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Abstract

In many fields of science researchers are faced
with the problem of estimating causal effects
from non-experimental data. A key issue is
to avoid inconsistent estimators due to con-
founding by measured or unmeasured covari-
ates, a problem commonly solved by ‘adjust-
ing for’ a subset of the observed variables.
When the data generating process can be rep-
resented by a directed acyclic graph, and this
graph structure is known, there exist simple
graphical procedures for determining which
subset of covariates should be adjusted for to
obtain consistent estimators of the causal ef-
fects. However, when the graph is not known
no general and complete procedures for this
task are available. In this paper we introduce
such a method for linear non-Gaussian mod-
els, requiring only partial knowledge about
the temporal ordering of the variables: We
provide a simple statistical test for inferring
whether an estimator of a causal effect is con-
sistent when controlling for a subset of mea-
sured covariates, and we present heuristics to
search for such a set. We show empirically
that this statistical test identifies consistent
vs inconsistent estimates, and that the search
heuristics outperform the naive approach of
adjusting for all observed covariates.

1 Introduction

Researchers in a variety of fields, e.g. epidemiology,
econometrics or psychology, are interested in causal
relationships between quantities of interest. The pre-
ferred approach to inferring such relationships is based
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on randomized experiments: To estimate the causal
effect of some ‘treatment’ variable x on an ‘outcome’
variable y, the treatment is randomized so that any
statistically significant correlation between the treat-
ment and the outcome is necessarily due to a causal
effect.! However, it is not always possible to carry out
such randomized experiments, so methods for inferring
causal effects from non-experimental (‘passive obser-
vational’) data are of great interest. For instance, in
epidemiology one might be interested in estimating the
causal effect of some risk factor  on some health in-
dicator y, and the researcher can measure but not in-
fluence the exposure of individuals to the risk factor.

Typically, in addition to the treatment and outcome
variables, data is also available on a set W of related
variables (termed ‘covariates’). In the above example
these might include age, gender, or indicators of the
general health of the patient. Some of these variables
may be confounders, i.e. affecting both the treatment
and the outcome in such a way that a naive estimator
of the causal effect is biased and inconsistent. Hence,
we may need to control for (i.e. adjust for) a subset of
the covariates to obtain a consistent and unbiased esti-
mator of the causal effect (Spirtes et al., 1998; Green-
land et al., 1999; Spirtes et al., 2000; Pearl, 2009a).
Here, it is important to distinguish such statistical
control from experimental control. In the latter the re-
searcher actively determines the exposure, for example
by assigning patients a certain medicine. In statistical
control (the subject of this paper), the control is pas-
sive; the causal effect is estimated from the observed
joint distribution by conditioning on (i.e. taking into
account, or ‘controlling for’) the appropriate covari-
ates (Pearl, 2009a). For discrete variables this involves
performing a stratified analysis and then averaging the
results, while in the case of continuous variables this
typically involves including some of the covariates in
the relevant regression (see Section 2 for details). A

'Note that we do not consider the problem of ‘selection
bias’ in this paper. That is, we assume that the values
of the variables do not influence whether a data vector is
included in the dataset or not.



Statistical test for consistent estimation of causal effects in linear non-Gaussian models

central question in observational studies is thus how to
select a variable subset Z C W to adjust for. Because
some confounders may not even have been measured
(i.e. are outside the set of covariates W), it is even
possible that there is no set Z that yields a consistent
estimator of the causal effect when adjusted for.

In general, even when a full temporal ordering of the
observed variables is known, without domain-specific
background knowledge one cannot infer whether ad-
justing for a given set of covariates yields a consistent
estimator of the causal effect of the treatment on the
outcome, as demonstrated in Section 2.1. In this pa-
per, however, we show that in linear models with non-
Gaussian variables, one can devise a statistical test for
precisely this purpose, assuming only limited knowl-
edge about the time ordering of the variables. (Both
linearity and partial knowledge about the time order-
ing are rather common assumptions in many fields.)
We also provide heuristics using this test to search for
a variable subset, so as to obtain a consistent estimator
of the causal effect, and demonstrate the performance
of the test and the search procedure empirically.

