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Abstract

We present a scalable sequential Monte Carlo
algorithm and its greedy counterpart for
models based on Kingman’s coalescent. We
utilize fast nearest neighbor algorithms to
limit expensive computations to only a subset
of data point pairs. For a dataset size of n,
the resulting algorithm has O(nlogn) com-
putational complexity. We empirically verify
that we achieve a large speedup in computa-
tion. When the gain in speed is used for in-
creasing the number of particles, we can often
obtain significantly better samples than those
of previous algorithms. We apply our algo-
rithm for learning visual taxonomies of birds
on 6033 examples, a dataset size for which
previous algorithms fail to be feasible.

1 Introduction

Nonparametric Bayesian (NPB) models provide an el-
egant solution to the problem of inferring structure
from data. In particular, as the dataset grows larger,
the model adapts its complexity as it discovers finer
structure in data. This behavior is reminiscent of
humans learning increasingly sophisticated abstract
concepts as more of the world is observed. These
concepts are often organized hierarchically. For in-
stance, we intuitively understand that there is a hi-
erarchical organization in the sequence of categories:
animal—mammal—dogs—terrier— “Max”.  Clearly,
more concepts will form as we perceive more infor-
mation.

Kingman’s coalescent [1] is a NPB prior over binary
trees of unbounded size. It was originally developed
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in population genetics to infer characteristics about
a population and it also provides an elegant way to
learn a hierarchical clustering of data [2]. As such it
is ideally suited to model the growth of concept hier-
archies of the type discussed above. Both population
genetics and machine learning applications involve at
least thousands or tens of thousands data points. How-
ever the fastest sampling algorithms for the coalescent
[2, 3, 4] can currently handle no more than a meager
few hundred data-items. It is thus apparent that there
is an enormous gap between the scale we would like to
apply the coalescent model and what we can achieve
in practice. The main goal of this paper is to make a
dent in this performance gap by proposing a fast in-
ference algorithm for Kingman’s coalescent that can
handle thousands of data-items given limited compu-
tation time and maintain a similar level of accuracy as
alternative methods. We showcase our approach on a
challenging problem of learning visual taxonomies of
birds using 6033 data points in Figure 1, obtained from
a 20-particle run that took 116 hours of CPU time. It
is important to note that the alternative algorithms
would have taken on the order of months!

There have been many approximate inference tech-
niques developed for coalescent models based on
Markov chain Monte Carlo (MCMC) and sequential
Monte Carlo (SMC) as well as greedy algorithms.
Typically, the agglomerative algorithms start with
each data item in its own cluster, and iteratively
merge pairs of clusters until a single cluster remains.
For the greedy and SMC algorithms in [2] (except
GreedyRatel), each of the n — 1 iterations involves
costly computations for each pair, resulting in O(n?)
computational cost. GreedyRatel and SMC1 [3] follow
a similar framework, but use an approach that allows
the reuse of some computations, leading to a reduced
computational complexity of O(n?). In this paper, we
take an alternative approach that avoids doing most
of the costly computations by using dedicated data-
structures (e.g. kd-trees, cover trees) for fast nearest
neighbor (NN) search and only performing costly com-
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Figure 1: A sample tree from our SMC algorithm run on the Birds200 dataset (center), and several subtrees.
Bird caricatures are displayed on the nodes of the tree that summarize the color properties of the descendants of
that node. (Zoom in for better visibility.) Five out of 15 features are used in the caricatures for interpretability.
Light gray indicates “uncertain,” and all other colors denote the color of the bird’s body, belly, tail, wing, crown,

and eyes.
common ancestor caricature in the middle.

putations for the closest pairs of points. This results
in a scalable algorithm with computational complexity
O(nlogn) assuming the fast NN algorithm maintains
its speed as iterations proceed.

In the next section, we set the ground by reviewing
Kingman’s coalescent and the basis of the SMC al-
gorithms of [2, 3] for inference on this model. The
proposed fast SMC inference algorithm and its greedy
version are described in Section 3. We compare our
method to alternatives as well as demonstrating runs
on larger scale datasets which the other inference al-
gorithms cannot cope with in Section 4. We conclude
with a discussion in Section 5.

2 Kingman’s Coalescent

Kingman’s coalescent is a prominent model in popu-
lation genetics, defining a distribution over genealogi-
cal trees of a haploid population [1]. It describes the
genealogy of individuals in the current population by
going backwards in time, and coalescing pairs of in-
dividuals to form the ancestry. In the following, we
borrow description and notation from [2] and refer the
reader to this paper for details.

