of the work in this
framework focuses on so-called linear PSR models, which
can represent a strictly larger set of systems than POMDPs

2First, observe that E(Ji|Xi = k) < −ε for almost all k
and ε > 0 small enough, where Ji is the jump at time i (Ji =
Xi+1 − Xi), ε ∈ (0, 1). Then, using Chebyshev’s bound we
obtain that P{X > k almost always} = 0 for almost all k. From
here it is straightforward to show positive recurrence for all states.
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Figure 3: The fully connected infinite queue (the initial state is 0).

[9]. Singh et. al. [10] showed that linear PSR mod-
els without actions are equivalent in their representational
power to observable operator models (OOM) developed by
Jaeger [11]. Finally, Faigle and Schoenhuth [4] showed that
OOMs can only model AMS processes. Combining this
result with the work of Wiewiora [12], who showed that a
linear PSR coupled with a finite memory policy can still be
represented by a linear PSR without actions, we conclude
that all controllable systems that can be represented by a
linear PSR are absolutely AMS.

4.2 Non-linear predictive state representations and
AMS systems

As it was mentioned above, most of the literature on pre-
dictive state representations focuses on linear PSRs. To the
best of our knowledge, the only exception is the work of
Rudary and Singh [13], which gives an example of a system
that can be represented by a nonlinear PSR with dimension
exponentially smaller than that of a linear PSR. However, it
was not known whether the representational power of non-
linear PSR is larger than that of linear PSR, until Faigle
and Schoenhuth [4] and Schoenhuth and Jaeger [5] pro-
vided counterexamples that answer this question as a side
effect. Both examples consider AMS systems (in fact, the
example from [4] is stationary) that cannot be represented
by a linear PSR. Yet, these systems can be represented by
a nonlinear PSR. This observation has not been reported
earlier in the literature. For completeness, we will restate
the example from Schoenhuth and Jaeger [5] with a slight
modification of the proof and show that the system is rep-
resentable by a nonlinear PSR.

Nonlinear PSR Example

Consider an independent but nonstationary process (with-
out actions) {Ot, t ∈ N} defined on the observation space

O = {a, b} by the following distribution at time t:

P{Ot = a} = αt+1, P{Ot = b} = 1− αt+1,

for some α ∈ (0, 1).
We will show that this process cannot be represented by
a linear PSR, but it is AMS and can be represented by a
nonlinear PSR.

Proof. First, consider a fragment of the system dynamics
matrix of this process presented in Figure 4. One can see
that a column corresponding to a test of size m cannot be
represented as a linear combination of columns of shorter
tests. Therefore the system dynamics matrix has infinite
rank, hence this system cannot be represented by a linear
PSR [10].
Now, consider a distribution

P̂{s} =

{
1 if s = b|s| = b · · · b
0 otherwise

.

Note that this is a stationary distribution that asymptotically
dominates P , so the system is AMS.
Finally, denote p(h) = P{a|h} for a history h ∈ O∗.
Note that for any test t ∈ O∗, P{t|h} can be computed
from p(h) and α. For example, P{abab|h} = p(h) · [1 −
αp(h)] ·α2p(h) · [1−α3p(h)]. Also, we can update p(h) on
each time step using the equation p(hx) = αp(h), x ∈ O.
Hence we constructed a nonlinear PSR that models the sys-
tem above.

Finally, we would like to highlight, with an example, the
fact that nonlinear PSR systems and AMS systems are not
comparable (neither is more general).

Non-AMS nonlinear PSR example

Consider an independent nonstationary process {Ot, t ∈
N} defined on the observation spaceO = {a, b, c} with the
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a b aa ab ... aaa ...
m︷ ︸︸ ︷

a · · · a
0 α 1− α α3 α(1− α2) ... α6 ... α

m(m+1)
2

1 α2 1− α2 α5 α2(1− α3) ... α9 ... α
m(m+3)

2

... ... ... ... ... ... ... ... ...
k αk 1− αk α2k+3 αk+1(1− αk+2) ... α3k+6 ... α

m(m+2k+1)
2

Figure 4: The fragment of the system dynamics matrix. The columns represent the tests and the rows represent lengths of
the histories (the prediction does not depend on the history in this case, only on its length). The entries represent conditional
probabilities of tests given histories. For more details on the system dynamics matrix see [10].

following distribution:




P{Ot = a} = 1
t+1

P{Ot = b} = [1− P{Ot = a}] · 1sin log(t)≥0

P{Ot = c} = [1− P{Ot = a}] · 1sin log(t)<0

.