Our results parallel recent work in the ‘causal discov-
ery’ literature showing that non-Gaussianity can aid in
structure learning of graphical models (Shimizu et al.,
2006; Hoyer et al., 2008). While such methods aim at
providing preliminary hypotheses of the causal struc-
ture among a set of observed variables, our procedure
targets a more restricted setting in which a specific
causal effect is estimated, with some (limited) back-
ground knowledge of temporal ordering. This allows
us to identify causal effects without the restrictive as-
sumption of no hidden variables (Shimizu et al., 2006),
yet still avoiding the statistically and computationally
difficult task of learning arbitrary graph structures in
the presence of latent variables (Hoyer et al., 2008).

2 Model and Method

2.1 A Simple Example

We begin by considering the two linear acyclic causal
models (recursive structural equation models) of Fig-
ure 1. In both models, the observed variables consist
of the treatment x, the outcome y, and a single co-
variate w. The model in (b) additionally contains two
hidden variables u; and us. The causal relationships
between the variables are represented by a directed
acyclic graph over the full variable set, and the rela-
tionships between the variables are given in the linear
equations next to the graphs. The disturbance terms
e in the model are mutually independent.

We are interested in finding the causal effect a of the
treatment x on the outcome y. Formally, this effect is
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defined as the rate of change in the expected value of y
when setting x (in an experiment) to a certain value,
i.e. ZE[y|do(x)], which in the case of the consid-
ered linear generating models coincides with the cor-
responding edge coefficient « (Pearl, 2009a, Ch. 5.4).
We can obtain an unbiased and consistent estimator?
of this edge coefficient from observational data by esti-
mating a regression of y on z and a set Z (using ordi-
nary least squares, OLS), where the set Z fulfills the so
called back-door criterion with respect to the ordered
pair (z,y), i.e. Z does not contain any descendants
of z, and Z blocks (d-separates) every back-door path
from x to y, that is every path between x and y that
contains an arrow into z (“xz «"). Any such set Z is
termed admissible (Pearl, 2009a, Ch. 3.3, Ch. 5.3).

First, consider the model in (a). It is well understood
that, if 8 # 0 and v # 0, regressing y on x while
disregarding w leads an inconsistent estimate a of the
true causal effect a. On the other hand, ‘controlling’
for w by including it in the regression, as in y = ax +
bw+r,, will lead for this model to a consistent estimate
a of . Thus, in this case it is crucial to include w in the
regression. However, in model (b) controlling for w
has the exact opposite effect: the regression y = azx+r,
yields a consistent estimate a of o, while including w in
the regression results in an inconsistent estimate. For
details and further discussion see the Supplementary
Material and (Spirtes et al., 1998; Greenland et al.,
1999; Spirtes, 2000; Pearl, 2009b), respectively.

When domain-specific background knowledge allows
us to uniquely choose one of the two models we can
decide whether to include w in the regression. How-
ever, in many cases one does not a priori have such
information available. Instead, one often only knows
a (partial) temporal ordering. In such cases it would
be useful if one could use the data and this order-
ing to infer which model fits the data. Unfortunately,
the two models are equivalent in the set of covariance
matrices over the observed variables z, y, and w (see
the Supplementary Material for a proof of this fact),
which implies that for Gaussian data the two models
cannot be distinguished based on the data. Even if
we knew that w precedes x which in turn precedes y
we could not distinguish the two models for Gaussian
data. Thus, knowing a temporal ordering of the vari-

2An estimator @ of a parameter 6 is unbiased if E(0) =
0, i.e. the expected value of the estimator is the true pa-
rameter. An estimator 6 is a consistent estimator of 6 if it
converges in probability to 0 (6x L, 0),i.e. for every € > 0:
P(|0x — 0] > &) — 0 as k — oo, where 0, is an estimate of
0 using k samples, see for example (Wasserman, 2004). In
the rest of the paper we will focus on consistency, but we
emphasize that in our models the estimators are either both
consistent and unbiased, or both inconsistent and biased,
which derives from the properties of the OLS estimator.
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Figure 1: Two example models, with w, z, and y observed, and u; and us hidden variables. For instance, let in
(a) = education, y = income, w = intelligence, and in (b) x = cholesterol, y = blood pressure, w = weight, uy
= diet, uy = exercise. In case the two graphs accurately represent the causal relationships between the variables,
adjusting for w in (a) yields a consistent estimate of the causal effect of x on y, whereas in (b) this results in an
inconsistent estimate of «. To understand the latter statement, observe that weight is associated with cholesterol
and blood pressure: obesity may result from a high caloric diet and minimal exercise, and hence obese individuals
may show high values for both cholesterol and blood pressure, even in case the true causal effect o of the former
on the later was 0. Conversely, the naive estimate of the causal effect of x on y (i.e. not conditioning on w),
yields in model (a) an inconsistent estimate a of «, and in model (b) a consistent estimate (Pearl, 2009a).

ables is in general not sufficient to decide whether to
adjust for a specific covariate.

