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Abstract

This paper proposes a novel Bayesian ap-
proximation inference method for mixture
modeling. Our key idea is to factorize
marginal log-likelihood using a variational
distribution over latent variables. An asymp-
totic approximation, a factorized informa-
tion criterion (FIC), is obtained by apply-
ing the Laplace method to each of the fac-
torized components. In order to evalu-
ate FIC, we propose factorized asymptotic
Bayesian inference (FAB), which maximizes
an asymptotically-consistent lower bound of
FIC. FIC and FAB have several desirable
properties: 1) asymptotic consistency with
the marginal log-likelihood, 2) automatic
component selection on the basis of an intrin-
sic shrinkage mechanism, and 3) parameter
identifiability in mixture modeling. Exper-
imental results show that FAB outperforms
state-of-the-art VB methods.

1 Introduction

Model selection is one of the most difficult and impor-
tant challenges in machine learning problems, in which
we optimize a model representation as well as model
parameters. Bayesian learning provides a natural and
sophisticated way to address the issue [1, 3]. A cen-
tral task in Bayesian model selection is evaluation of
marginal log-likelihood. Since exact evaluation is often
computationally and analytically intractable, a num-
ber of approximation algorithms have been studied.

One well-known precursor is Bayes information crite-
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rion (BIC) [18] , an asymptotic second-order approxi-
mation using the Laplace method. Since BIC assumes
regularity conditions that ensure the asymptotic nor-
mality of the maximum likelihood (ML) estimator, it
loses its theoretical justification for non-regular mod-
els, including mixture models, hidden Markov models,
multi-layer neural networks, etc. Further, it is known
that the ML estimation does not have a unique so-
lution for non-identifiable models in which the map-
ping between parameters and functions is not one-to-
one [22, 23] (such equivalent models are said to be in
an equivalent class). For such non-singular and non-
identifiable models, the generalization error of the ML
estimator significantly degrades [24].

Among recent advanced Bayesian methods, we focus
on variational Bayesian (VB) inference. A VB method
maximizes a computationally-tractable lower bound of
the marginal log-likelihood by applying variational dis-
tributions on latent variables and parameters. Previ-
ous studies have investigated VB methods for a variety
of models [2, 6, 5, 12, 15, 16, 20] and have demon-
strated their practicality. Further, theoretical stud-
ies [17, 21] have shown that VB methods can resolve
the non-regularity and non-identifiability issues. One
disadvantage, however, is that latent variables and
model parameters are partitioned into sub-groups that
are independent of each other in variational distribu-
tions. While this independence makes computation
tractable, the lower bound can be loose since their de-
pendency is essential in the true distribution.

This paper proposes a novel Bayesian approximation
inference method for a family of mixture models which
is one of the most significant example of non-regular
and non-identifiable model families. Our ideas and
contributions are summarized as follows:

Factorized Information Criterion We derive a
new approximation of marginal log-likelihood and re-
fer to it as a factorized information criterion (FIC). A
key observation is that, using a variational distribution
over latent variables, the marginal log-likelihood can
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be rewritten as a factorized representation in which
the Laplace approximation is applicable to each of the
factorized components. FIC is unique in the sense that
it takes into account dependencies among latent vari-
ables and parameters, and FIC is asymptotically con-
sistent with the marginal log-likelihood.

Factorized Asymptotic Bayesian Inference We
propose a new approximation inference algorithm and
refer to it as a factorized asymptotic Bayesian infer-
ence (FAB). Since FIC is defined on the basis of both
observed and latent variables, the latter of which are
not available, FAB maximizes a lower bound of FIC
through an iterative optimization similar to the EM
algorithm [8] and VB methods [2]. This FAB opti-
mization is proved to monotonically increase the lower
bound of FIC. It is worth noting that FAB provides a
natural way to control model complexity not only in
terms of the number of components but also in terms
of the types of individual components (e.g., degrees of
components in a polynomial curve mixture (PCM).)

FIC and FAB offer the following desirable properties:

1. The FIC lower bound is asymptotically consistent
with FIC, and therefore with the marginal log-
likelihood.

2. FAB automatically selects components on the ba-
sis of its intrinsic shrinkage mechanism different
from prior-based regularization. FAB therefore
mitigates overfitting even if it ignores the prior
effect in the asymptotic sense, or even if we apply
a non-informative prior [13].

3. FAB addresses the non-identifiability issue. In an
equivalent class, FAB automatically selects the
model which maximizes the entropy of distribu-
tions for latent variables.