Let 7 be the genealogy of n individuals observed at the
present time tg = 0. There are n — 1 coalescent events
in 7, ordered such that ¢ = 1 is the most recent one,
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The subtrees show the images corresponding to the data at the leaves along with the corresponding

and ¢ = n — 1 is the last event when all ancestral lines
are coalesced. Let (py;, pr;) be the ith pair of lineages
to coalesce and d; =t;_1—t; > 0 be the duration between
adjacent events. Denote with Ay the initial set of indi-
viduals at tg = 0 and A; the set of lineages right after
coalescent event ¢. Similarly, denote the set of pairs of
lineages with ¥ = {(pn, pi)lpn € Ais pr € Ai,h # k.
Under Kingman’s coalescent, every pair of lineages
merges independently with exponential rate 1 and lin-
eages are exchangeable. Thus, the ith coalescent event
happens after time §; ~ Exp ((”*5“)) and indepen-
dently the pair (p;, pr;) is chosen from ;1 to form
pi = pii U pri. With probability 1 a random draw
from Kingman’s coalescent is a binary tree with a sin-
gle root at t — —oo and the n individuals at time
t=0. Combining the exponential probabilities of the
durations and the uniform choices of lineages we have

p(m) =H?;116Xp(— ( n,;qu >5i>~

In addition to its established use in population genetics
models [5, 6, 7], Kingman’s coalescent has been used
for hierarchical clustering [2, 3, 8]. In general, it can
be used as a prior over binary trees in a model where
we have a tree-structured likelihood function for ob-
servations at the leaves. The data generating process
p(X|m) is defined as a simple Markov process on the
tree which evolves forward in time. Data points at the
leaves are generated by applying the Markov process to
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transform the root node along the tree branches. Us-
ing terminology from population genetics, the latent
tree topology together with the times of the mutation
and coalescent events and the states of the internal
nodes fully describe the genealogy. It is possible to
integrate over the mutations and compute the proba-
bility of data under a particular tree structure sequen-
tially by using message passing from the leaves towards
the root of the tree, as discussed in [2]. Thus, the like-
lihood can be summarized as a product over functions
that depend only on the local messages sent from the
coalescing individuals p;, and p,, to their parent p; and
the time §; between consecutive coalescent events:

n—1

p(X|7T) = Z()(X) H Zpi(X7 9i71,6i7pliap’ri)7 (1)

=1

where 0; = {d;, p1;, pr, for j < i} denotes the first 4
coalescent events, Zo(X) is a normalization constant
and Z,,(X,0,) = Z,,(X,0;_1,0i, pi, pri) has the form:

i

Zﬁi (X79i) = (2)
/po(yi) II /p(yclym@i)M () dye dy;.

c=l;,r;

In the above equation M, is the message from child p,
to pi, p(Yelyi, 0;) represents the Markov process from
pi to p. and po(y;) is the equilibrium distribution of the
Markov process at t — —oo. The posterior is propor-
tional to the product of the prior and the likelihood:

n—1

p(r | X) o [T exp (= ("7311)6:) Z,,(X,0,).  (3)

=1

2.1 SMC inference on the Coalescent

The SMC algorithms that have been developed for
inference on the coalescent can be divided into two
classes according to the state space they choose to rep-
resent; algorithms that represent the coalescent events
and the mutation events, without representing the
time of the events [4, 9] and algorithms that represent
the coalescent events and the time of coalescence, but
do not represent the mutation events [2, 3, 10]. Specif-
ically, the algorithm we propose in the next section is
closest to PostPost [2] however the idea is generally
applicable to the algorithms that use the latter class
of representation.

In detail, the state space consists of the lineages, coa-
lescent events between pairs of lineages and the time of
these events. We start with n individuals at the leaves
of the tree, and pick the pair of lineages to coalesce
and their time for coalescence at each iteration. After
a pair is merged into an ancestor p; = py; U py; the new
set of individuals A; is obtained by removing p;; and
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pri from A; 1 and including p;. Similarly, the set of
pairs is updated to v; by removing all pairs with py;
and p,; from ;1 and adding in pairs with p;. The
algorithm terminates after n — 1 iterations, when all
individuals merge into one common ancestor. Several
particles are run in parallel, with weight updates, and
are resampled when weights diverge.