Nevertheless, if the variables are non-Gaussian it is
possible to decide whether w should be included in the
regression, without knowing a priori which is the true
graph, but instead only knowing the time ordering of
the observed variables. To see this, consider regressing
y on z (disregarding w) using data drawn from model
(a). When we estimate the regression y = ax + ry
using OLS, it is well known that the residual r, is
necessarily linearly uncorrelated with x (regardless of
the confounding). However, when the disturbances are
non-Gaussian, the residual 7, is nevertheless statisti-
cally dependent on x. This can be seen by expressing x
and r, in terms of the disturbances, v = ve,, + e, and
ry =y —ax = ((a —a)y+ Bew + (o — a)e; + ey, and
noting that whenever the confounding leads to an in-
consistent estimator, i.e. (a—a) L5 0, the disturbance
e, has a non-vanishing influence on both z and ry.
By the Darmois-Skitovitch Theorem (see Appendix) x
and r, are thus necessarily statistically dependent if e,
is non-Gaussian. If, on the other hand, w is included
in the regression 7, is asymptotically independent of z,
by the assumption of independent disturbances. Sim-
ilarly, one can show that for model (b) the residual
ry is asymptotically independent of x if and only if w
is mot included in the regression. For details see the
Supplementary Material.

2.2 Problem Definition

We generalize the above example problem as follows.
We consider the task of estimating the causal effect of
one continuous-valued scalar random variable (z) on
another (y), from samples of these two variables and
a set of observed covariates (W). We assume that the
covariates W are known not to be caused by the treat-
ment x, typically because they precede the treatment,
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and it is also known that the outcome y does not affect
any of the other variables in the model.

The data-generating model is assumed to be the fol-
lowing. The full set of random variables is given by
V ={z,y} UWU U, where z,y, and W are as above
and U is a (possibly empty) set of latent (unobserved)
variables. The variables in V can be represented by
a directed acyclic graph (DAG), and the relationships
among the variables are linear. With a vector v con-
taining the variables in V), the model is given by

v:=Bv+te (1)

where the coefficient matrix B (containing the causal
direct effects) is strictly lower triangular when the vari-
ables are arranged in a causal ordering. The vector e
of (unobserved) disturbance variables consists of mu-
tually independent zero-mean random variables (which
is not a strong assumption because latent variables are
allowed). Here, we do not place any assumptions on
the type of distributions of the disturbances e, but
we will see that our method will only give informative
results when the disturbances are non-Gaussian.

Given this model, the question is now whether the
causal effect of x on y can be consistently estimated
from data over the observed variables {z,y} UW. De-
pending on the sets W and U, and on the DAG con-
necting these variables with each other and with «
and y, this may or may not be achieved by includ-
ing a set Z C W in the regression of y on x, as in
y=ax+clz+ ry. When this regression is estimated
using OLS, the regression coefficient a is a consistent
estimate of the true causal effect o of z on y (i.e. the
coefficient of z in the equation for y in Equation (1))
if the set Z is admissible (as stated in Section 2.1).

If the underlying DAG is known, there exist algorithms
for deciding if an admissible set Z exists, and if so
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Algorithm 1 (Statistical test for consistency)

Given a dataset over the observed variables {x,y}UW
and a set Z C W of covariates to adjust for.

Estimate the following two regressions using OLS:

r=b"z+r, (2)
y=azr+c'z+r, (3)

Perform a statistical test for Gaussianity of the resid-
ual r,, proceed only if Gaussianity is rejected.