2 Preliminaries

This paper considers mixture models p(X|θ) =∑C
c=1 αcpc(X|φc) for a D-dimensional random vari-

able X. C and α = (α1, . . . , αC) are the num-
ber of components and the mixture ratio. θ is
θ = (α,φ1, . . . ,φC). We allow different components
pc(X|φc) to be different in their model representations
from one another1. We assume that pc(X|φc) satisfies
the regularity conditions2 while p(X|θ) is non-regular
(A1). Assumption A1 is less stringent than the reg-
ularity conditions on p(X|θ), and many models (e.g.,

1So-called “heterogeneous mixture models” [11]. In the
example of PCM, the degree of p1(X|φ1) will be two while
that of p2(X|φ2) will one.

2The Fisher information matrix of pc(X|φc) is non-
singular around the maximum likelihood estimator.

Gaussian mixture models (GMM), PCM, autoregres-
sive mixture models) satisfy A1.

A model M of p(X|θ) is specified by C and models Sc
of pc(X|φc), i.e., M asM = (C, S1, . . . , SC). Although
the representations of θ and φc depend on M and Sc,
respectively, we omit them for notational simplicity.

Let us denote a latent variable of X as Z =
(Z1, . . . , ZC). Z is a component assignment vector,
and Zc = 1 if X is generated from the c-th com-
ponent, and Zc = 0 otherwise. The marginal dis-
tribution on Z and the conditional distribution on
X given Z can be described as p(Z|α) =

∏C
c=1 α

Zc
c

and p(X|Z,φc) =
∏C
c=1(pc(X|φc))Zc . The observed

data and their latent variables are denoted as xN =
x1, . . . ,xN and zN = z1, . . . ,zN , respectively, where
zn = (zn1, . . . , znC) and zNc = (z1c, . . . , zNc). We
make another assumption that logP (X,Z|θ) < ∞
holds (A2). Condition A2 is discussed in Section 4.5.

3 Factorized Information Criterion for
Mixture Models

A Bayesian selects the model which maximizes the
model posterior p(M |xN ) ∝ p(M)p(xN |M). With
uniform model prior p(M), we are particularly inter-
ested in p(xN |M), which is referred to as marginal
likelihood or Bayesian evidence. VB methods for la-
tent variable models [2, 5, 6, 21] consider a lower bound
of the marginal log-likelihood to be:

log p(xN |M) ≥
∑

zN

∫
q(zN )qθ(θ) log

p(xN |θ)p(θ|M)

q(zN )qθ(θ)
dθ,

(1)
where q and qθ are variational distributions on zN

and θ, respectively. On q and qθ, zN and θ are as-
sumed to be independent of each other in order to
make the lower bound computationally and analyti-
cally tractable. This ignores, however, significant de-
pendency between zN and θ, and basically the equal-
ity does not hold.

In contrast to this, we consider the lower bound on
q(zN ) to be:

log p(xN |M) ≥
∑

zN

q(zN ) log
(p(xN , zN |M)

q(zN )

)
(2)

≡ VLB(q,xN ,M), (3)

Lemma 1 [2] guarantees that maxq{VLB(q,xN ,M)}
is exactly consistent with log p(xN |M).

Lemma 1 The inequality (3) holds for an arbitrary
distribution q on zN , and the equality is satisfied by
q(zN ) = p(zN |M,xN ).
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Since this paper handles mixture models, we further
assume mutual independence of zN , i.e. q(zN ) =∏C
c=1 q(z

N
c ) and q(zNc ) =

∏N
n=1 q(znc)

znc . The lower
bound (2) is the same with that the collapse varia-
tional Bayesian (CVB) method [15, 20] considers. A
key difference is that FAB employs an asymptotic sec-
ond approximation of (2), which produces several de-
sirable properties of FAB which we have described in
Section 1, while CVB methods employ second oder
approximations of variational parameters in each iter-
ative update step.

Note that the numerator of (3) has the form of the
parameter integration of p(xN , zN |M), as:

p(xN , zN |M) =

∫
p(zN |α)

C∏

c=1

pc(x
N |zNc ,φc)p(θ|M)dθ.