Hence, 1
n

∑n−1
t=0 P{Ot = b} does not converge as n→∞

since sin log(t) is a periodic function with exponentially in-
creasing periods. However, this process can be represented
by the following nonlinear PSR. The state of the PSR is
defined by only one prediction p(t) = P{Ot = a}, and
it is updated by p(t + 1) = 1

1
p(t)

+1
. The other one step

predictions can be computed from p(t) by:

{
P{Ot = b} = [1− P{Ot = a}] · 1sin log( 1

p(t)
−1)≥0

P{Ot = c} = 1− P{Ot = b} − p(t) .

Since the process is independent, the above equations are
enough to compute the prediction of a test of any length.

Non-PSR AMS System Example

Consider an independent non-stationary process {Ot, t ∈
N} defined on the observation space O = {a, b} with a
following distribution:

{
P{Ot = a} = 2−t if ∃k ∈ N s.t. t = 2k

P{Ot = a} = 0 otherwise .

The distribution P̂ defined in the first example also asymp-
totically dominates P , therefore the process is AMS.
Now, suppose that there exists a nonlinear PSR represent-
ing this process. According to [9] there must be a set of
core tests Q = {q1, ..., qn|qi ∈ O∗} such that for any test
t ∈ O∗ there exists a projection ft : [0, 1]n → [0, 1] with
the property:

∀h ∈ O∗ : P{t|h} = ft

(
P{Q|h}

)
,

where P{Q|h} =
(
P{q1|h}, ..., P{qn|h}

)
is a PSR state

for a history h. Denote k = max1≤i≤n |qi| the length of
the longest core test and assume WLOG that k > 2. Pick
any history h1 of length 2k, and any history h2 of length

2k+1− (k+ 1). Denote q∗ = bb · · · b the test of size k+ 1.
Observe that P{Q|h1} = P{Q|h2} but

P{q∗|h1} = 1 6= 1− 2−(k+1) = P{q∗|h2},

implying that a projection fq∗ does not exist; therefore, this
process cannot be modeled with a nonlinear PSR.

5 Average reward RL in absolutely AMS
systems

As we have mentioned before, the absolute AMS condi-
tion guarantees convergence of time averages of the reward
function R to a conditional expectation Eπ(R|G) where G
is the σ-algebra of invariant events and π is the policy in-
ducing the underlying stochastic process. It is not difficult
to image a scenario when this conditional expectation is not
constant for a given policy. For example, assume a two-
state Markov chain and two policies π1 and π2, where fol-
lowing π1 ensures always staying at the current state and
following π2 switches the state. We get that the time av-
erage of the reward for π1 can converge to two different
values, depending on the initial state. Thus, executing π2

in between two evaluations of π1 can make the evaluation
process appear inconsistent. In fact, without any further
assumptions, the only conclusion that we can reach is that
the current policy “now” is same/better/worse than the pre-
vious policy “then”. The goal of this section is to address
this concern for absolutely AMS systems in general.

Denote by µ the probability kernel that completely de-
scribes the future dynamics of the underlying system. We
will call µ the state of the system. Let M be a class of
states, and all finite convex combinations thereof, that are
reachable in finite time by following a uniformly random
policy starting from an initial state µ0

3. Clearly, adding
convex combinations of states does not ruin the fact thatM
is a collection of probability kernels. Let M̄ be the com-
pletion ofM by including the limits of sequences of prob-
ability kernels inM (the Vitali–Hahn theorem ensures that
the limits are probability kernels themselves). Note that
the stationary mean of an AMS stochastic process gener-
ated from the state µ0 and finite memory policy π can be

3I.e, system states that correspond to all finite histories with
non-zero probability of occurring under such policy will be inM.
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decomposed into the corresponding stationary mean ker-
nels, µ̄ and π̄. Thus, the stationary mean kernels (µ̄) that
correspond to these policies are in M̄.

Proposition 3. If a policy π together with all states in M̄
generates a class of AMS and ergodic stochastic processes,
then they have the same stationary mean kernels.