Perform a statistical test for independence of r, and
ry, interpret the result as follows (Theorem 1):

If independence is not rejected at threshold py:

The estimated effect a is inferred to be consistent
If independence is rejected at threshold p;:

The estimated effect a is inferred to be inconsistent

finding a minimal such set (Tian et al., 1998). Here,
we show that in the above model family, one can devise
a statistical test for consistency of the estimator of the
causal effect of  on y, with only the knowledge that
the covariates in W precede the treatment z which in
turn precedes the outcome .

2.3 Statistical Test for Consistency

To test if an arbitrary adjustment set Z C W yields a
consistent estimator of the causal effect of x on y, we
regress x on z, and y on the combination of z and z,
to obtain the residuals 7, and 7, respectively. After
ensuring that the residual 7, is non-Gaussian, we test
for statistical dependence between r, and ry.3 This
procedure is formalized in Algorithm 1. In the remain-
der of this section we give the conditions under which
this method is guaranteed to asymptotically correctly
identify when a set Z yields a consistent estimator,
and consider issues occurring for finite sample sizes.

We first note that the residuals r, and r, are by con-
struction linearly uncorrelated, since, when using OLS,
all regressors are uncorrelated with the residual:

cov(ry,ry) = E(ryry) = E((x —b" 2) 1)
=E(zr,) —b"E(zr,) =0,

where both expectations are zero because r, is de-
rived from a regression on both x and z. Because
zero linear correlation is equivalent with statistical in-
dependence for Gaussian variables, it is easy to see
that our method can only yield substantive results for
non-Gaussian variables.

3Note that it is not sufficient to test dependence of x and

ry, since they may be dependent even though the estimator
is consistent (see the Supplementary Material).
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Theorem 1. Given the model of Section 2.2 and us-
ing the procedure described in Algorithm 1 with a fixed
conditioning set Z, the following statements hold:

(a) Under the assumption that the disturbance term
of x, denoted by e, has a non-Gaussian distribu-
tion, if the residuals r, and ry are asymptotically
mutually independent, then a is a consistent esti-
mator of the true causal effect c.

(b) Under the assumption that the distribution over
the variables in V is linearly faithful to the gen-
erating DAG (Spirtes et al., 2000, p. 47), if the
residual 7, is non-Gaussian, and r; and r, are
asymptotically mutually independent, then a is a
consistent estimator of the true causal effect a.

(¢) If the residuals ro and ry are asymptotically statis-
tically dependent, then the set Z is not admissible.

The proof is given in the appendix. We now discuss
the assumptions and implications of the theorem.

From parts (a) or (b), we can conclude that, under
the given assumptions, if the residuals are independent
then the estimator is consistent. In practice, of course,
one can never fully confirm independence, but only
hope for not rejecting it at a predefined threshold p;
(as in Algorithm 1). Choosing this threshold is crucial;
if it is too high, the type I error rate (“false positives”,
where a consistent estimate is believed to be inconsis-
tent), which is directly controlled for by this threshold,
will be large. On the other hand, if the threshold is set
too low, the type IT error rate (“false negatives”, where
a truly inconsistent estimate is judged to be consistent)
will typically become large. This implies a trade-off be-
tween the number of estimates being judged consistent
and the errors being made in these estimates.

The main drawback of part (a) of Theorem 1 is that
the assumption of non-Gaussianity of the disturbance
variable e, is not testable. To avoid this, part (b)
replaces this assumption with the requirement of a
non-Gaussian residual r, (which can be tested using
any standard test for normality). However, this comes
at a cost, as we then need to assume linear faith-
fulness (Spirtes et al., 2000, p. 47), an assumption
that any zero partial correlation in the observed dis-
tribution corresponds to d-separation in the generat-
ing graph. This assumption is necessary as there exist
models with linearly unfaithful parameter values for
which the estimator is inconsistent even though r, is
non-Gaussian, and r, and r, are independent (see the
Supplementary Material). However, these linear un-
faithful parameterizations are of measure zero among
all parameterizations (Spirtes et al., 2000, p. 66).

Using part (c) of Theorem 1 we can conclude that if
the residuals r, and r, are dependent the set Z is not
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admissible. While there exist graphs with parameter
settings for which the corresponding estimator of the
causal effect is nonetheless consistent, such parameter
values are special cases of measure zero. Hence, for all
practical purposes, a dependence between 7, and r,
indicates that the estimator ought not to be trusted.