(4)
A key idea in FIC is to apply the Laplace method
to the individual factorized distributions p(zN |α) and
pc(x

N |zNc ,φc) as follows3:

log p(xN ,zN |θ) ≈ log p(xN , zN |θ̄)− N

2

[
F̄Z , (α− ᾱ)

]

−
C∑

c=1

∑N
n=1 znc

2

[
F̄c, (φc − φ̄c)

]
, (5)

where [A, a] represents the quadratic form aTAa for
a matrix A and a vector a. Here we denote the ML
estimator of log p(xN , zN |θ) as θ̄ = (ᾱ, φ̄1, . . . , φ̄C).
We discuss application of the Laplace method around
the maximum a priori (MAP) estimator in Section 4.5.
F̄Z and F̄c are factorized sample approximations of
Fisher information matrices defined as follows:

F̄Z = − 1

N

∂2 log p(zN |α)

∂α∂αT

∣∣∣
α=ᾱ

, (6)

F̄c =
−1

∑N
n=1 znc

∂2 log pc(x
N |zNc ,φc)

∂φc∂φ
T
c

∣∣∣
φc=φ̄c

.

The following lemma is satisfied for F̄Z and F̄c.

Lemma 2 With N →∞, F̄Z and F̄c respectively con-
verge to the Fisher information matrices described as:

FZ = −
∫
∂2 log p(Z|α)

∂α∂αT
p(Z|α)dZ

∣∣∣
α=ᾱ

, (7)

Fc = −
∫
∂2 log pc(X|φc)

∂φc∂φ
T
c

pc(X|φc)dX
∣∣∣
φc=φ̄c

. (8)

The proof follows the law of large numbers by taking
into account that the effective number of samples for
the c-th component is

∑N
n=1 znc.

3The Laplace approximation is not applicable to
p(xN |θ) because of its non-regularity.

Then, by applying a prior of log p(θ|M) = O(1),
p(xN , zN |M) can be asymptotically approximated as:

p(xN , zN |M) ≈p(xN , zN |θ̄)
(2π)Dα/2

NDα/2|F̄Z |1/2
× (9)

C∏

c=1

(2π)Dc/2

(
∑N
n=1 znc)

Dc/2|F̄c|1/2

Here, Dα ≡ D(α) = C − 1 and Dc ≡ D(φc), in which
D(•) is the dimensionality of •.
On the basis of A1 and Lemma 2, both log |F̄c|1/2
and log |F̄Z |1/2 are O(1). By substituting (9) into
(3) and ignoring asymptotically small terms, we ob-
tain an asymptotic approximation of log p(xN |M) =
maxq{VLB(q,xN ,M)} (i.e., FIC) as follows:

FIC(xN ,M) = max
q

{
J (q, θ̄,xN )

}
(10)

J (q, θ̄,xN ) =
∑

zN

q(zN )
(

log p(xN , zN |θ̄)− Dα
2

logN

−
C∑

c=1

Dc
2

log(

N∑

n=1

znc)− log q(zN )
)}

The following theorem justifies FIC as an approxima-
tion of the marginal log-likelihood.

Theorem 3 FIC(xN ,M) is asymptotically consis-
tent with log p(xN |M) under A1 and log p(θ|M) =
O(1).

Sketch of Proof 3 Since both pc(x
N |zNc ,φc) and

p(zN |α) satisfy the regularity condition (A1 and A2),
their Laplace approximations appearing in the left side
of (9) have asymptotic consistency (for the same rea-
son as with BIC [7, 18, 19]). Therefore, their product
(9) asymptotically agrees with p(xN , zN |M). By ap-
plying Lemma 1, this theorem is proved.

Despite our ignoring the prior effect, FIC still has the
regularization term Dc

∑
zN
c
q(zNc ) log(

∑N
n=1 znc)/2.

This term has several interesting properties. First,
a dependency between zN and θ, which most of
VB methods ignore, explicitly appears. Like BIC,
it is not the parameter or function representation of
p(X|φc) but only its dimensionality Dc that plays
an important role in the bridge between the latent
variables and the parameters. Second, the complex-
ity of the c-th component is adjusted by the value of∑
zN
c
q(zNc ) log(

∑N
n=1 znc). Therefore, components of

different sizes are automatically regularized in their
individual appropriate levels. Third, roughly speak-
ing, with respect to the terms, it is preferable for the
entropy of q(zN ) to be large. This makes the param-
eter estimation in FAB identifiable. More details are
discussed in Sections 4.4 and 4.5.
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4 Factorized Asymptotic Bayesian
Inference Algorithm

4.1 Lower bound of FIC

Since θ̄ is not available in practice, we cannot evaluate
FIC itself. Instead, FAB maximizes an asymptotically-
consistent lower bound for FIC. We firstly derive the
lower bound as follows:

Lemma 4 Let us define L(a, b) ≡ log b + (a − b)/b.
FIC(xN ,M) is lower bounded as follows:

FIC(xN ,M) ≥ G(q, q̃, θ,xN ) (11)

≡
∑

zN

q(zN )
(

log p(xN , zN |θ)− Dα
2

logN

−
C∑

c=1

Dc
2
L(

N∑

n=1

znc,
N∑

n=1

q̃(znc))− log q(zN )
)
,

with arbitrary choices of q, θ and a distribution q̃ on
zN (

∑N
n=1 q̃(znc) > 0).