Noting that the posterior distribution in eq.(3) is a
product of local terms defined at a current coalescence
level and conditioned on the previous, the ith product
can be seen as a “local posterior” and it can be used
as a proposal distribution at ith iteration,

q(pi, 6;) o< exp (= ("1 8;) Z,, (X, 6;). (4)

In particular for PostPost, sampling from ¢(p;, d;) is
performed by first sampling a pair (p;;, pri) fom ;1
using the probabilities

00" [ esp (=(75)3) o)

X Zp (X, 0,21, 9, pii, pri)dd,
and sampling a coalescence time §; given p; = py; U ppi:
4(0ilp:) o< exp (= ("751)0i) Zp, (X, 6:). (6)

Note that since the distributions eq.(4)-(6) depend on
the iteration number ¢, a proposal distribution should
be reconstructed at every iteration for O(n?) pairs at
that iteration. SMC1 on the other hand makes use of
the memoryless property of the exponential distribu-
tion and keeps the rate of the prior exponential distri-
bution fixed to 1:

q(di|ps) o< exp (=6;) Z,, (X, 0;). (7)

This allows using the same proposal distribution for
a particular pair over iterations. SMC1 samples a co-
alescence time for each pair in ¢;_; from eq.(7) only
once, to be used for all iterations. The coalescing pair
is chosen to be the one with the shortest sampled time.
At each iteration, O(n) computations is necessary for
constructing the proposal distribution for the pairings
of the new ancestor, resulting in O(n?) overall cost.

3 Speeding up Inference using
Similarity Information

We propose a novel SMC algorithm that avoids do-
ing costly computations for most pairs by making use
of the similarity information between the pairs. Note
that the likelihood is defined in terms of a Markov mu-
tation process that acts on the branches of the tree.
Going backwards in time, nodes that are far away
from each other in the state space of mutations are
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Figure 2: A priority queue of closest pairs is main-
tained. At each iteration a pair merges into a new
point. The priority queue is updated by removing the
pairings of either of the merging points and including
the kNN of the new point. The proposal probability of
the first R pairs (dark bars) is computed using eq.(5)
and the probability of the remaining pairs is set to a
constant value (dashed line). This value is set to the
value of the Rth pair for SMCnn and zero for GreedyNN.

very unlikely to coalesce before closer (or more simi-
lar) ones. We can use this observation to gain a speed
up in inference and construct a proposal distribution
by focusing attention on a small subset of ;1 that
are more likely to coalesce rather than computing the
proposal probability eq. (5) for all pairs in ;1. This
results in a great gain in computation time relative to
both PostPost and SMC1 as the costly computations
for constructing the proposal distribution is limited to
a constant number of pairs.

A distance metric in the space of mutations would
depend on the Markov transition kernel and may be
costly to evaluate. Furthermore, note that the rep-
resentation we use does not include the state of the
internal nodes, but the nodes are represented in terms
of messages. The probability eq. (5) of coalescing a
pair (p;, pr) at iteration i depends on the messages
M,, and M, , eq. (1). Intuitively, the more similar
the messages are, the more likely a pair is to coalesce.
We aim to efficiently find the R pairs in 1;_; whose
messages are nearest in some (e.g. Euclidian) sense.
This notion of nearness will not necessarily give the
pairs that are most likely to coalesce, but the idea is
that it will give some proxy to that. Note that we use
this approach merely to form a proposal distribution.
The SMC algorithm will still be a correct sampler as
long as the new proposal distribution has support over
the true posterior density. We ensure this by assigning
positive proposal probability to the rest of the pairs.

3.1 SMCnn

We maintain a priority queue ¢;_1 C ;_1 of pairs in
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Algorithm 1 SMCnn

1: a. Form a priority queue of sorted pairs of nodes
pir according to distance d(py, pr)
b. For p;. € ¢}B: approximate the “local likeli-
hood“ Z,,, by Z,,,,
c. For pi. € ;1\ ¢, use wa‘ll

2: a. Compute the probability of merging each pair
in 618 eq. (5),
b. Set the probability of the rest of the pairs to
the Rth pair’s probability.

3: Sample a pair from the normalized probabilities,

4: Sample a coalescent time for the selected pair using
eq.(6),

5: a. Merge pair into a new node, remove merging
nodes from representation, include new node.
b. Remove merging nodes from NN representation,
add new node in the representation.
c. Search for kNN of the new parent among A;.
d. Place the new pairs in the sorted list of pairs.