3 Heuristics for Search

The procedure given in Algorithm 1 provides a method
to test whether adjusting for a given set Z yields a con-
sistent estimator of the causal effect. However, there
are 2! subsets of W, so testing all subsets may be
computationally intractable. We here introduce sim-
ple strategies to search for such a set Z in quadratic
time with respect to |W|, the number of covariates.

We assume that we have a test for statistical depen-
dence that returns a p-value under the null hypothesis
that 7, and r, are independent. In our implementa-
tion, we use the Hilbert Schmidt independence crite-
rion (HSIC, Gretton et al., 2008), which is a kernel-
based method that is guaranteed to asymptotically de-
tect any form of dependence, and, as an alternative,
a non-linear correlation test which is computationally
more efficient but only detects certain forms of depen-
dencies between the variables.

The first search heuristic is forward selection. Start-
ing from the empty set, Z = 0, for each cardinality
m > 1 of Z we augment the conditioning set of cardi-
nality m — 1 by adding a single covariate not yet in the
set, and among these possibilities choose the one yield-
ing the highest p-value for independence of r, and r,,
among those with a sufficiently non-Gaussian residual
r.. If all potential sets Z yield a Gaussian residual, we
select the set yielding the least Gaussian r,. The pro-
cedure returns the set Z yielding the highest p-value
for independence. Pseudocode is given in Algorithm 2.

A similar but alternative strategy is to perform back-
ward elimination. We start from the full covariate set,
Z = W, and for each cardinality m < |[W| of Z we
greedily remove variables from the ‘best’ set of car-
dinality m 4+ 1 in a similar fashion as in the forward
selection approach. The pseudocode is similar to Algo-
rithm 2, and hence left to the Supplementary Material.

4 Simulations

We first evaluate the performance of Algorithm 1 by
simulating data from 5000 randomly generated models
as in Equation (1) (the disturbances are generally non-
Gaussian, but are allowed to be close to Gaussian) with
5 observed variables (i.e. |W|=5) and 3 hidden ones
(i.e. |U| = 3), and estimate the causal effect of x on y
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Algorithm 2 (Forward Selection)
Let Zg:=0 and m:=0
If the residual r, from Algorithm 1 is Gaussian
set pg := NaN,
Else obtain a p-value py from the independence test of
the residuals r, and r, from Algorithm 1
Repeat while m < [W|
m:=m++1
For every set Z = Z,,_1U{w}, w € W\ Z,,_1, test
whether r, is Gaussian
For every such Z with non-Gaussian r, get a p-value
pz from the independence test of r, and 7y
Set p,, := max{pz} and let Z,, be the correspond-
ing set Z
If all r, were Gaussian, set p,, := NaN and let Z,,
be the set Z yielding the least Gaussian 7,
Return max,,{pm,} and the corresponding set Z,,

when adjusting for a subset Z C W, drawn uniformly
at random from among all possible subsets. Figure 2
shows the p-value of the independence test (non-linear
correlation) of the residuals r, and r, versus the error
in the estimate, scaled according to the standard devi-
ation of the true effects. (Note that only the roughly
3000 subsets yielding a statistically significantly non-
Gaussian residual r, are shown.) Each shaded square
in the plot indicates the proportion of estimates hav-
ing the corresponding error when normalizing each col-
umn (i.e. fixed interval of p-values) such that the field
with the highest mass is shaded in black. The plots
show that, for each of the three sample sizes, the larger
the p-value of the independence test, the smaller the
average error in the estimated causal effects. For suffi-
ciently large p-values (e.g. greater than 0.4), the errors
are (rather) small for all sample sizes. Plots for mod-
els with 10 covariates and 5 hidden variables show the
same trend, but are a bit more scattered. For Matlab
code to reproduce this and all the following results see
www.cs.helsinki.fi/u/entner/ConsistencyTest/.