Sketch of Proof 4 Since θ̄ is the ML estimator of
log p(xN , zN |θ), log p(xN , zN |θ̄) ≥ log p(xN , zN |θ)
is satisfied. Further, on the basis of the con-
cavity of the logarithm function, log(

∑N
n=1 znc) ≤

L(
∑N
n=1 znc,

∑N
n=1 q̃(znc)) is satisfied. By substituting

these two inequalities into (10), we obtain (11).

In addition to the replacement of θ with the un-
available estimator θ̄, a computationally intractable
log(

∑N
n=1 znc) is linearized around

∑N
n=1 q̃(znc) with

a new parameter (distribution) q̃.

Now our problem is to solve the following maximiza-
tion problem (note that q,θ and q̃ are functions of M):

M∗, q∗,θ∗, q̃∗ = arg max
M,q,θ,q̃

G(q, q̃,θ,xN ). (12)

The following lemma gives us a guide for optimizing
the newly introduced distribution q̃. We omit the proof
because of space limitations.

Lemma 5 If we fix q and θ, then q̃ = q maximizes
G(q, q̃, θ,xN ).

With a finite number of model candidates M, we can
use a two-stage algorithm in which we first solve the
maximization of (12) for all candidates in M, and
then select the best model. When we optimize only
the number of components C (e.g., as in a GMM), we
need to solve the inner maximization Cmax times (the
maximum search number of components.) However, if
we intend to optimize S1, . . . , SC (e.g., as in PCM or
an autoregressive mixture), we must avoid a combina-
torial scalability issue. FAB provides a natural way
to do this because the objective function is separated
into independent parts in terms of S1, . . . , SC .

4.2 Iterative Optimization Algorithm

Let us first fix C, and consider the following optimiza-
tion problem:

S∗, q∗,θ∗, q̃∗ = arg max
S,q,θ,q̃

G(q, q̃,θ,xN ), (13)

where S = (S1, . . . , SC). As the inner maximization,
FAB solves (13) on the basis of iterations of two sub-
steps (V-step and M-step). Let the superscription (t)
represent the t-th iteration.

V step The V-step optimizes the variational distri-
bution q as follows:

q(t) = arg max
q

{
G(q, q̃ = q(t−1),θ(t−1),xN )

}
. (14)

More specifically, q(t) is obtained as follows:

q(t)(znc) ∝ α(t−1)
c p(xn|φ(t−1)

c ) exp(
−Dc

2α
(t−1)
c N

), (15)

where we use
∑N
n=1 q

(t−1)(znc) = α
(t−1)
c N . The reg-

ularization terms which we discussed in Section 3
appear here as exponentiated update terms, i.e.,
exp( −Dc

2α
(t−1)
c N

). Roughly speaking, (15) indicates that

smaller and more complex components are likely to
become smaller through the iterations. The V-step
is different from the E-step of the EM algorithm in
the term exp( −Dc

2α
(t−1)
c N

). This makes an essential dif-

ference between FAB inference and the ML estimation
that employs the EM algorithm (Sections 4.4 and 4.5).

M step The M-step optimizes the models of individ-
ual components S and the parameter θ as follows:

S(t),θ(t) = arg max
S,θ
G(q(t), q̃ = q(t),θ,xN ). (16)

G(q, q̃, θ,xN ) has a significant advantage in its avoid-
ing of the combinatorial scalability issue on S selec-
tion. Since G(q, q̃, θ,xN ) has no cross term between
components (if we fix q̃), we can separately optimize
S and θ as follows:

α(t)
c =

N∑

n=1

q(t)(znc)/N, (17)

S(t)
c ,φ(t)

c = arg max
Sc,φc

Hc(q(t), q(t),φc,x
N ) (18)

Hc(q(t), q(t),φc,x
N ) =

N∑

n=1

q(t)(znc) log p(xn|φc)

− Dc
2
L(

N∑

n=1

q(t)(znc),

N∑

n=1

q(t)(znc)).
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Hc(q(t), q(t),φc,x
N ) is a part of G(q(t), q(t),φc,x

N ),
which is related to the c-th component. With a finite
set of component candidates, in (18), we first optimize
φc for each element of a fixed Sc and then select the
optimal one by comparing them. Note that, if we use a
single component type (e.g., GMM), our M-step even-
tually becomes the same as that in the EM algorithm.