Proof. Suppose that policy π together with states µ1, µ2 ∈
M̄ generate two stochastic processes with corresponding
(different) stationary means P̄1 and P̄2. P̄1 and P̄2 cannot
agree on G, the σ-field of the invariant events4; therefore
we can find two invariant sets I1, I2 such that

P̄1(I1) = P̄2(I2) = 1 and
P̄1(I2) = P̄2(I1) = 0

since both processes are ergodic. Now consider µ =
1
2µ1+ 1

2µ2. Then, P̄ = 1
2 P̄1+ 1

2 P̄2 is the stationary mean of
the process generated by µ and π. Observe that the corre-
sponding stationary mean kernel µ̄ ∈ M. However, this is
a contradiction since P̄ (I1) = P̄ (I2) = 1

2 , implying that P̄
is not ergodic. Therefore, P̄1 = P̄2, which implies equality
in their stationary mean kernels.

We now show the first main result of this section.

Theorem 4. If the class of policies Π together with the
states in M̄ generate AMS and ergodic processes, then
these policies are comparable in the following sense: given
a measurable bounded reward function R,

∀π ∈ Π :
1

t

t−1∑

n=0

R(Tnx)→ EP̄ (R) a.s. P̄ ,

where P̄ is the stationary mean of the process induced by
any µ ∈M and the corresponding π.

Proof. Fix a policy π ∈ Π. According to Proposition
3, no matter what the initial system state µ is (as long as
µ ∈ M̄), the resulting process, Pµ, possesses the same
stationary mean P̄ . The ergodicity of Pµ and Birkhoff’s
almost-sure ergodic theorem together imply that

lim
t→∞

1

t

t−1∑

n=0

R(Tnx) = EP̄ (R) a.s. P̄ , Pµ. �

Now, recall that M̄ contains all system states reachable in
a finite time. Therefore, Theorem 4 guarantees that evalu-
ating the same π again, after running a different policy for
an arbitrary but finite time will lead to the same result.

To reassure the reader that the assumptions of Theorem
4 are reasonable, assume that our dynamical system is a
POMDP with finite state space. If the underlying state

4It is a classical result that stationary distributions are uniquely
identified by their restriction on G.

space represents an irreducible Markov chain for some ε-
soft (ε > 0) n-th order Markov memory policy (for some
finite n), then one can verify that the same holds for any
other such policy. Hence, if we define Π to be the set of
these policies andM to be all possible initial distributions
over the underlying state space, the assumptions of Theo-
rem 4 are satisfied.

Yet, from a practical perspective, there is one more com-
ponent that needs attention. Although convergence is guar-
anteed, it is likely that more assumptions are needed if one
wants to have a theoretically sound convergence test5. It
is worth mentioning that if the underlying model of a sys-
tem (e.g. linear PSR) is known, it is easy to estimate the
rate of convergence to a stationary mean given any policy.
This rate can be directly used to estimate the rate of con-
vergence of reward averages. For the rest of the discussion
we assume that such a convergence test, formally defined
below, is provided.

Definition 2. Let f be a measurable function. The con-
vergence test Cf (ε, δ, t, ω) is a binary valued measurable
function for any t ∈ N, ε > 0 and δ > 0, such that with
probability 1− δ (ω ∈ Ω):

∀t ∈ N :Cf (ε, δ, t, ω) = 1 =⇒
∣∣∣1
t

t−1∑

n=0

f(Tnω)− E(f |G)(ω)
∣∣∣ ≤ ε and

∀k > t : Cf (ε, δ, k, ω) = 1.

Dynamical systems with reset Sometimes, the environ-
ment has the ability to reset, i.e. put itself in a state that
does not depend on the previous history. Formally speak-
ing, we can model this behavior by viewing it as a special
action. Moreover, the effect of the reset, in terms of the
controllable dynamical system, is that the next state is µ0,
i.e. the state from which the system has initially started. In
this case, we show that other than the existence of a sound
convergence test presented in Definition 2, no further as-
sumptions are required to evaluate the policy at hand.

Theorem 5. Given that the special reset action is available
and the system possesses a convergence testCR, any policy
π that induces an AMS process can be evaluated at any
time, and its value will be equal to EP̄ (R), where P̄ is the
stationary mean of the process induced by µ0 and π, andR
is a bounded measurable reward function.

Proof: Due to the AMS assumption,

lim
t→∞

1

t

t−1∑

n=0

R(Tnω) = EP̄ (R|G)(ω) a.s. P̄ .