Next, we evaluate the performance of the forward se-
lection procedure (Algorithm 2) and the backward
elimination algorithm of Section 3, as well as a brute
force search, i.e applying Algorithm 1 to all subsets
of covariates and picking the one yielding the highest
p-value for the independence test of r, and r, among
those with a non-Gaussian residual r,. We simulate
data from 100 randomly generated models as in Equa-
tion (1), and apply these three search strategies with
both HSIC and non-linear correlation as independence
tests, and estimate the causal effect of x on y using the
returned set Z. As suggested by Figure 2, the thresh-
old for the p-value of the independence test in Algo-
rithm 1 is set to p; = 0.4 in all simulations. Further-
more, for the purpose of comparison, we also calculate
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Figure 2: For 5000 models with |W| = 5 covariates and |[U| = 3 hidden variables we estimate the causal effect
of  on y when adjusting for a randomly selected subset Z of the covariates (only estimates were Gaussianity
of the residual r, was rejected are displayed). The p-value of the independence test of the residuals (note the
non-uniform scale) is plotted versus the standardized error in the estimate, when using non-linear correlation
as independence test and 1000, 10000 and 100000 samples (from left to right). For each interval of p-values
(columns in the plot) the counts are normalized such that the square with the highest count is shaded in black.

the estimate obtained by including none (£ = () and
all (Z = W) of the covariates in the regression. The
latter is a common choice in practice when it is known
that the covariates precede z (no ‘selection bias’ can be
introduced by conditioning), and the relationships are
linear (little loss in the accuracy of the estimates). We
also compare with LINGAM (Shimizu et al., 2006), a
method which learns the whole graph structure under
the assumption that all relevant variables are observed.
An extension of this method (IvLINGAM, Hoyer et al.,
2008), which allows for latent variables, is not applica-
ble due to its computational complexity. We measure
the correctness of the procedures by calculating the
root mean squared error of those estimates deemed
consistent (normalized by the standard deviation of
the true effects). The results are shown in Figure 3.
(Note that for the models with [W| =10 and |U| =5
the brute force approach with HSIC was computation-
ally too expensive with 10000 samples.) For the small-
est sample size of 100 the search heuristics using the
statistical test introduced in Algorithm 1 do not seem
to bring any improvements over simply including all
or none of the covariates in the conditioning set. How-
ever, with growing sample size our novel methods gen-
erally outperform the control methods. Surprisingly,
in the case with 5 covariates and 3 hidden variables,
including none of the covariates performs slightly bet-
ter than when including all. This is contrary to Green-
land’s (2003) argument that the bias in estimate intro-
duced by activating a path when conditioning on some
variable is typically less than the bias eliminated by de-
activating a path by conditioning. The choice of the
independence tests does not seem to affect the error
much. However, it does affect the number of estimates
deemed consistent. On average, using HSIC results in
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about twice as many estimates compared with using
the non-linear correlation test. With HSIC the pro-
portion of estimates judged consistent in the smaller
models (|W| =5, [U| = 3) varies from about 50% for
the 100 sample case to about 20% for the 10000 sam-
ple case. For the larger models (|[W| = 10, [U| = 5)
the corresponding numbers are 75% and 35%. In to-
tal, in about 25% of the cases there truly existed an
admissible set, but confounding may have been weak
such that some estimates were only slightly distorted.

5 Car Mileage Data

We apply the brute force search using Algorithm 1 to
a data set* containing 82 observations of the following
variables, arranged in a plausible causal order: cab
space (in cubic feet), vehicle weight (in 100 1b), engine
horsepower, top speed (in mph), and average miles per
gallon. All variables are log-transformed to better ful-
fill the linearity assumption. We assign W, z and y
in any possible combination consistent with the above
order, and obtain the following results. The method
judges the causal effect of horse power on the average
miles per gallon to be consistent when Z = () (with a
p-value of 0.225 for the independence test of the resid-
uals) and Z = {cab space} (p-value of 0.575), and
estimates in both cases a strength of about -0.66. Fur-
thermore, the effect of top speed on miles per gallon is
deemed consistent and of strength -2.1 when condition-
ing on Z = § (p-value of 0.175) or £ = {cab space}
(p-value of 0.425). Both these relations seem reason-
able as does (at least) the sign of the estimated effect.
All other effects which lead to non-Gaussian residu-

“The data are available at http://www.stat.cmu.edu/
~larry/all-of-statistics/=data/carmileage.dat.
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Figure 3: The sample size (100, 1000 and 10000) is plotted versus the root mean squared error of the estimates
of the causal effect of x on y, which were deemed consistent, from 100 models with 5 covariates and 3 hidden
variables (left figure) as well as with 10 covariates and 5 hidden variables (right figure) using different algorithms
(brute force approach, forward selection and backward elimination introduced in Section 3, including all and
none of the variables in the conditioning set, and LINGAM (Shimizu et al., 2006)) and two independence tests
(nonlinear correlation, blue lines, and HSIC, orange lines).

als r, are deemed inconsistent, some of which would
be meaningful as well, such as a positive causal ef-
fect of horse power on top speed. This may be due
to an error in the magnitude of the effect, or simply
a wrong decision by the algorithm. Furthermore, the
method correctly rejects the only estimate having the
intuitively wrong sign (the weight of the car having
a positive effect on top speed), and a number of esti-
mates of strength zero, such as cab space on top speed.