4.3 Convergence and Consistency

After the t-th iteration, FIC is lower bounded as:

FIC(xN ,M) ≥ FIC(t)
LB(xN ,M) ≡ G(q(t), q(t),θ(t),xN ).

(19)

We have the following theorem which guarantees that

FAB will monotonically increase FIC
(t)
LB(xN ,M) over

the iterative optimization and also converge to the lo-
cal minima under certain regularity conditions.

Theorem 6 For the iteration of the V-step and the
M-step, the following inequality is satisfied:

FIC
(t)
LB(xN ,M) ≥ FIC(t−1)

LB (xN ,M). (20)

Sketch of Proof 6 The theorem is proved as follows:

G(q(t), q(t),θ(t),xN ) ≥ G(q(t), q(t),θ(t−1),xN ) ≥
G(q(t), q(t−1),θ(t−1),xN ) ≥ G(q(t−1), q(t−1),θ(t−1),xN ).

The first and the third inequalities arise from (16) and
(14), respectively. The second inequality arises from
Lemma 5.

We then use the following stopping criterion for the
FAB iteration steps:

FIC
(t)
LB(xN ,M)− FIC(t−1)

LB (xN ,M) ≤ ε, (21)

where ε is an optimization tolerance parameter and is
set to 1e-6 in Section 5.

In addition to the monotonic property of FAB,
we present the theorem below, which asymptotic-
theoretically supports FAB. Let us denote M (t) =
(C,S(t)) and let the superscriptions T and ? repre-
sent the number of steps at convergence and the true
model/parameters, respectively.

Theorem 7 FIC
(T )
LB (xN ,M (T )) is asymptotically

consistent with FIC(xN ,M (T )).

Sketch of Proof 7 1) In (15), exp( −Dc

2α
(T )
c N

) con-

verges to one, and S(T−1) = S(T ) holds without
loss of generality. Therefore, the FAB algorithm is
asymptotically reduced to the EM algorithm. This
means θ(T ) converges to the ML estimator θ̂ of

log p(xN |θ). Then, |∑zN q(T )(zN )(log p(xN , zN |θ̄)−
log p(xN , zN |θ(T )))|/N → 0 holds. 2) On the basis

of the law of large numbers,
∑N
n=1 znc/N converges

to α?c . Then, |∑zN q(T )(zN )
∑C
c=1(log(

∑N
n=1 znc) −

log(
∑N
n=1 q

(T )(znc)))|/N → 0 holds. The substitution
of 1) and 2) into (11) proves the theorem.

The following theorem arises from Theorems 3 and 7
and guarantees that FAB will be asymptotically capa-
ble of evaluating the marginal log-likelihood itself:

Theorem 8 FIC
(T )
LB (xN ,M (T )) is asymptotically

consistent with log p(xN |M (T )).

4.4 Shrinkage Mechanism

As has been noted in Sections 3 and 4.2, the

term exp(Dc/2α(t)
c N) in (15), which arises from

Dc
∑
zN
c
q(zNc ) log(

∑N
n=1 znc)/2 in (10), plays a signif-

icant role in the control of model complexity.

Fig.1 illustrates the shrinkage effects of FAB in the
case of of a GMM. For D = 10 and N = 50, for exam-
ple, a component of αc < 0.2 is severely regularized,
and such components are automatically shrunk (see
the left graph.) With increasing N , the shrinkage ef-
fect decreases, and small components manage to sur-
vive in the FAB optimization process. The right graph
shows the shrinkage effect in terms of the dimensional-
ity. In a low dimensional space (e.g., D = 1, 3), small
components are not strictly regularized. For D = 20
and N = 100, however, a component of αc < 0.4 may
be shrunk, and only one component might survive be-
cause of the constraint

∑C
c=1 αc.

Let us consider the gradient of exp( −Dc

2αcN
) which is

derived as ∂ exp( −Dc

2αcN
)/∂αc = Dc

α2
cN

exp( −Dc

2αcN
) ≥ 0.

This indicates that the iteration of FAB accelerates
the shrinkages in order of O(α−2

c ). More intuitively
speaking, the smaller the component is, the more likely
it is to be shrunk. The above observations explain the
overfitting mitigation mechanism in FAB.