6: Update particle weights using eq. (8), and

7: Resample particles when weights diverge.

order to quickly retrieve the closest pairs at each it-
eration, as pictorially explained in Figure 2. Let ¢§_1
denote the [th element in the priority queue. Given a
distance metric d(,-), the pairs are sorted in increas-
ing distance such that d(¢? ) < d(¢! ) for b < L.
For the first R pairs ¢}t we compute eq. (5) to find
the proposal probability of coalescing. In order to re-
tain a correct sampler, coalescing one of the remain-
ing pairs in 1;_1 should be given nonzero probabil-
ity. We use the computed proposal probability of the
Rth pair in the queue to approximate these distant
pairs. That is, we set the proposal probability of these
pairs to be equal to the probability of the Rth pair,
q(I*,7*) = q(of1).V(pi=, pr=) € i1 \ ¢f. Thus, if
one of these distant pairs are chosen to coalesce, we use
the Rth pair’s coalescent time distribution ¢(d; | ¢ )
to propose a time for the chosen pair.

After each coalescent event, the set of individuals and
the set of pairs are updated by adding and remov-
ing pairs as in Section 2.1. The priority queue should
also be updated accordingly. For computational effi-
ciency we set R << ("7i™!).! Therefore, not all new
pairs need to be included in the priority queue. For
time efficiency, only the nearest neighbors of the new
ancestor are retrieved, and pairings of the new node
with these neighbors are included in ¢; according to
the distance between the individuals making up the
pairs. The number of neighbors to retrieve, k, is a
parameter of the algorithm, that is interrelated to R.

1SMCnn proposal distribution is equivalent to that of
PostPost for R > ("*2”1).
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We make use of efficient NN structures to find the
neighboring points for which it is possible to efficiently
delete and add points as well as having an efficient
query time. In this paper we consider kd-trees [11]
and covertrees [12] as examples for analyzing compu-
tational complexity. But any exact or approximate
nearest neighbor data structure can be used.

The algorithm proceeds by sampling the coalescing
pair and its coalescent time. In detail, after the prob-
abilities of all pairs are determined, a coalescing pair
and their coalescent time are chosen, and the points
are merged. An important point to note is that the
distant pairs are assigned the proposal distribution as
the Rth pair in the priority queue. Therefore, if one
of the distant pairs is chosen to coalesce, the coales-
cent time should be sampled using the local posterior
of the Rth pair. The weights are updated similarly,
taking into account the distant pairs sharing the same
proposal distribution with the Rth pair

Zp, (X, 0:)
Zpi (X7 91)

R
< ([5) = Blatof ) + Y atol),
h=1

(8)

W; = Wi—1

and the algorithm continues to the next iteration. The
algorithm is summarized in Algorithm 1.

In addition to the number of particles M, SMCnn has
two interrelated parameters; R is the number of pairs
to do computations for at each iteration and k is the
number of pairings of a new individual to include in
the priority queue. SMCnn is a correct sampler regard-
less of the values of R and k, however the efficiency
of the algorithm depends on them. The quality of in-
dividual samples will improve with increasing R, but
the computational cost will also increase. Thus, R
should be chosen to compromise between sample qual-
ity and speed. Typically, k can be an order of magni-
tude smaller than R as we only need to ensure there
are enough pairs represented in the priority queue, i.e.
nk >> R. Naturally, knowledge about the structure
of the dataset such as the expected number of points
in sub-clusters can be used to guide the choice of k.

On a given iteration of SMC, the proposed algorithm
computes eq. (5) R times and performs a single NN
search of size k. Assuming a kNN query time of
O(klogn), this gives a running time of O(cRn +
knlogn) per particle, where c is the cost of construct-
ing a proposal distribution per pair. However, there
may be additional terms depending on the specific NN
search algorithm and the resampling frequency. For
instance, kd-trees may need to be rebuilt in order to
have efficient queries, and covertree operation times
depend on the expansion constant of the data, which
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construct priorityQ/ resample/
proposal search rebuild
SMCnn M Rcn Mknlogn M fnlogn
GreedyNN Rcn knlogn -
SMC1 Mcn? Mnlogn M fn?
GreedyR1l cn? nlogn -
PostPost Mecn® - Mfn

Table 1: Computational cost of different algorithms. c is
the cost of constructing the proposal distribution for one
pair, which is similar for all algorithms.

may be O(n) in the worst case. Furthermore, due to
resampling, tree structures may need to be copied (or
rebuilt). A more precise expression for running time
is O(¢Rn + aknlogn + fr(n)), where o depends on
the query time for the specific NN algorithm, f is the
number of iterations of resampling or tree balancing
and r(n) is the total cost of updating and rebuilding
any NN data structure.? The primary gain of our run-
ning time is that the algorithm is linear in ¢, a very
large constant. For small to moderate dataset sizes,
Re will be much larger than klog(n), resulting in the
first term dominating the cost. The latter terms will
start to dominate as n gets larger. For reference, the
cost of different algorithms are provided in Table 1.