6 Conclusions

When seeking to derive causal conclusions from pas-
sive observational data, one of the main problems
is the possibility of an inconsistent estimator due to
confounding by observed or unobserved covariates.
In general, detailed domain knowledge of the causal
structure is needed to select a suitable covariate set
which yields consistent estimators of the desired causal
effects when adjusted for. We have shown that, in the
restricted space of linear models, when the data are
non-Gaussian, one can use statistical tests to judge
whether adjusting for a given variable set is appropri-
ate, and such tests can be used to search for a set likely
to yield a consistent estimator.
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Appendix: Proof of Theorem 1

For reasons of space, we here give a relatively con-
densed proof of Theorem 1. A more detailed version

370

can be found in the Supplementary Material. In the
proof we will make heavy use of the ‘reduced form’
representation of the model in Equation (1), given by

v=Ae (4)

with A = (I — B)™! containing the total effects of the
disturbances e on the variables v. That is, each vari-
able v € V can be written as a linear combination of
the disturbance terms: v = A,e with A, being the
corresponding row of matrix A. We further use the
terminology of active and blocked paths as defined in
Pearl (2009a), and restated in the Supplementary Ma-
terial. We also rely on a property about dependence
and independence of two sums of independent random
variables, known as the Darmois-Skitovitch Theorem:

Darmois-Skitovitch Theorem (Darmois, 1953; Ski-
tovitch, 1953). Let eq,..., e, be independent random
variables (n > 2), s1 = f1e1 + ... + Bnen and s =
v1€1+ ...+ Vne, with constants B, ~v;, i =1,...,n. If
s1 and sy are independent, then those e; which influ-
ence both sums s; and s, (i.e. 87, # 0) are Gaussian.

Proof of Theorem 1 (a). We show that if the es-
timator is inconsistent then the residuals are de-
pendent. Let v = (vi,...,vp_9,7,y)7 and e =
(€uys- -y Cu oy €z ey)T such that the matrix A (Equa-
tion (4)) is lower triangular with a unit diagonal
(possible by the acyclicity and partial temporal or-
dering assumption). It follows that x = A e with
A, = (A, Az n—2,1,0), and y = Aye, with
A, = (Ay,l, o Ayn—, @, 1), with Az Ayi ER, i =
1,...,n — 2, and «, the coefficient for e, in y, being
the true causal effect of x on y. Furthermore, for all
other variables v;, i = 1,...,n — 2, the representation
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v; = Ay, e is such that the coefficients for e, and e, are
zero (because of the lower triangularity of A). Writing
the residuals of the regressions in terms of the distur-
bances yields r, = 2 — b’ z = (Ap =2 .czb0.A)e=
(...,1,0)e and 7, =y —ar —cTz = (A, — aA, —
d.czCA)e=(...,a—a,1)e (where the dots indi-
cate the entries of the disturbances other than e, and
ey). Given the premise that the estimator is incon-

sistent (i.e. (a — ) RN 0) the disturbance e, has a
non-vanishing coefficient in the representation of both
residuals r, and r,. By the assumed non-Gaussianity
of e, the Darmois-Skitovitch theorem ensures that r,
and r, are asymptotically statistically dependent. [J

For the proofs of Theorem 1 (b) and (c) we make use
of the following Lemma.

Lemma 1. We are given a set of variables V = v U
V', where v is a single variable and V' a non-empty
set of wvariables not including v, following the model
in Equation (1), and we assume that the distribution
over these variables is linearly faithful to the generating
DAG. Regressing v on a set Z' C V' not containing
any descendants of v yields

Ty =0 — E C,z = A, e— E ¢, Ae=d,e
2€Z! 2EZ!