Since every reset puts the system in a state that is indepen-
dent of the past, after each reset we obtain an independent

5Assumptions that guarantee some sort of convergence rate
would be sufficient.
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sample from the distribution P̄R induced by the random
variable EP̄ (R|G).
To formalize this, denote by P the probability induced
by µ0 and π. We will define a new probability space
(X,X , Q) as a countable product space of (Ω,F , P ), i.e.
X = ×∞i=1Ω, etc. We equip this space with two shift oper-
ators Tin, Tout defined ∀x ∈ X as:

Tin(x) =Tin(ω1, ω2, ω3, ...) = (T (ω1), ω2, ω3, ...),

Tout(x) =Tout(ω1, ω2, ω3, ...) = (ω2, ω3, ω4, ...).

One can verify that these are measurable. Also, with the
slight abuse of notation we define ∀x ∈ X:

R(x) = R(ω1, ω2, ω3, ...) , R(ω1).

Denote ∀i ∈ N : R
(t)
i ,

1

t

t−1∑

n=0

R ◦ Tnin ◦ T iout,

R̄i , lim
t→∞

R
(t)
i ∼ P̄R.

Observe that ∀t1, t2, i 6= j : R
(t1)
i is independent of R(t2)

j

and R̄i is independent of R̄j . The strong law of large num-
bers guarantees that (a.s. Q)

1

n

n∑

i=1

R̄i →
∫

R

x dP̄R = EP̄ (R) as n→∞. (3)

The convergence rate of (3) can be bounded by the Berry-
Esseen theorem, for example, since the existence of finite
moments for R̄1 is guaranteed due to the boundedness ofR.
Therefore, for any 0 < γ < 1 and ε > 0 we can calculate
M such that, with probability ≥ γ:

∣∣∣ 1

M

M∑

i=1

R̄i − EP̄ (R)
∣∣∣ ≤ ε

2
. (4)

After the i-th reset (which is represented by a Tout shift)
we can use the convergence test CRi

6 to obtain an estimate
of R̄i. Now, choose {Ni}1≤i≤M such that

∀1 ≤ i ≤M : CRi

( ε
2
, 1− γ 1

M , Ni, ω
)

= 1,

which implies, with probability ≥ [1− (1− γ 1
M )]M = γ:

∣∣∣∣∣
1

M

M∑

i=1

R
(Ni)
i − 1

M

M∑

i=1

R̄i

∣∣∣∣∣ ≤
ε

2
. (5)

Combining 4 and 5 we have, with probability ≥ 2γ − 1:
∣∣∣∣∣

1

M

M∑

i=1

R
(Ni)
i − EP̄ (R)

∣∣∣∣∣ ≤
∣∣∣∣∣

1

M

M∑

i=1

R
(Ni)
i − 1

M

M∑

i=1

R̄i

∣∣∣∣∣

+

∣∣∣∣∣
1

M

M∑

i=1

R̄i − EP̄ (R)

∣∣∣∣∣ ≤ ε.

�
6Use the definition 2 w.r.t. the shift Tin and G, which is the

invariant σ-algebra with respect to the first sequence of x ∈ X .

Thus, Theorem 5 tells us that if we perform the reset and
subsequent estimation of EP̄ (R|G) enough times, their av-
erage will provide an accurate estimate of EP̄ (R).

6 Conclusions and future work

We proposed the notion of absolutely AMS systems as
an interesting class of controllable dynamical systems for
which the computation of running averages for quantities
of interest leads to meaningful conditional expectations.
While typical finite-state models used in the literature
are absolutely AMS, as we have shown, this property
can easily be violated in infinite systems, even with finite
action and observation sets. We have also shown examples
of absolutely AMS systems that cannot be captured by
existing types of models, even nonlinear PSRs; linear
PSRs, however, are absolute AMS systems. Hence, this
seems to be a rich and interesting class of systems to study.
Figure 5 summarizes the relationships illustrated by the
examples in the paper.

Figure 5: The relationship between categories of control-
lable systems. All inclusions are proper.

The absolutely AMS property is a necessary condition for
the averages of collected rewards to converge, given any
(reasonable) policy of interest. In Sec. 5 we discussed ad-
ditional assumptions that, together with this property, guar-
antee the validity of average-reward policy evaluation in
partially observable systems.

Much work remains to be done towards learning in abso-
lutely AMS systems. The policy improvement step –an in-
herent part of any RL algorithm– is a main direction of fu-
ture research. We are currently investigating properties of
controllable dynamical systems that allow a gradient search
in policy space. Finally, the strong relationship between the
AMS property and information theory [2] should be ex-
plored in the controllable systems context.
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