The shrinkage effect of FAB is different from the prior-
based regularization of the MAP estimation. In fact,
it appears despite our asymptotically ignoring of the
prior effect, and even if a non-informative prior or a
flat prior is applied.

In terms of practical implementation, αc does not get
to exactly zero because (15) takes an exponentiated
update. Therefore, in our FAB procedure, we apply
a thresholding-based shrinkage of small components,
after the V-step, as follows:

q(t)(znc) =

{
0 if

∑N
n=1 q

(t)(znc) < δ

q(t)(znc)/Q
(t)
c otherwise

(22)
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Figure 1: Shrinkage effects of FAB in GMM (Dc = D +

D(D+1)/2, where D and Dc are, respectively, the data di-

mensionality and the parameter dimensionality.) The hori-

zontal and vertical axes represent αc and exp(−Dc/(αcN)),

respectively. The effect is evident when the number of data

is not sufficient for the parameter dimensionality.

Algorithm 1 FABtwo: Two-stage FAB

input : xN , Cmax,S, ε
output : C∗, S∗, θ∗, q∗(zN ), F IC∗LB
1: FIC∗LB = −∞
2: for C = 1, . . . , Cmax do

3: Calculate FIC
(T )
LB , C,S

(T ),θ(T ), and q(T )(zN )
by FABshrink(xN , Cmax = C,S, ε, δ = 0).

4: end for
5: Choose C∗, S∗, θ∗ and q∗(zN ) by (12).

δ and Q
(t)
c are a threshold value and a normalization

constant for
∑C
c=1 q

(t)(znc) = 1, respectively. We used
the threshold value δ = 0.01N in Section 5. With the
shrinkage operation, FAB does not require the two-
stage optimization in (12). By starting from a suf-
ficient number of components Cmax, FAB iteratively
and simultaneously optimizes all of M = (C,S), θ,
and q. Since FAB cannot revive shrunk components,
it is a greedy algorithm, like the least angle regression
method [9] which does not revive shrunk features.

The two-stage algorithm and the shrinkage algorithm
are shown here as Algorithms 1 and 2. S is a set
of component candidates (e.g., S = {Gaussian} for
GMM. S = {0, . . . ,Kmax} for PCM where Kmax is the
maximum degree of curves.)

4.5 Identifiability

A well-known difficulty in ML estimation for mix-
ture models is non-identiability, as we have noted in
Section 1. Let us consider a simple mixture model,
p(X|a, b, c) = ap(X|b) + (1 − a)p(X|c). All models
p(X|a, b, c = b) with arbitrary a are equivalent (i.e.,
in an equivalent class.) Therefore, the ML estima-
tor is not unique. Theoretical studies have shown
that Bayesian estimators and VB estimators avoid the
above issue and significantly outperform the ML esti-
mator in terms of generalization error [17, 21, 24].

Algorithm 2 FABshrink: Shrinkage FAB

input : xN , Cmax,S, ε, δ
output : FIC

(T )
LB , C,S

(T ),θ(T ), q(T )(zN )

1: t = 0, F IC
(0)
LB = −∞

2: randomly initialize q(0)(zN ).
3: while convergence do
4: Calculate S(t) and θ(t) by (17) and (18).
5: Check convergence by (21).
6: Calculate q(t+1) by (15).
7: Shrinkage components by (22).
8: t = t+ 1
9: end while

10: T = t

In FAB, at the stationary (convergence) point of (15),

the following equality is satisfied as
∑N
n=1 q

∗(znc) =

α∗cN =
∑N
n=1 α

∗
cp(xn|φ∗c) exp( −Dc

2α∗cN
)/Zn, where Zn =

∑C
c=1 α

∗
cp(xn|φ∗c) exp( −Dc

2α∗cN
) is the normalization con-

stant. For all pairs of α∗c , α
∗
c′ > 0, we have

the following condition:
∑N
n=1 p(xn|φ∗c) exp( −Dc

2α∗cN
) =

∑N
n=1 p(xn|φ∗c′) exp( −Dc′

2α∗
c′N

). Then, the necessary con-

dition of φ∗c = φ∗c′ is α∗c = α∗c′ . Therefore, FAB chooses
the model, in an equivalent class, which maximizes the
entropy of q and addresses the non-identifiability issue.