It is worth pointing out another computational gain
our algorithm. Note that at each iteration there are
O(n?) pairs, thus naively the pair probability distribu-
tion is a discrete distribution of size O(n?). However,
since we are assigning the probability of all but R pairs
to a particular value, we can represent this distribu-
tion with R 4 1 dimensions. If the last element (rep-
resenting the pairs in ¥;_1 \ ¢}%) is sampled, we only
need to uniformly randomly choose among these pairs.
Thus, we only ever need to deal with R-dimensional
distributions.

3.2 GreedyNN

When a single good tree suffices for the application,
greedy methods can be preferred over sampling meth-
ods due to their lower computational cost. The cost
of the greedy algorithms will scale similarly to their
single-particle SMC versions as they do not employ
several particles.

The SMCnn algorithm described above can be modi-
fied into a greedy algorithm by replacing the sampling
steps with local optimization steps. In detail, rather
than sampling a pair in step (3), we choose the pair

*For kd-trees, a = 1 and r(n) = O(nlog(n)) the cost of
rebuilding the NN structure. For covertrees, o = v'2 and
r(n) = O(y%log(n) + n) if we were to copy O(n) trees on
every iteration we resample, where = is the expansion con-
stant of the data. In practice, the third term does not dom-
inate because rebuilding or copying every iteration isn’t
necessary.
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with maximum probability from among the first R
pairs in the priority queue. We assign the coalescence
time for this pair to be the mean of the coalescence
time distribution for that pair. Note that steps 1.c
and 2.b in the SMCnn algorithm can be skipped in the
greedy algorithm as the pairs in ;1 \ ¢} will never
be picked by the greedy algorithm.

3.3 Previous work for speeding up inference

Constructing proposal distributions of the form dis-
cussed in Section 2.1 is typically very costly since they
involve approximating a nonstandard density function,
taking its integral and sampling from it. The PostPost
algorithm is especially expensive because it requires
computing eq. (5) for every pair of points on every
iteration, giving an O(n?) algorithm with a large con-
stant. SMC1 also requires computing similar integrals
but in such a way that allows doing this only once for
all iterations for each pair rather than for each pair at
each iteration. This brings down the computational
cost to O(n?) with a similar large constant. In [10]
and PriorPost [2], the sampling steps are changed
such that at each iteration a coalescent time is sam-
pled from the prior and rather than evaluating the
integral, and a pair is chosen by evaluating the local
posterior of each pair at the sampled time. The con-
stant for computing the proposal is smaller, but since
the times are sampled from the prior, the proposal is
less accurate, making the algorithm less efficient. The
algorithm still scales cubicly with the number of data
points as the local posteriors need to be evaluated for
each pair at every iteration. A common aspect of all
three algorithms is that they do costly computations
for each possible pair.

Slatkin [10] notes the concern about the running time
of the algorithm increasing rapidly with n and pro-
poses to limit the number of pairs to be considered to
coalesce at each iteration (step 2), which he calls the
span of the simulation. The span is set to be the pairs
that are chosen at random, giving a choice of compro-
mise between computational cost and sample accuracy.
Choosing a small number of pairs speeds up the algo-
rithm but may lead to poor samples due to the naive
way of deciding on the span. Using Slatkin’s terminol-
ogy, our algorithm makes use of the distance between
pairs of individuals to decide on the span rather than
choosing it randomly.

4 Experiments

The number of particles required for faithfully repre-
senting samples from a desired distribution depends
highly on the proposal distribution used. Here, we
analyze the empirical properties of the proposed al-
gorithms to get a sense of its efficiency in terms of
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run time as well as the bias and variance of the sam-
ples compared to the alternatives. We compare SMCnn
with SMC1 [3] and PostPost [2] and GreedyNN with
GreedyRatel [2] on several datasets. We did experi-
ments on SpamBase [13], Mushroom [13] and Birds200
[14] datasets. Birds200 consists of uncertain Mechan-
ical Turk (MT) annotations of bird images from 200
different categories, with varying degree of similarity
between categories and we use uncertainty levels of bi-
narized features [15]. SpamBase were binarized and
Mushroom data has categorical values, therefore we
use the multinomial likelihood for all datasets.