= (dv,17~-~ dv’n)(el,...

with A, and A, z € Z', the corresponding rows of the
matriz A in Equation (4) andd, = Ay—)_ .z C-A..
When estimating the regression using OLS, for w € V'
holds that d,, L0 (with d, . the coefficient of e,y in
d, ) if and only if

1. for w € Z' there is an active back-door path (not
blocked by Z' \ {w}) from w to v pointing into v,

2. for w € V'\ Z' there is (i) a directed active path
from w to v (not blocked by Z') or (ii) a directed
active path from w to some z € Z' (not blocked
by Z'\{z}) for which there is an active back-door
path to v (not blocked by Z'\ {z}) pointing into v.

T
7dv,wa"'a 7ew7"'7en)

Proof of Lemma 1. Note that points 1 and 2, re-
spectively, are equivalent to e,, being d-connected to
v given Z’, by a path pointing into v, which follows
straight from the definition of d-separation. Further-
more, any active back-door path is pointing into v,
since any other back-door path includes at least one
collider at some descendant of v, and such variables
are not in the conditioning set (by assumption).

We first show that if point 1 or 2 holds, then d,, ,, Lo,
If w e Z' with w = e, point 1 cannot hold. For
any other disturbance variable e,,, if point 1 or 2 is
fulfilled, we know that e,, is not d-separated from v
given Z’, which together with the faithfulness assump-
tion implies that the partial correlation of e, and v
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given Z’ is non-vanishing. Hence, in the regression
V=) cz C.2+Ty, the coefficient for e, in the repre-

. Ce P
sentation of r, must be non-vanishing, i.e. d ., = 0.

Next we show that if points 1 and 2 are violated, then
dy w £ 0. First, for any w € Z’ which has no par-
ents, i.e. w = ey, point 1 cannot hold. In this case,
since in the regression of v on the variables in Z’ the
regressors are uncorrelated with the residual r,, we
obtain 0 = cov(w,r,) = cov(ey,r,) = E(ey dye) =
Sor dui E(eye;) and E(ey, ;) L0 for w # i (since
all e; are independent). Thus, Y. ; d,; E(ey €;) L,

dywV (ew) i 0, implying that d, . £, 0. For any
other disturbance variable e,,, w € V’, we know that
the negation of points 1 and 2 imply that e, is d-
separated from v given Z’, which in the linear model
family implies that the partial correlation of e, and
v given Z’ is vanishing. Thus, in the regression v =

Zzez, ¢,z + be,, + 7, the regression coefficient b i> 0,
and hence for the regression v = )~/ é.2+7r,, we get
that for all z € Z’ the coefficients ¢, and ¢, converge
to the same value and hence also 7, and r,. Because
0 = cov(ew,Ty) = cov(ey,r,) We can, as above, con-
clude that dy iD—> 0. Note that the linear faithfulness
assumption was not used to prove this direction. [

Proof of Theorem 1 (b). We show that an incon-
sistent estimator implies dependent residuals. Since
r, is non-Gaussian, when expressing r, in terms of the
disturbances (r, = dge) the coeflicient of at least one
non-Gaussian disturbance e,, has to be non-vanishing.
By Lemma 1 follows that there exists an active path
from w to = (not blocked by Z) pointing into x of a
type as in point 1 or 2. The inconsistent estimator
of the effect from x on y implies that there is an ac-
tive back-door path from z to y (again not blocked by
Z). Connecting these two active paths yields an active
path from w to y when conditioning on {z}U Z, which
has the form of point 1 or 2 of Lemma 1. Thus, by the
lemma the effect of e,, on y is also non-vanishing (here
the linear faithfulness assumption is needed). From
the non-Gaussianity of e,, and the Darmois-Skitovitch
theorem then follows that r, and r, are dependent. [J

Proof of Theorem 1 (c). Expressing the residuals
in terms of the disturbances we obtain r, = d,e and
ry = dye. Since 1, and ry are dependent there exists
aw € {x} UW UU whose error term e,, has a non-
vanishing coefficient in this representation for both r,
and r,. By Lemma 1 we thus know that there exists
some kind of active paths (as in point 1 or 2 of the
lemma) from w to x (conditional on Z) and from w to
y (conditional on {z} U Z), and concatenating these
paths yields an active back-door path from z toy. O
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