Unfortunately, FIC and FAB do not resolve another
non-identifiability issue, i.e., divergence of the crite-
rion. Without the assumption A2, (10) and (11) can
diverge to infinity (e.g., a GMM with a zero-variance
component4.) We can address this issue by applying
the Laplace approximation around the MAP estima-
tor θ̄MAP of p(xN , zN |θ)p(θ) rather than around the
ML estimator θ̄. In such a case, a flat conjugate prior
might be used in order to avoid the divergence. While
such priors do not provide regularization effects, FAB
has an overfitting mitigation mechanism, as has been
previously discussed. Because of space limitations, we
omit here a detailed discussion of FIC and FAB with
prior distributions.

5 Experiments

5.1 Polynomial Curve Mixture

We first evaluated FABshrink for PCM to demonstrate
how its model selection works. We used the settings
N = 300 and Cmax = Kmax = 10 in this evaluation5.

Let Y be a random dependent variable of X.

4Practically speaking, with the shrinkage (22), FAB
does not have the divergence issue because small compo-
nents are automatically removed.

5Larger values of Cmax and Kmax did not make a large
difference in results, but they were hard to visualize.
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Figure 2: Model selection procedure for FABshrink in application to PCM. The true curves are : 1) Y = 5 + ε,

2) Y = X2 + 5 + ε, 3) Y = X + ε, and 4) Y = −0.5X3 + 2X + ε where ε ∼ N (0, 1). The top shows the change in FIC
(t)
LB

over iteration t. The bottom three graphs are the estimated curves at t = 1, 6, and 44.

PCM has the mixed component pc(Y |X,φc) =
N (Y,X(Sc)βc, σ

2
c ), where X(Sc) = (1, X, . . . ,XSc).

The true model has four curves as shown in Fig. 2.We
used the setting α = (0.3, 0.2, 0.3, 0.2) for the curves
1) - 4). xN was uniformly sampled from [−5, 5].

Fig. 2 illustrates FIC
(t)
LB (top) and intermediate es-

timation results (bottom). From the top figure, we
are able to confirm that FAB monotonically increases

FIC
(t)
LB , except for the points (dashed circles) of the

shrinkage operation. In the initial state t = 1 (bottom
left), q(0)(zN ) is randomly initialized, and therefore
the degrees of all ten curves are zero (Sc = 0). Over
the iteration, FABshrink simultaneously searches C,
S, and θ. For example, at t = 15 (bottom center), we
have one curve of Sc = 9, two curves of Sc = 2, and
six curves of Sc = 0. Here two curves have already
been shrunk. Finally, FABshrink selects the model
consistent with the true model at t = 44 (bottom left).
These results demonstrate the powerful simultaneous
model selection procedure of FABshrink.

5.2 Gaussian Mixture Model

We applied FABtwo and FABshrink to GMM in ap-
plication to artificial datasets and UCI datasets [10],
and compared them with the variational Bayesian EM
algorithm for GMM (VBEM) that is described in Sec-
tion 10.2 of [3] and the variational Bayesian Dirichlet
Process GMM (VBDP) [5]. The former and the latter
use a Dirichlet prior and a Dirichlet process prior for
α, respectively. We used the implementations by M.
E. Khan6 for VBEM and by K. Kurihara7 for VBDP.
We used the default hyperparameter values in the soft-
ware. In the following experiments, Cmax was set to

6http://www.cs.ubc.ca/~emtiyaz/software.html
7http://sites.google.com/site/kenichikurihara/.

Cmax = 20 for all methods.

5.2.1 Artificial Data

We generated the true model with D = 15, C? = 5 and
φ?c = (µ?c ,Σ

?
c) (mean and covariance), where the su-

perscription ? denotes the true model. The parameter
values were randomly sampled as α?c ∼ [0.4, 0.6] (be-
fore normalization), and µ?c ∼ [−5, 5]. Σ?c were gener-
ated as acΣ̄

?
c , where ac ∼ [0.5, 1.5] is a scale parameter

and Σ̄?c is generated using the “gallery” function in
Matlab. The results are averages of ten runs.

The sufficient number of data is important measure to
evaluate asymptotic methods, and this is usually mea-
sured in terms of the empirical convergences of their

criteria. Table 1 shows how the values of FIC
(T )
LB /N

converge over N . Roughly speaking, N = 1000 ∼ 2000
was sufficient for convergence (depending on data di-
mensionality D.) Our results indicate that FAB can
be applied in actual practice to recent data analysis
scenarios with large N values.

We next compared the four methods on the basis of
three evaluation metrics: 1) the Kullback-Leibler di-
vergence (KL) between the true distribution and the
estimated distribution (estimation error), 2) |C∗ −
C?| (model selection error), and 3) CPU time.