Data set size vs CPU time

We empirically verify that our algorithm shows signif-
icant speedups in terms of computation per particle
compared to previous algorithms. For all datasets we
analyzed, the theoretical computational complexity of
the algorithms is evident in the empirical results, with
only occasional deviations. Figure 3 shows the com-
putational cost of several algorithms as a function of
n on the different datasets with the O(knlogn), O(n?)
and O(n?) fit to the empirical points. We observe that
for small n, PostPost is fast but it becomes the slow-
est as the dataset size increases. SMCnn scales linearly
with R. It will be slower than PostPost for R close n?
due to the overhead of maintaining the priority queue.
The gain in speed up for SMCnn gets more pronounced
for large n. The plots depicted show runs with R < n.
Even for datasets as small as 400 datapoints, SMCnn
is over an order of magnitude faster per particle than
SMC1 and PostPost.

Change in performance with time

In [3] SMC1 is shown to be more efficient than PostPost
both in terms of computational cost and the quality
of samples. As the proposal distribution of SMCnn will
be equivalent to that of PostPost for R > (”*2”1),
we compare the performance of our algorithm to SMC1.
We do not expect our algorithm to produce better in-
dividual samples than SMC1. However, the computa-
tional efficiency of SMCnn means we can entertain more
particles for the given time, which typically leads to
better performance. Figure 4 shows the change in ap-
proximated log evidence as the CPU time increases.
Using a small number of particles, SMCnn finds rela-
tively low evidence on all datasets. However, the per-
formance quickly improves as the number of particles is
increased. On the other hand, due to more costly com-
putations, SMC1 can use only a small number of parti-
cles given the same computation time. The asymptotic
performance of the two algorithms is comparable on
the Birds and Mushroom datasets, with SMCnn being
slightly better for Mushroom. Interestingly, SMC1 fails
to match the performance of SMCnn for the SpamBase
dataset. We observed that for all datasets we consid-
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Figure 3: The run time of several algorithms as n increases on Birds (left), SpamBase (center) and Mushroom
(right) datasets. Solid lines are linear interpolation of the actual running times, and dashed lines are theoretical
running times. All algorithms were run with four particles, resampling when effective sample size falls below
two. R was chosen to ensure same level of performance for SMCnn as the other algorithms. For the birds dataset
this caused a deviation from the nlogn running time (dashed red line) as we needed to increase R with n.

ered, the approximated evidence did not change much
for the range of larger M values we considered on a
limited CPU time. However, as both algorithms are
correct SMC samplers, their samples would converge
in the limit of large number of particles. For these ex-
periments, we used both L; and Euclidian distances
to assess the sensitivity of SMCnn to the different dis-
tances used for retrieving the nearest neighbors. The
results suggest that for the datasets we considered,
both distances performed equally well.

Sample paths and effect of resampling

SMCnn can highly benefit from resampling. This is not
always the case for SMC1 as the partial weights are
less informative of the quality of the samples. This is
due to the fact that SMC1 defers computing the con-
tribution of a pair on the partial weights until it gets
removed from the representation (either as a result of
coalescing or losing one of the partners) to save compu-
tation time.® Sample paths shown in Figure 5 clearly
demonstrate this. On the Birds data, SMC1 looks worse
than most of the runs for SMCnn until the last few itera-
tions. On SpamBase and Mushroom data, SMC1 starts
promisingly, but fails to achieve the same level of per-
formance as SMCnn. We tried runs of SMC1 both with
and without resampling and got very similar results.