For N ≤ 500, VBDP performed better than or com-
parably with FABtwo and FABshrink w.r.t. KL and
|C∗−C?| (left and middle graphs of Fig. 3). With in-
creasing N , those of the FABs significantly decrease
while that of VBDP does not. This might be because
the lower bound in (1) generally does not reach the
marginal log-likelihood as has been noted. VBEM was
significantly inferior for both metrics. Another obser-
vation is that VBDP and VBEM were likely to re-
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Table 1: Convergence of FIC∗
LB over data size N . The standard deviations are in parenthesis.

N 50 100 250 500 1000 2000 3000
FABtwo -10.31 (3.51) -16.27 (2.51) -15.46 (1.19) -15.14 (1.05) -14.63 (1.10) -14.52 (0.50) -14.34 (0.39)
FABshrink -12.78 (2.61) -17.22 (1.56) -15.66 (1.24) -15.16 (1.02) -14.62 (0.85) -14.68 (0.74) -14.39 (0.39)

Table 2: Predictive likelihood per data. The standard deviations are in parenthesis. The maximum number of training

samples was limited to 2000 (parenthesis in the N column), and the rest of them were used for test. The best results and

those not significantly worse than them are highlighted in boldface (one-side t-test with 95% confidence.)
data N D FABtwo FABshrink VBEM VBDP
iris 150 4 -1.92 (0.76) -2.11 (0.68) -3.05 (0.64) -1.65 (0.57)

yeast 1394 13 18.79 (1.81) 10.86 (3.38) 3.52 (3.80) 15.94 (0.72)
cloud 2048 10 7.89 (2.81) 9.09 (2.62) 5.47 (2.62) 2.67 (2.28)

wine quality 6497 (2000) 11 -2.68 (0.22) -2.68 (0.17) -10.49 (0.17) -16.52 (0.06)
color moments 68040 (2000) 9 -6.97 (0.20) -6.95 (0.21) -7.58 (0.21) -7.66 (0.11)
cooc texture 68040 (2000) 16 14.45 (0.22) 14.45 (0.46) 13.45 (0.13) 6.78 (0.28)

spoken arabic digits 350319 (2000) 13 -12.94 (0.11) -12.90 (0.09) -13.81 (0.09) -14.34 (0.19)

Figure 3: Comparisons of four methods in terms of KL (left), |C∗ − C?| (middle), and 3) CPU time (right).

spectively under-fit and to over-fit their models, while
we did not find such biases in FABs. While KLs
of FABs are similar, FABshrink performed better in
terms of |C∗−C?| because small components survived
in FABtwo. Further, both FABs had a significant ad-
vantage over VBDP and VBEM in CPU time (right
graph). In particular, while the CPU time of VBDP
grew explosively over N , those of FABs remained in a
practical range. Since FABshrink does not use a loop
to optimize C, it was significantly faster than FABtwo.

5.2.2 UCI data

For the UCI datasets summarized in Table 2, we do not
know their true distributions and therefore employed
predictive log-likelihood as an evaluation metric. For
large scale datasets, we randomly selected two thou-
sands data for training and used the rest of the data
for prediction because of the scalability issue in VBDP.

As shown in Table 2, FABs gave better performance
then VBDP and VBEM with a sufficient number of
data (the scale O(103) agrees with the results in the
previous section). The trend of VBDP (under-fit)
and VBEM (over-fit) was the same with the previous
section. Also, while the predictive log-likelihood of
FABtwo and FABshrink are competitive, FABshrink

obtained more compact models (smaller C∗ values)
than FABtwo. Unfortunately, we have no space to
show the results here.

6 Summary and Future Work

We have proposed approximation of marginal log-
likelihood (FIC) and an inference method (FAB) for
Bayesian model selection for mixture models, as an
alternative to VB inference. We have given their jus-
tifications (asymptotic consistency, convergence, etc)
and analyzed FAB mechanisms in terms of overfitting
mitigation (shrinkage) and identifiability. Experimen-
tal results have shown that FAB outperforms state-of-
the-art VB methods for a practical number of data in
terms of both model selection performance and com-
putational efficiency.

Our next step is extensions of FAB to more general
non-regular and non-identifiable models which contain
continuous latent variables (e.g., factor analyzer mod-
els [12] and matrix factorization models [17]), time-
dependent latent variables (e.g., hidden Markov mod-
els [16]), hierarchical latent variables [14, 4], etc. We
believe that our idea, factorized representation of the
marginal log-likelihood in which the asymptotic ap-
proximation works, is widely applicable to them.
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