Performance of GreedyNN

To evaluate GreedyNN we compare the joint probability
of the data and the trees from the different algorithms.
We applied GreedyNN and SMCnn on all 6033 points of
Birds200 with R = 500, K = 25. The average log joint
probability of SMCnn with 20 particles was —2.19 x 107,
and it took 116 hours. GreedyNN resulted in a tree
with log joint probability of —1.79 x 10° in 3 hours.
Thus, in this case, it seems GreedyNN is preferable and
more particles will be necessary to cover the posterior
space. A sample tree from SMCnn and some subtrees
are depicted in Figure 1. We do not report results

3This shortcoming of SMC1 can be circumvented by in-
cluding the contribution of every pair in the weights, but
this will increase the cost to scale cubically.
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—log P(X,7) CPU time (min)
GreedyRatel 11274 4.7
GreedyNN 11291 1.3
SMCnn, M=5 13565 8.1
SMCnn, M=25 11513 37.7
SMCnn, M=50 11262 74.9
SMCnn, M=100 11078 136.9

Table 2: Negative log joint probability and the CPU time
in minutes for the greedy algorithms and SMCnn with R =
100 and various values of M on the same n = 375 subset
of Birds200.

of other algorithms on this dataset size as they would
take months of CPU time.

GreedyNN finds a tree that gives a higher joint prob-
ability than SMCnn with few particles. However, the
performance of the SMC algorithm gets better as we
increase the number of particles, as expected. The re-
sults on the subset of Birds200 dataset with n = 375 is
summarized in Table 2. For GreedyNN and SMCnn we
used R =100, K = 20. The run time of GreedyRatel
is three times that of GreedyNN [2] for this moderate
size example and its joint probability is comparable.
On 256 examples of SpamBase, the joint probability
achieved (and CPU time used) by GreedyRatel and
GreedyNN were 8931 (84 sec) and 5778 (49 sec), re-
spectively.

5 Conclusion

We have proposed a significantly faster SMC algorithm
and its greedy counterpart for generating posterior
samples from Kingman’s coalescent model. The al-
gorithms make use of standard NN data structures to
avoid most of the expensive calculations used to for-
mulate a proposal distribution, resulting in orders of
magnitude speed up.

The speed of NN algorithms may depend on dataset
properties, which could be a problem in applying the
algorithm in practice. Our experimental results show
that this is not a major issue in practice for the
datasets of various dimensions that we tried our model
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different datasets. Each point cloud represents several independent runs with the same parameter settings. The
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right: 128 data points from Mushrooms dataset. R = 50 , K = 5.
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Figure 5: Sample paths, i.e. the w;’s at each iteration through SMC. The intermediate values of weights is
of no real importance, however their relative final positions are (higher is better). The plots make clear the
advantage of using resampling to prune out the bad samples for SMCnn. The intermediate values for SMC1 are not
as informative about the final quality of the samples, thus resampling will not be as effective. left: A subset of

Birds200 dataset of size n = 375 from 25 bird species. center:

A subset of SpamBase dataset of size n = 256.

right: A subset of the Mushroom dataset of size n = 128.

on. Since the NN search is used merely for the pro-
posal distribution, the algorithm does not rely on the
returned neighbors to be exact. In this paper we have
explored exact nearest neighbor methods but other
data structures that might give an even better perfor-
mance boost could also be explored. Another advan-
tage of the proposed algorithm is that it significantly
reduces the memory required because it needs to rep-
resent only a subset of pairs.

In this paper, we approximate the probability of all dis-
tant pairs to be the same. A pair-specific approxima-
tion that takes into account the similarity of the pairs
may result in better proposal distributions. We leave
this as future work. Clearly, approximating the poste-
rior too severely may lead to bad proposals and result
in particles with very low probability. Thus, there is a
fundamental tradeoff in speed versus accuracy which
is controlled by M and R. While one could expect
the quality of the samples of our SMC algorithm to be
poor for R << (Z) this effect is often reversed by the
fact that we can now entertain many more particles
and rely on resampling to prune out bad particles. We
presented results showing that when the gain in speed
is used for increasing the number of particles, we can
often obtain significantly better samples than those of
the previous algorithms. We therefore believe that the
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proposed algorithm presents a significant advance over
previous work.

Our greedy algorithm GreedyNN is faster and typi-
cally better than the alternative GreedyRatel. It also
produces better trees than SMCnn with few particles,
however SMCnn with enough particles produces bet-
ter samples. The experimental results suggest that
the GreedyNN can be used as an alternative to SMCnn
when we require only a single sample tree and when
the dataset size is too large to afford a large number
of particles. GreedyNN may also be used as a tool to
guide the choice of R and k to be used for the SMC
algorithm with several particles.

The most important contribution of our work lies in
the fact that we have managed to speed up inference in
the Kingman’s coalescent by at least an order of mag-
nitude. This implies that both in population genetics
as well as in machine learning this model can now be
applied to datasets that were previously out of reach.
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